File size: 9,339 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
    This example program shows you how to create your own custom binary classification
    trainer object and use it with the multiclass classification tools in the dlib C++
    library.  This example assumes you have already become familiar with the concepts
    introduced in the multiclass_classification_ex.cpp example program.


    In this example we will create a very simple trainer object that takes a binary
    classification problem and produces a decision rule which says a test point has the
    same class as whichever centroid it is closest to.  

    The multiclass training dataset will consist of four classes.  Each class will be a blob 
    of points in one of the quadrants of the cartesian plane.   For fun, we will use 
    std::string labels and therefore the labels of these classes will be the following:
        "upper_left",
        "upper_right",
        "lower_left",
        "lower_right"
*/

#include <dlib/svm_threaded.h>

#include <iostream>
#include <vector>

#include <dlib/rand.h>

using namespace std;
using namespace dlib;

// Our data will be 2-dimensional data. So declare an appropriate type to contain these points.
typedef matrix<double,2,1> sample_type;

// ----------------------------------------------------------------------------------------

struct custom_decision_function
{
    /*!
        WHAT THIS OBJECT REPRESENTS
            This object is the representation of our binary decision rule.  
    !*/

    // centers of the two classes
    sample_type positive_center, negative_center;

    double operator() (
        const sample_type& x
    ) const
    {
        // if x is closer to the positive class then return +1 
        if (length(positive_center - x) < length(negative_center - x))
            return +1;
        else
            return -1;
    }
};

// Later on in this example we will save our decision functions to disk.  This
// pair of routines is needed for this functionality.
void serialize (const custom_decision_function& item, std::ostream& out)
{
    // write the state of item to the output stream
    serialize(item.positive_center, out);
    serialize(item.negative_center, out);
}

void deserialize (custom_decision_function& item, std::istream& in)
{
    // read the data from the input stream and store it in item
    deserialize(item.positive_center, in);
    deserialize(item.negative_center, in);
}

// ----------------------------------------------------------------------------------------

class simple_custom_trainer
{
    /*!
        WHAT THIS OBJECT REPRESENTS
            This is our example custom binary classifier trainer object.  It simply 
            computes the means of the +1 and -1 classes, puts them into our 
            custom_decision_function, and returns the results.

            Below we define the train() function.  I have also included the
            requires/ensures definition for a generic binary classifier's train()
    !*/
public:


    custom_decision_function train (
        const std::vector<sample_type>& samples,
        const std::vector<double>& labels
    ) const
    /*!
        requires
            - is_binary_classification_problem(samples, labels) == true
              (e.g. labels consists of only +1 and -1 values, samples.size() == labels.size())
        ensures
            - returns a decision function F with the following properties:
                - if (new_x is a sample predicted have +1 label) then
                    - F(new_x) >= 0
                - else
                    - F(new_x) < 0
    !*/
    {
        sample_type positive_center, negative_center;

        // compute sums of each class 
        positive_center = 0;
        negative_center = 0;
        for (unsigned long i = 0; i < samples.size(); ++i)
        {
            if (labels[i] == +1)
                positive_center += samples[i];
            else // this is a -1 sample
                negative_center += samples[i];
        }

        // divide by number of +1 samples
        positive_center /= sum(mat(labels) == +1);
        // divide by number of -1 samples
        negative_center /= sum(mat(labels) == -1);

        custom_decision_function df;
        df.positive_center = positive_center;
        df.negative_center = negative_center;

        return df;
    }
};

// ----------------------------------------------------------------------------------------

void generate_data (
    std::vector<sample_type>& samples,
    std::vector<string>& labels
);
/*!
    ensures
        - make some four class data as described above.  
        - each class will have 50 samples in it
!*/

// ----------------------------------------------------------------------------------------

int main()
{
    std::vector<sample_type> samples;
    std::vector<string> labels;

    // First, get our labeled set of training data
    generate_data(samples, labels);

    cout << "samples.size(): "<< samples.size() << endl;

    // Define the trainer we will use.  The second template argument specifies the type
    // of label used, which is string in this case.
    typedef one_vs_one_trainer<any_trainer<sample_type>, string> ovo_trainer;


    ovo_trainer trainer;

    // Now tell the one_vs_one_trainer that, by default, it should use the simple_custom_trainer
    // to solve the individual binary classification subproblems.
    trainer.set_trainer(simple_custom_trainer());

    // Next, to make things a little more interesting, we will setup the one_vs_one_trainer
    // to use kernel ridge regression to solve the upper_left vs lower_right binary classification
    // subproblem.  
    typedef radial_basis_kernel<sample_type> rbf_kernel;
    krr_trainer<rbf_kernel> rbf_trainer;
    rbf_trainer.set_kernel(rbf_kernel(0.1));
    trainer.set_trainer(rbf_trainer, "upper_left", "lower_right");


    // Now let's do 5-fold cross-validation using the one_vs_one_trainer we just setup.
    // As an aside, always shuffle the order of the samples before doing cross validation.  
    // For a discussion of why this is a good idea see the svm_ex.cpp example.
    randomize_samples(samples, labels);
    cout << "cross validation: \n" << cross_validate_multiclass_trainer(trainer, samples, labels, 5) << endl;
    // This dataset is very easy and everything is correctly classified.  Therefore, the output of 
    // cross validation is the following confusion matrix.
    /*
        50  0  0  0 
         0 50  0  0 
         0  0 50  0 
         0  0  0 50 
    */


    // We can also obtain the decision rule as always.
    one_vs_one_decision_function<ovo_trainer> df = trainer.train(samples, labels);

    cout << "predicted label: "<< df(samples[0])  << ", true label: "<< labels[0] << endl;
    cout << "predicted label: "<< df(samples[90]) << ", true label: "<< labels[90] << endl;
    // The output is:
    /*
        predicted label: upper_right, true label: upper_right
        predicted label: lower_left, true label: lower_left
    */


    // Finally, let's save our multiclass decision rule to disk.  Remember that we have
    // to specify the types of binary decision function used inside the one_vs_one_decision_function.
    one_vs_one_decision_function<ovo_trainer, 
            custom_decision_function,                             // This is the output of the simple_custom_trainer 
            decision_function<radial_basis_kernel<sample_type> >  // This is the output of the rbf_trainer
        > df2, df3;

    df2 = df;
    // save to a file called df.dat
    serialize("df.dat") << df2;

    // load the function back in from disk and store it in df3.  
    deserialize("df.dat") >> df3;


    // Test df3 to see that this worked.
    cout << endl;
    cout << "predicted label: "<< df3(samples[0])  << ", true label: "<< labels[0] << endl;
    cout << "predicted label: "<< df3(samples[90]) << ", true label: "<< labels[90] << endl;
    // Test df3 on the samples and labels and print the confusion matrix.
    cout << "test deserialized function: \n" << test_multiclass_decision_function(df3, samples, labels) << endl;

}

// ----------------------------------------------------------------------------------------

void generate_data (
    std::vector<sample_type>& samples,
    std::vector<string>& labels
)
{
    const long num = 50;

    sample_type m;

    dlib::rand rnd;


    // add some points in the upper right quadrant
    m = 10, 10;
    for (long i = 0; i < num; ++i)
    {
        samples.push_back(m + randm(2,1,rnd));
        labels.push_back("upper_right");
    }

    // add some points in the upper left quadrant
    m = -10, 10;
    for (long i = 0; i < num; ++i)
    {
        samples.push_back(m + randm(2,1,rnd));
        labels.push_back("upper_left");
    }

    // add some points in the lower right quadrant
    m = 10, -10;
    for (long i = 0; i < num; ++i)
    {
        samples.push_back(m + randm(2,1,rnd));
        labels.push_back("lower_right");
    }

    // add some points in the lower left quadrant
    m = -10, -10;
    for (long i = 0; i < num; ++i)
    {
        samples.push_back(m + randm(2,1,rnd));
        labels.push_back("lower_left");
    }

}

// ----------------------------------------------------------------------------------------