File size: 15,920 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// Copyright (C) 2014  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SIMPLE_ObJECT_DETECTOR_H__
#define DLIB_SIMPLE_ObJECT_DETECTOR_H__

#include "dlib/image_processing/object_detector.h"
#include "dlib/string.h"
#include "dlib/image_processing/scan_fhog_pyramid.h"
#include "dlib/svm/structural_object_detection_trainer.h"
#include "dlib/geometry.h"
#include "dlib/data_io/load_image_dataset.h"
#include "dlib/image_processing/remove_unobtainable_rectangles.h"
#include "serialize_object_detector.h"
#include "dlib/svm.h"
#include <sstream>


namespace dlib
{

// ----------------------------------------------------------------------------------------

    typedef object_detector<scan_fhog_pyramid<pyramid_down<6> > > simple_object_detector;

// ----------------------------------------------------------------------------------------

    struct simple_object_detector_training_options
    {
        simple_object_detector_training_options()
        {
            be_verbose = false;
            add_left_right_image_flips = false;
            num_threads = 4;
            detection_window_size = 80*80;
            C = 1;
            epsilon = 0.01;
            upsample_limit = 2;
            nuclear_norm_regularization_strength = 0;
            max_runtime_seconds = 86400.0*365.0*100.0; // 100 years
        }

        bool be_verbose;
        bool add_left_right_image_flips;
        unsigned long num_threads;
        unsigned long detection_window_size;
        double C;
        double epsilon;
        unsigned long upsample_limit;
        double nuclear_norm_regularization_strength;
        double max_runtime_seconds;
    };

    inline std::string print_simple_object_detector_training_options(const simple_object_detector_training_options& o)
    {
        std::ostringstream sout;
        sout << "simple_object_detector_training_options("
            << "be_verbose=" << o.be_verbose << ", "
            << "add_left_right_image_flips=" << o.add_left_right_image_flips << ", "
            << "num_threads=" << o.num_threads << ", "
            << "detection_window_size=" << o.detection_window_size << ", "
            << "C=" << o.C << ", "
            << "epsilon=" << o.epsilon << ", "
            << "max_runtime_seconds=" << o.max_runtime_seconds << ", "
            << "upsample_limit=" << o.upsample_limit << ", "
            << "nuclear_norm_regularization_strength=" << o.nuclear_norm_regularization_strength 
            << ")";
        return sout.str();
    }

// ----------------------------------------------------------------------------------------

    namespace impl
    {
        inline void pick_best_window_size (
            const std::vector<std::vector<rectangle> >& boxes,
            unsigned long& width,
            unsigned long& height,
            const unsigned long target_size
        )
        {
            // find the average width and height
            running_stats<double> avg_width, avg_height;
            for (unsigned long i = 0; i < boxes.size(); ++i)
            {
                for (unsigned long j = 0; j < boxes[i].size(); ++j)
                {
                    avg_width.add(boxes[i][j].width());
                    avg_height.add(boxes[i][j].height());
                }
            }

            // now adjust the box size so that it is about target_pixels pixels in size
            double size = avg_width.mean()*avg_height.mean();
            double scale = std::sqrt(target_size/size);

            width = (unsigned long)(avg_width.mean()*scale+0.5);
            height = (unsigned long)(avg_height.mean()*scale+0.5);
            // make sure the width and height never round to zero.
            if (width == 0)
                width = 1;
            if (height == 0)
                height = 1;
        }

        inline bool contains_any_boxes (
            const std::vector<std::vector<rectangle> >& boxes
        )
        {
            for (unsigned long i = 0; i < boxes.size(); ++i)
            {
                if (boxes[i].size() != 0)
                    return true;
            }
            return false;
        }

        inline void throw_invalid_box_error_message (
            const std::string& dataset_filename,
            const std::vector<std::vector<rectangle> >& removed,
            const simple_object_detector_training_options& options
        )
        {

            std::ostringstream sout;
            // Note that the 1/16 factor is here because we will try to upsample the image
            // 2 times to accommodate small boxes.  We also take the max because we want to
            // lower bound the size of the smallest recommended box.  This is because the
            // 8x8 HOG cells can't really deal with really small object boxes.
            sout << "Error!  An impossible set of object boxes was given for training. ";
            sout << "All the boxes need to have a similar aspect ratio and also not be ";
            sout << "smaller than about " << std::max<long>(20*20,options.detection_window_size/16) << " pixels in area. ";

            std::ostringstream sout2;
            if (dataset_filename.size() != 0)
            {
                sout << "The following images contain invalid boxes:\n";
                image_dataset_metadata::dataset data;
                load_image_dataset_metadata(data, dataset_filename);
                for (unsigned long i = 0; i < removed.size(); ++i)
                {
                    if (removed[i].size() != 0)
                    {
                        const std::string imgname = data.images[i].filename;
                        sout2 << "  " << imgname << "\n";
                    }
                }
            }
            throw error("\n"+wrap_string(sout.str()) + "\n" + sout2.str());
        }
    }

// ----------------------------------------------------------------------------------------

    template <typename image_array>
    inline simple_object_detector_py train_simple_object_detector_on_images (
        const std::string& dataset_filename, // can be "" if it's not applicable
        image_array& images,
        std::vector<std::vector<rectangle> >& boxes,
        std::vector<std::vector<rectangle> >& ignore,
        const simple_object_detector_training_options& options 
    )
    {
        if (options.C <= 0)
            throw error("Invalid C value given to train_simple_object_detector(), C must be > 0.");
        if (options.epsilon <= 0)
            throw error("Invalid epsilon value given to train_simple_object_detector(), epsilon must be > 0.");
        if (options.max_runtime_seconds <= 0)
            throw error("Invalid max_runtime_seconds value given to train_simple_object_detector(), max_runtime_seconds must be > 0.");

        if (options.nuclear_norm_regularization_strength < 0)
            throw error("Invalid nuclear_norm_regularization_strength value given to train_simple_object_detector(), it must be must be >= 0.");

        if (images.size() != boxes.size())
            throw error("The list of images must have the same length as the list of boxes.");
        if (images.size() != ignore.size())
            throw error("The list of images must have the same length as the list of ignore boxes.");

        if (impl::contains_any_boxes(boxes) == false)
            throw error("Error, the training dataset does not have any labeled object boxes in it.");

        typedef scan_fhog_pyramid<pyramid_down<6> > image_scanner_type; 
        image_scanner_type scanner;
        unsigned long width, height;
        impl::pick_best_window_size(boxes, width, height, options.detection_window_size);
        scanner.set_detection_window_size(width, height); 
        scanner.set_nuclear_norm_regularization_strength(options.nuclear_norm_regularization_strength);
        structural_object_detection_trainer<image_scanner_type> trainer(scanner);
        trainer.set_num_threads(options.num_threads);  
        trainer.set_c(options.C);
        trainer.set_epsilon(options.epsilon);
        trainer.set_max_runtime(std::chrono::milliseconds((int64_t)std::round(options.max_runtime_seconds*1000)));
        if (options.be_verbose)
        {
            std::cout << "Training with C: " << options.C << std::endl;
            std::cout << "Training with epsilon: " << options.epsilon << std::endl;
            std::cout << "Training using " << options.num_threads << " threads."<< std::endl;
            std::cout << "Training with sliding window " << width << " pixels wide by " << height << " pixels tall." << std::endl;
            if (options.add_left_right_image_flips)
                std::cout << "Training on both left and right flipped versions of images." << std::endl;
            trainer.be_verbose();
        }

        unsigned long upsampling_amount = 0;

        // now make sure all the boxes are obtainable by the scanner.  We will try and
        // upsample the images at most two times to help make the boxes obtainable.
        std::vector<std::vector<rectangle> > temp(boxes), removed;
        removed = remove_unobtainable_rectangles(trainer, images, temp);
        while (impl::contains_any_boxes(removed) && upsampling_amount < options.upsample_limit)
        {
            ++upsampling_amount;
            if (options.be_verbose)
                std::cout << "Upsample images..." << std::endl;
            upsample_image_dataset<pyramid_down<2> >(images, boxes, ignore);
            temp = boxes;
            removed = remove_unobtainable_rectangles(trainer, images, temp);
        }
        // if we weren't able to get all the boxes to match then throw an error 
        if (impl::contains_any_boxes(removed))
            impl::throw_invalid_box_error_message(dataset_filename, removed, options);

        if (options.add_left_right_image_flips)
            add_image_left_right_flips(images, boxes, ignore);

        simple_object_detector detector = trainer.train(images, boxes, ignore);

        if (options.be_verbose)
        {
            std::cout << "Training complete." << std::endl;
            std::cout << "Trained with C: " << options.C << std::endl;
            std::cout << "Training with epsilon: " << options.epsilon << std::endl;
            std::cout << "Trained using " << options.num_threads << " threads."<< std::endl;
            std::cout << "Trained with sliding window " << width << " pixels wide by " << height << " pixels tall." << std::endl;
            if (upsampling_amount != 0)
            {
                // Unsampled images # time(s) to allow detection of small boxes
                std::cout << "Upsampled images " << upsampling_amount;
                std::cout << ((upsampling_amount > 1) ? " times" : " time");
                std::cout << " to allow detection of small boxes." << std::endl;
            }
            if (options.add_left_right_image_flips)
                std::cout << "Trained on both left and right flipped versions of images." << std::endl;
        }

        return simple_object_detector_py(detector, upsampling_amount);
    }

// ----------------------------------------------------------------------------------------

    inline void train_simple_object_detector (
        const std::string& dataset_filename,
        const std::string& detector_output_filename,
        const simple_object_detector_training_options& options 
    )
    {
        dlib::array<array2d<rgb_pixel> > images;
        std::vector<std::vector<rectangle> > boxes, ignore;
        ignore = load_image_dataset(images, boxes, dataset_filename);

        simple_object_detector_py detector = train_simple_object_detector_on_images(dataset_filename, images, boxes, ignore, options);

        save_simple_object_detector_py(detector, detector_output_filename);

        if (options.be_verbose)
            std::cout << "Saved detector to file " << detector_output_filename << std::endl;
    }

// ----------------------------------------------------------------------------------------

    struct simple_test_results
    {
        double precision;
        double recall;
        double average_precision;
    };

    template <typename image_array>
    inline const simple_test_results test_simple_object_detector_with_images (
            image_array& images,
            const unsigned int upsample_amount,
            std::vector<std::vector<rectangle> >& boxes,
            std::vector<std::vector<rectangle> >& ignore,
            simple_object_detector& detector
    )
    {
        for (unsigned int i = 0; i < upsample_amount; ++i)
            upsample_image_dataset<pyramid_down<2> >(images, boxes);

        matrix<double,1,3> res = test_object_detection_function(detector, images, boxes, ignore);
        simple_test_results ret;
        ret.precision = res(0);
        ret.recall = res(1);
        ret.average_precision = res(2);
        return ret;
    }

    inline const simple_test_results test_simple_object_detector2 (
        const std::string& dataset_filename,
        simple_object_detector_py& detector,
        const int upsample_amount
    )
    {
        // Load all the testing images
        dlib::array<array2d<rgb_pixel> > images;
        std::vector<std::vector<rectangle> > boxes, ignore;
        ignore = load_image_dataset(images, boxes, dataset_filename);
        unsigned int final_upsampling_amount = 0;
        if (upsample_amount < 0)
            final_upsampling_amount = detector.upsampling_amount;

        return test_simple_object_detector_with_images(images, final_upsampling_amount, boxes, ignore, detector.detector);
    }

    inline const simple_test_results test_simple_object_detector (
        const std::string& dataset_filename,
        const std::string& detector_filename,
        const int upsample_amount
    )
    {

        // Load all the testing images
        dlib::array<array2d<rgb_pixel> > images;
        std::vector<std::vector<rectangle> > boxes, ignore;
        ignore = load_image_dataset(images, boxes, dataset_filename);

        // Load the detector off disk (We have to use the explicit serialization here
        // so that we have an open file stream)
        simple_object_detector detector;
        std::ifstream fin(detector_filename.c_str(), std::ios::binary);
        if (!fin)
            throw error("Unable to open file " + detector_filename);
        deserialize(detector, fin);


        /*  Here we need a little hack to deal with whether we are going to be loading a
         *  simple_object_detector (possibly trained outside of Python) or a
         *  simple_object_detector_py (definitely trained from Python). In order to do this
         *  we peek into the filestream to see if there is more data after the object
         *  detector. If there is, it will be the version and upsampling amount. Therefore,
         *  by default we set the upsampling amount to -1 so that we can catch when no
         *  upsampling amount has been passed (numbers less than 0). If -1 is passed, we
         *  assume no upsampling and use 0. If a number > 0 is passed, we use that, else we
         *  use the upsampling amount saved in the detector file (if it exists).
         */
        unsigned int final_upsampling_amount = 0;
        if (fin.peek() != EOF)
        {
            int version = 0;
            deserialize(version, fin);
            if (version != 1)
                throw error("Unknown simple_object_detector format.");
            deserialize(final_upsampling_amount, fin);
        }
        if (upsample_amount >= 0)
            final_upsampling_amount = upsample_amount;

        return test_simple_object_detector_with_images(images, final_upsampling_amount, boxes, ignore, detector);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_SIMPLE_ObJECT_DETECTOR_H__