File size: 15,920 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 |
// Copyright (C) 2014 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SIMPLE_ObJECT_DETECTOR_H__
#define DLIB_SIMPLE_ObJECT_DETECTOR_H__
#include "dlib/image_processing/object_detector.h"
#include "dlib/string.h"
#include "dlib/image_processing/scan_fhog_pyramid.h"
#include "dlib/svm/structural_object_detection_trainer.h"
#include "dlib/geometry.h"
#include "dlib/data_io/load_image_dataset.h"
#include "dlib/image_processing/remove_unobtainable_rectangles.h"
#include "serialize_object_detector.h"
#include "dlib/svm.h"
#include <sstream>
namespace dlib
{
// ----------------------------------------------------------------------------------------
typedef object_detector<scan_fhog_pyramid<pyramid_down<6> > > simple_object_detector;
// ----------------------------------------------------------------------------------------
struct simple_object_detector_training_options
{
simple_object_detector_training_options()
{
be_verbose = false;
add_left_right_image_flips = false;
num_threads = 4;
detection_window_size = 80*80;
C = 1;
epsilon = 0.01;
upsample_limit = 2;
nuclear_norm_regularization_strength = 0;
max_runtime_seconds = 86400.0*365.0*100.0; // 100 years
}
bool be_verbose;
bool add_left_right_image_flips;
unsigned long num_threads;
unsigned long detection_window_size;
double C;
double epsilon;
unsigned long upsample_limit;
double nuclear_norm_regularization_strength;
double max_runtime_seconds;
};
inline std::string print_simple_object_detector_training_options(const simple_object_detector_training_options& o)
{
std::ostringstream sout;
sout << "simple_object_detector_training_options("
<< "be_verbose=" << o.be_verbose << ", "
<< "add_left_right_image_flips=" << o.add_left_right_image_flips << ", "
<< "num_threads=" << o.num_threads << ", "
<< "detection_window_size=" << o.detection_window_size << ", "
<< "C=" << o.C << ", "
<< "epsilon=" << o.epsilon << ", "
<< "max_runtime_seconds=" << o.max_runtime_seconds << ", "
<< "upsample_limit=" << o.upsample_limit << ", "
<< "nuclear_norm_regularization_strength=" << o.nuclear_norm_regularization_strength
<< ")";
return sout.str();
}
// ----------------------------------------------------------------------------------------
namespace impl
{
inline void pick_best_window_size (
const std::vector<std::vector<rectangle> >& boxes,
unsigned long& width,
unsigned long& height,
const unsigned long target_size
)
{
// find the average width and height
running_stats<double> avg_width, avg_height;
for (unsigned long i = 0; i < boxes.size(); ++i)
{
for (unsigned long j = 0; j < boxes[i].size(); ++j)
{
avg_width.add(boxes[i][j].width());
avg_height.add(boxes[i][j].height());
}
}
// now adjust the box size so that it is about target_pixels pixels in size
double size = avg_width.mean()*avg_height.mean();
double scale = std::sqrt(target_size/size);
width = (unsigned long)(avg_width.mean()*scale+0.5);
height = (unsigned long)(avg_height.mean()*scale+0.5);
// make sure the width and height never round to zero.
if (width == 0)
width = 1;
if (height == 0)
height = 1;
}
inline bool contains_any_boxes (
const std::vector<std::vector<rectangle> >& boxes
)
{
for (unsigned long i = 0; i < boxes.size(); ++i)
{
if (boxes[i].size() != 0)
return true;
}
return false;
}
inline void throw_invalid_box_error_message (
const std::string& dataset_filename,
const std::vector<std::vector<rectangle> >& removed,
const simple_object_detector_training_options& options
)
{
std::ostringstream sout;
// Note that the 1/16 factor is here because we will try to upsample the image
// 2 times to accommodate small boxes. We also take the max because we want to
// lower bound the size of the smallest recommended box. This is because the
// 8x8 HOG cells can't really deal with really small object boxes.
sout << "Error! An impossible set of object boxes was given for training. ";
sout << "All the boxes need to have a similar aspect ratio and also not be ";
sout << "smaller than about " << std::max<long>(20*20,options.detection_window_size/16) << " pixels in area. ";
std::ostringstream sout2;
if (dataset_filename.size() != 0)
{
sout << "The following images contain invalid boxes:\n";
image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, dataset_filename);
for (unsigned long i = 0; i < removed.size(); ++i)
{
if (removed[i].size() != 0)
{
const std::string imgname = data.images[i].filename;
sout2 << " " << imgname << "\n";
}
}
}
throw error("\n"+wrap_string(sout.str()) + "\n" + sout2.str());
}
}
// ----------------------------------------------------------------------------------------
template <typename image_array>
inline simple_object_detector_py train_simple_object_detector_on_images (
const std::string& dataset_filename, // can be "" if it's not applicable
image_array& images,
std::vector<std::vector<rectangle> >& boxes,
std::vector<std::vector<rectangle> >& ignore,
const simple_object_detector_training_options& options
)
{
if (options.C <= 0)
throw error("Invalid C value given to train_simple_object_detector(), C must be > 0.");
if (options.epsilon <= 0)
throw error("Invalid epsilon value given to train_simple_object_detector(), epsilon must be > 0.");
if (options.max_runtime_seconds <= 0)
throw error("Invalid max_runtime_seconds value given to train_simple_object_detector(), max_runtime_seconds must be > 0.");
if (options.nuclear_norm_regularization_strength < 0)
throw error("Invalid nuclear_norm_regularization_strength value given to train_simple_object_detector(), it must be must be >= 0.");
if (images.size() != boxes.size())
throw error("The list of images must have the same length as the list of boxes.");
if (images.size() != ignore.size())
throw error("The list of images must have the same length as the list of ignore boxes.");
if (impl::contains_any_boxes(boxes) == false)
throw error("Error, the training dataset does not have any labeled object boxes in it.");
typedef scan_fhog_pyramid<pyramid_down<6> > image_scanner_type;
image_scanner_type scanner;
unsigned long width, height;
impl::pick_best_window_size(boxes, width, height, options.detection_window_size);
scanner.set_detection_window_size(width, height);
scanner.set_nuclear_norm_regularization_strength(options.nuclear_norm_regularization_strength);
structural_object_detection_trainer<image_scanner_type> trainer(scanner);
trainer.set_num_threads(options.num_threads);
trainer.set_c(options.C);
trainer.set_epsilon(options.epsilon);
trainer.set_max_runtime(std::chrono::milliseconds((int64_t)std::round(options.max_runtime_seconds*1000)));
if (options.be_verbose)
{
std::cout << "Training with C: " << options.C << std::endl;
std::cout << "Training with epsilon: " << options.epsilon << std::endl;
std::cout << "Training using " << options.num_threads << " threads."<< std::endl;
std::cout << "Training with sliding window " << width << " pixels wide by " << height << " pixels tall." << std::endl;
if (options.add_left_right_image_flips)
std::cout << "Training on both left and right flipped versions of images." << std::endl;
trainer.be_verbose();
}
unsigned long upsampling_amount = 0;
// now make sure all the boxes are obtainable by the scanner. We will try and
// upsample the images at most two times to help make the boxes obtainable.
std::vector<std::vector<rectangle> > temp(boxes), removed;
removed = remove_unobtainable_rectangles(trainer, images, temp);
while (impl::contains_any_boxes(removed) && upsampling_amount < options.upsample_limit)
{
++upsampling_amount;
if (options.be_verbose)
std::cout << "Upsample images..." << std::endl;
upsample_image_dataset<pyramid_down<2> >(images, boxes, ignore);
temp = boxes;
removed = remove_unobtainable_rectangles(trainer, images, temp);
}
// if we weren't able to get all the boxes to match then throw an error
if (impl::contains_any_boxes(removed))
impl::throw_invalid_box_error_message(dataset_filename, removed, options);
if (options.add_left_right_image_flips)
add_image_left_right_flips(images, boxes, ignore);
simple_object_detector detector = trainer.train(images, boxes, ignore);
if (options.be_verbose)
{
std::cout << "Training complete." << std::endl;
std::cout << "Trained with C: " << options.C << std::endl;
std::cout << "Training with epsilon: " << options.epsilon << std::endl;
std::cout << "Trained using " << options.num_threads << " threads."<< std::endl;
std::cout << "Trained with sliding window " << width << " pixels wide by " << height << " pixels tall." << std::endl;
if (upsampling_amount != 0)
{
// Unsampled images # time(s) to allow detection of small boxes
std::cout << "Upsampled images " << upsampling_amount;
std::cout << ((upsampling_amount > 1) ? " times" : " time");
std::cout << " to allow detection of small boxes." << std::endl;
}
if (options.add_left_right_image_flips)
std::cout << "Trained on both left and right flipped versions of images." << std::endl;
}
return simple_object_detector_py(detector, upsampling_amount);
}
// ----------------------------------------------------------------------------------------
inline void train_simple_object_detector (
const std::string& dataset_filename,
const std::string& detector_output_filename,
const simple_object_detector_training_options& options
)
{
dlib::array<array2d<rgb_pixel> > images;
std::vector<std::vector<rectangle> > boxes, ignore;
ignore = load_image_dataset(images, boxes, dataset_filename);
simple_object_detector_py detector = train_simple_object_detector_on_images(dataset_filename, images, boxes, ignore, options);
save_simple_object_detector_py(detector, detector_output_filename);
if (options.be_verbose)
std::cout << "Saved detector to file " << detector_output_filename << std::endl;
}
// ----------------------------------------------------------------------------------------
struct simple_test_results
{
double precision;
double recall;
double average_precision;
};
template <typename image_array>
inline const simple_test_results test_simple_object_detector_with_images (
image_array& images,
const unsigned int upsample_amount,
std::vector<std::vector<rectangle> >& boxes,
std::vector<std::vector<rectangle> >& ignore,
simple_object_detector& detector
)
{
for (unsigned int i = 0; i < upsample_amount; ++i)
upsample_image_dataset<pyramid_down<2> >(images, boxes);
matrix<double,1,3> res = test_object_detection_function(detector, images, boxes, ignore);
simple_test_results ret;
ret.precision = res(0);
ret.recall = res(1);
ret.average_precision = res(2);
return ret;
}
inline const simple_test_results test_simple_object_detector2 (
const std::string& dataset_filename,
simple_object_detector_py& detector,
const int upsample_amount
)
{
// Load all the testing images
dlib::array<array2d<rgb_pixel> > images;
std::vector<std::vector<rectangle> > boxes, ignore;
ignore = load_image_dataset(images, boxes, dataset_filename);
unsigned int final_upsampling_amount = 0;
if (upsample_amount < 0)
final_upsampling_amount = detector.upsampling_amount;
return test_simple_object_detector_with_images(images, final_upsampling_amount, boxes, ignore, detector.detector);
}
inline const simple_test_results test_simple_object_detector (
const std::string& dataset_filename,
const std::string& detector_filename,
const int upsample_amount
)
{
// Load all the testing images
dlib::array<array2d<rgb_pixel> > images;
std::vector<std::vector<rectangle> > boxes, ignore;
ignore = load_image_dataset(images, boxes, dataset_filename);
// Load the detector off disk (We have to use the explicit serialization here
// so that we have an open file stream)
simple_object_detector detector;
std::ifstream fin(detector_filename.c_str(), std::ios::binary);
if (!fin)
throw error("Unable to open file " + detector_filename);
deserialize(detector, fin);
/* Here we need a little hack to deal with whether we are going to be loading a
* simple_object_detector (possibly trained outside of Python) or a
* simple_object_detector_py (definitely trained from Python). In order to do this
* we peek into the filestream to see if there is more data after the object
* detector. If there is, it will be the version and upsampling amount. Therefore,
* by default we set the upsampling amount to -1 so that we can catch when no
* upsampling amount has been passed (numbers less than 0). If -1 is passed, we
* assume no upsampling and use 0. If a number > 0 is passed, we use that, else we
* use the upsampling amount saved in the detector file (if it exists).
*/
unsigned int final_upsampling_amount = 0;
if (fin.peek() != EOF)
{
int version = 0;
deserialize(version, fin);
if (version != 1)
throw error("Unknown simple_object_detector format.");
deserialize(final_upsampling_amount, fin);
}
if (upsample_amount >= 0)
final_upsampling_amount = upsample_amount;
return test_simple_object_detector_with_images(images, final_upsampling_amount, boxes, ignore, detector);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SIMPLE_ObJECT_DETECTOR_H__
|