File size: 13,157 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 |
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This program was used to train the resnet34_1000_imagenet_classifier.dnn
network used by the dnn_imagenet_ex.cpp example program.
You should be familiar with dlib's DNN module before reading this example
program. So read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp first.
*/
#include <dlib/dnn.h>
#include <iostream>
#include <dlib/data_io.h>
#include <dlib/image_transforms.h>
#include <dlib/dir_nav.h>
#include <iterator>
#include <thread>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
template <int N, template <typename> class BN, int stride, typename SUBNET>
using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
template <int N, typename SUBNET> using res = relu<residual<block,N,bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares = relu<residual<block,N,affine,SUBNET>>;
template <int N, typename SUBNET> using res_down = relu<residual_down<block,N,bn_con,SUBNET>>;
template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;
// ----------------------------------------------------------------------------------------
template <typename SUBNET> using level1 = res<512,res<512,res_down<512,SUBNET>>>;
template <typename SUBNET> using level2 = res<256,res<256,res<256,res<256,res<256,res_down<256,SUBNET>>>>>>;
template <typename SUBNET> using level3 = res<128,res<128,res<128,res_down<128,SUBNET>>>>;
template <typename SUBNET> using level4 = res<64,res<64,res<64,SUBNET>>>;
template <typename SUBNET> using alevel1 = ares<512,ares<512,ares_down<512,SUBNET>>>;
template <typename SUBNET> using alevel2 = ares<256,ares<256,ares<256,ares<256,ares<256,ares_down<256,SUBNET>>>>>>;
template <typename SUBNET> using alevel3 = ares<128,ares<128,ares<128,ares_down<128,SUBNET>>>>;
template <typename SUBNET> using alevel4 = ares<64,ares<64,ares<64,SUBNET>>>;
// training network type
using net_type = loss_multiclass_log<fc<1000,avg_pool_everything<
level1<
level2<
level3<
level4<
max_pool<3,3,2,2,relu<bn_con<con<64,7,7,2,2,
input_rgb_image_sized<227>
>>>>>>>>>>>;
// testing network type (replaced batch normalization with fixed affine transforms)
using anet_type = loss_multiclass_log<fc<1000,avg_pool_everything<
alevel1<
alevel2<
alevel3<
alevel4<
max_pool<3,3,2,2,relu<affine<con<64,7,7,2,2,
input_rgb_image_sized<227>
>>>>>>>>>>>;
// ----------------------------------------------------------------------------------------
rectangle make_random_cropping_rect_resnet(
const matrix<rgb_pixel>& img,
dlib::rand& rnd
)
{
// figure out what rectangle we want to crop from the image
double mins = 0.466666666, maxs = 0.875;
auto scale = mins + rnd.get_random_double()*(maxs-mins);
auto size = scale*std::min(img.nr(), img.nc());
rectangle rect(size, size);
// randomly shift the box around
point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()),
rnd.get_random_32bit_number()%(img.nr()-rect.height()));
return move_rect(rect, offset);
}
// ----------------------------------------------------------------------------------------
void randomly_crop_image (
const matrix<rgb_pixel>& img,
matrix<rgb_pixel>& crop,
dlib::rand& rnd
)
{
auto rect = make_random_cropping_rect_resnet(img, rnd);
// now crop it out as a 227x227 image.
extract_image_chip(img, chip_details(rect, chip_dims(227,227)), crop);
// Also randomly flip the image
if (rnd.get_random_double() > 0.5)
crop = fliplr(crop);
// And then randomly adjust the colors.
apply_random_color_offset(crop, rnd);
}
void randomly_crop_images (
const matrix<rgb_pixel>& img,
dlib::array<matrix<rgb_pixel>>& crops,
dlib::rand& rnd,
long num_crops
)
{
std::vector<chip_details> dets;
for (long i = 0; i < num_crops; ++i)
{
auto rect = make_random_cropping_rect_resnet(img, rnd);
dets.push_back(chip_details(rect, chip_dims(227,227)));
}
extract_image_chips(img, dets, crops);
for (auto&& img : crops)
{
// Also randomly flip the image
if (rnd.get_random_double() > 0.5)
img = fliplr(img);
// And then randomly adjust the colors.
apply_random_color_offset(img, rnd);
}
}
// ----------------------------------------------------------------------------------------
struct image_info
{
string filename;
string label;
long numeric_label;
};
std::vector<image_info> get_imagenet_train_listing(
const std::string& images_folder
)
{
std::vector<image_info> results;
image_info temp;
temp.numeric_label = 0;
// We will loop over all the label types in the dataset, each is contained in a subfolder.
auto subdirs = directory(images_folder).get_dirs();
// But first, sort the sub directories so the numeric labels will be assigned in sorted order.
std::sort(subdirs.begin(), subdirs.end());
for (auto subdir : subdirs)
{
// Now get all the images in this label type
temp.label = subdir.name();
for (auto image_file : subdir.get_files())
{
temp.filename = image_file;
results.push_back(temp);
}
++temp.numeric_label;
}
return results;
}
std::vector<image_info> get_imagenet_val_listing(
const std::string& imagenet_root_dir,
const std::string& validation_images_file
)
{
ifstream fin(validation_images_file);
string label, filename;
std::vector<image_info> results;
image_info temp;
temp.numeric_label = -1;
while(fin >> label >> filename)
{
temp.filename = imagenet_root_dir+"/"+filename;
if (!file_exists(temp.filename))
{
cerr << "file doesn't exist! " << temp.filename << endl;
exit(1);
}
if (label != temp.label)
++temp.numeric_label;
temp.label = label;
results.push_back(temp);
}
return results;
}
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv) try
{
if (argc != 3)
{
cout << "To run this program you need a copy of the imagenet ILSVRC2015 dataset and" << endl;
cout << "also the file http://dlib.net/files/imagenet2015_validation_images.txt.bz2" << endl;
cout << endl;
cout << "With those things, you call this program like this: " << endl;
cout << "./dnn_imagenet_train_ex /path/to/ILSVRC2015 imagenet2015_validation_images.txt" << endl;
return 1;
}
cout << "\nSCANNING IMAGENET DATASET\n" << endl;
auto listing = get_imagenet_train_listing(string(argv[1])+"/Data/CLS-LOC/train/");
cout << "images in dataset: " << listing.size() << endl;
const auto number_of_classes = listing.back().numeric_label+1;
if (listing.size() == 0 || number_of_classes != 1000)
{
cout << "Didn't find the imagenet dataset. " << endl;
return 1;
}
set_dnn_prefer_smallest_algorithms();
const double initial_learning_rate = 0.1;
const double weight_decay = 0.0001;
const double momentum = 0.9;
net_type net;
dnn_trainer<net_type> trainer(net,sgd(weight_decay, momentum));
trainer.be_verbose();
trainer.set_learning_rate(initial_learning_rate);
trainer.set_synchronization_file("imagenet_trainer_state_file.dat", std::chrono::minutes(10));
// This threshold is probably excessively large. You could likely get good results
// with a smaller value but if you aren't in a hurry this value will surely work well.
trainer.set_iterations_without_progress_threshold(20000);
// Since the progress threshold is so large might as well set the batch normalization
// stats window to something big too.
set_all_bn_running_stats_window_sizes(net, 1000);
std::vector<matrix<rgb_pixel>> samples;
std::vector<unsigned long> labels;
// Start a bunch of threads that read images from disk and pull out random crops. It's
// important to be sure to feed the GPU fast enough to keep it busy. Using multiple
// thread for this kind of data preparation helps us do that. Each thread puts the
// crops into the data queue.
dlib::pipe<std::pair<image_info,matrix<rgb_pixel>>> data(200);
auto f = [&data, &listing](time_t seed)
{
dlib::rand rnd(time(0)+seed);
matrix<rgb_pixel> img;
std::pair<image_info, matrix<rgb_pixel>> temp;
while(data.is_enabled())
{
temp.first = listing[rnd.get_random_32bit_number()%listing.size()];
load_image(img, temp.first.filename);
randomly_crop_image(img, temp.second, rnd);
data.enqueue(temp);
}
};
std::thread data_loader1([f](){ f(1); });
std::thread data_loader2([f](){ f(2); });
std::thread data_loader3([f](){ f(3); });
std::thread data_loader4([f](){ f(4); });
// The main training loop. Keep making mini-batches and giving them to the trainer.
// We will run until the learning rate has dropped by a factor of 1e-3.
while(trainer.get_learning_rate() >= initial_learning_rate*1e-3)
{
samples.clear();
labels.clear();
// make a 160 image mini-batch
std::pair<image_info, matrix<rgb_pixel>> img;
while(samples.size() < 160)
{
data.dequeue(img);
samples.push_back(std::move(img.second));
labels.push_back(img.first.numeric_label);
}
trainer.train_one_step(samples, labels);
}
// Training done, tell threads to stop and make sure to wait for them to finish before
// moving on.
data.disable();
data_loader1.join();
data_loader2.join();
data_loader3.join();
data_loader4.join();
// also wait for threaded processing to stop in the trainer.
trainer.get_net();
net.clean();
cout << "saving network" << endl;
serialize("resnet34.dnn") << net;
// Now test the network on the imagenet validation dataset. First, make a testing
// network with softmax as the final layer. We don't have to do this if we just wanted
// to test the "top1 accuracy" since the normal network outputs the class prediction.
// But this snet object will make getting the top5 predictions easy as it directly
// outputs the probability of each class as its final output.
softmax<anet_type::subnet_type> snet; snet.subnet() = net.subnet();
cout << "Testing network on imagenet validation dataset..." << endl;
int num_right = 0;
int num_wrong = 0;
int num_right_top1 = 0;
int num_wrong_top1 = 0;
dlib::rand rnd(time(0));
// loop over all the imagenet validation images
for (auto l : get_imagenet_val_listing(argv[1], argv[2]))
{
dlib::array<matrix<rgb_pixel>> images;
matrix<rgb_pixel> img;
load_image(img, l.filename);
// Grab 16 random crops from the image. We will run all of them through the
// network and average the results.
const int num_crops = 16;
randomly_crop_images(img, images, rnd, num_crops);
// p(i) == the probability the image contains object of class i.
matrix<float,1,1000> p = sum_rows(mat(snet(images.begin(), images.end())))/num_crops;
// check top 1 accuracy
if (index_of_max(p) == l.numeric_label)
++num_right_top1;
else
++num_wrong_top1;
// check top 5 accuracy
bool found_match = false;
for (int k = 0; k < 5; ++k)
{
long predicted_label = index_of_max(p);
p(predicted_label) = 0;
if (predicted_label == l.numeric_label)
{
found_match = true;
break;
}
}
if (found_match)
++num_right;
else
++num_wrong;
}
cout << "val top5 accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
cout << "val top1 accuracy: " << num_right_top1/(double)(num_right_top1+num_wrong_top1) << endl;
}
catch(std::exception& e)
{
cout << e.what() << endl;
}
|