File size: 7,188 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
    This example shows how to run a CNN based dog face detector using dlib.  The
    example loads a pretrained model and uses it to find dog faces in images.
    We also use the dlib::shape_predictor to find the location of the eyes and
    nose and then draw glasses and a mustache onto each dog found :)
    

    Users who are just learning about dlib's deep learning API should read the
    dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp examples to learn how
    the API works.  For an introduction to the object detection method you
    should read dnn_mmod_ex.cpp


    
    TRAINING THE MODEL
        Finally, users interested in how the dog face detector was trained should
        read the dnn_mmod_ex.cpp example program.  It should be noted that the
        dog face detector used in this example uses a bigger training dataset and
        larger CNN architecture than what is shown in dnn_mmod_ex.cpp, but
        otherwise training is the same.  If you compare the net_type statements
        in this file and dnn_mmod_ex.cpp you will see that they are very similar
        except that the number of parameters has been increased.

        Additionally, the following training parameters were different during
        training: The following lines in dnn_mmod_ex.cpp were changed from
            mmod_options options(face_boxes_train, 40,40);
            trainer.set_iterations_without_progress_threshold(300);
        to the following when training the model used in this example:
            mmod_options options(face_boxes_train, 80,80);
            trainer.set_iterations_without_progress_threshold(8000);

        Also, the random_cropper was left at its default settings,  So we didn't
        call these functions:
            cropper.set_chip_dims(200, 200);
            cropper.set_min_object_size(40,40);

        The training data used to create the model is also available at 
        http://dlib.net/files/data/CU_dogs_fully_labeled.tar.gz

        Lastly, the shape_predictor was trained with default settings except we
        used the following non-default settings: cascade depth=20, tree
        depth=5, padding=0.2
*/


#include <iostream>
#include <dlib/dnn.h>
#include <dlib/data_io.h>
#include <dlib/image_processing.h>
#include <dlib/gui_widgets.h>


using namespace std;
using namespace dlib;

// ----------------------------------------------------------------------------------------

template <long num_filters, typename SUBNET> using con5d = con<num_filters,5,5,2,2,SUBNET>;
template <long num_filters, typename SUBNET> using con5  = con<num_filters,5,5,1,1,SUBNET>;

template <typename SUBNET> using downsampler  = relu<affine<con5d<32, relu<affine<con5d<32, relu<affine<con5d<16,SUBNET>>>>>>>>>;
template <typename SUBNET> using rcon5  = relu<affine<con5<45,SUBNET>>>;

using net_type = loss_mmod<con<1,9,9,1,1,rcon5<rcon5<rcon5<downsampler<input_rgb_image_pyramid<pyramid_down<6>>>>>>>>;

// ----------------------------------------------------------------------------------------

int main(int argc, char** argv) try
{
    if (argc < 3)
    {
        cout << "Call this program like this:" << endl;
        cout << "./dnn_mmod_dog_hipsterizer mmod_dog_hipsterizer.dat faces/dogs.jpg" << endl;
        cout << "\nYou can get the mmod_dog_hipsterizer.dat file from:\n";
        cout << "http://dlib.net/files/mmod_dog_hipsterizer.dat.bz2" << endl;
        return 0;
    }


    // load the models as well as glasses and mustache.
    net_type net;
    shape_predictor sp;
    matrix<rgb_alpha_pixel> glasses, mustache;
    deserialize(argv[1]) >> net >> sp >> glasses >> mustache;  
    pyramid_up(glasses);
    pyramid_up(mustache);

    image_window win1(glasses);
    image_window win2(mustache);
    image_window win_wireframe, win_hipster;

    // Now process each image, find dogs, and hipsterize them by drawing glasses and a
    // mustache on each dog :)
    for (int i = 2; i < argc; ++i)
    {
        matrix<rgb_pixel> img;
        load_image(img, argv[i]);

        // Upsampling the image will allow us to find smaller dog faces but will use more
        // computational resources.
        //pyramid_up(img); 

        auto dets = net(img);
        win_wireframe.clear_overlay();
        win_wireframe.set_image(img);
        // We will also draw a wireframe on each dog's face so you can see where the
        // shape_predictor is identifying face landmarks.
        std::vector<image_window::overlay_line> lines;
        for (auto&& d : dets)
        {
            // get the landmarks for this dog's face
            auto shape = sp(img, d.rect);

            const rgb_pixel color(0,255,0);
            auto top  = shape.part(0);
            auto lear = shape.part(1);
            auto leye = shape.part(2);
            auto nose = shape.part(3);
            auto rear = shape.part(4);
            auto reye = shape.part(5);

            // The locations of the left and right ends of the mustache.
            auto lmustache = 1.3*(leye-reye)/2 + nose;
            auto rmustache = 1.3*(reye-leye)/2 + nose;

            // Draw the glasses onto the image.
            std::vector<point> from = {2*point(176,36), 2*point(59,35)}, to = {leye, reye};
            auto tform = find_similarity_transform(from, to);
            for (long r = 0; r < glasses.nr(); ++r)
            {
                for (long c = 0; c < glasses.nc(); ++c)
                {
                    point p = tform(point(c,r));
                    if (get_rect(img).contains(p))
                        assign_pixel(img(p.y(),p.x()), glasses(r,c));
                }
            }

            // Draw the mustache onto the image right under the dog's nose.
            auto mrect = get_rect(mustache);
            from = {mrect.tl_corner(), mrect.tr_corner()};
            to = {rmustache, lmustache};
            tform = find_similarity_transform(from, to);
            for (long r = 0; r < mustache.nr(); ++r)
            {
                for (long c = 0; c < mustache.nc(); ++c)
                {
                    point p = tform(point(c,r));
                    if (get_rect(img).contains(p))
                        assign_pixel(img(p.y(),p.x()), mustache(r,c));
                }
            }


            // Record the lines needed for the face wire frame.
            lines.push_back(image_window::overlay_line(leye, nose, color));
            lines.push_back(image_window::overlay_line(nose, reye, color));
            lines.push_back(image_window::overlay_line(reye, leye, color));
            lines.push_back(image_window::overlay_line(reye, rear, color));
            lines.push_back(image_window::overlay_line(rear, top, color));
            lines.push_back(image_window::overlay_line(top, lear,  color));
            lines.push_back(image_window::overlay_line(lear, leye,  color));
        }

        win_wireframe.add_overlay(lines);
        win_hipster.set_image(img);

        cout << "Hit enter to process the next image." << endl;
        cin.get();
    }
}
catch(std::exception& e)
{
    cout << e.what() << endl;
}