File size: 49,395 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 |
#include "dlib/data_io.h"
#include "dlib/string.h"
#include "metadata_editor.h"
#include "convert_pascal_xml.h"
#include "convert_pascal_v1.h"
#include "convert_idl.h"
#include "cluster.h"
#include "flip_dataset.h"
#include <dlib/cmd_line_parser.h>
#include <dlib/image_transforms.h>
#include <dlib/svm.h>
#include <dlib/console_progress_indicator.h>
#include <dlib/md5.h>
#include <iostream>
#include <fstream>
#include <string>
#include <set>
#include <dlib/dir_nav.h>
const char* VERSION = "1.17";
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
void create_new_dataset (
const command_line_parser& parser
)
{
using namespace dlib::image_dataset_metadata;
const std::string filename = parser.option("c").argument();
// make sure the file exists so we can use the get_parent_directory() command to
// figure out it's parent directory.
make_empty_file(filename);
const std::string parent_dir = get_parent_directory(file(filename));
unsigned long depth = 0;
if (parser.option("r"))
depth = 30;
dataset meta;
meta.name = "imglab dataset";
meta.comment = "Created by imglab tool.";
for (unsigned long i = 0; i < parser.number_of_arguments(); ++i)
{
try
{
const string temp = strip_path(file(parser[i]), parent_dir);
meta.images.push_back(image(temp));
}
catch (dlib::file::file_not_found&)
{
// then parser[i] should be a directory
std::vector<file> files = get_files_in_directory_tree(parser[i],
match_endings(".png .PNG .jpeg .JPEG .jpg .JPG .bmp .BMP .dng .DNG .gif .GIF"),
depth);
sort(files.begin(), files.end());
for (unsigned long j = 0; j < files.size(); ++j)
{
meta.images.push_back(image(strip_path(files[j], parent_dir)));
}
}
}
save_image_dataset_metadata(meta, filename);
}
// ----------------------------------------------------------------------------------------
int split_dataset (
const command_line_parser& parser
)
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --split option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
const std::string label = parser.option("split").argument();
dlib::image_dataset_metadata::dataset data, data_with, data_without;
load_image_dataset_metadata(data, parser[0]);
data_with.name = data.name;
data_with.comment = data.comment;
data_without.name = data.name;
data_without.comment = data.comment;
for (unsigned long i = 0; i < data.images.size(); ++i)
{
auto&& temp = data.images[i];
bool has_the_label = false;
// check for the label we are looking for
for (unsigned long j = 0; j < temp.boxes.size(); ++j)
{
if (temp.boxes[j].label == label)
{
has_the_label = true;
break;
}
}
if (has_the_label)
data_with.images.push_back(temp);
else
data_without.images.push_back(temp);
}
save_image_dataset_metadata(data_with, left_substr(parser[0],".") + "_with_"+label + ".xml");
save_image_dataset_metadata(data_without, left_substr(parser[0],".") + "_without_"+label + ".xml");
return EXIT_SUCCESS;
}
// ----------------------------------------------------------------------------------------
int make_train_test_splits (
const command_line_parser& parser
)
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --split-train-test option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
const double train_frac = get_option(parser, "split-train-test", 0.5);
dlib::image_dataset_metadata::dataset data, data_train, data_test;
load_image_dataset_metadata(data, parser[0]);
data_train.name = data.name;
data_train.comment = data.comment;
data_test.name = data.name;
data_test.comment = data.comment;
const unsigned long num_train_images = static_cast<unsigned long>(std::round(train_frac*data.images.size()));
for (unsigned long i = 0; i < data.images.size(); ++i)
{
if (i < num_train_images)
data_train.images.push_back(data.images[i]);
else
data_test.images.push_back(data.images[i]);
}
save_image_dataset_metadata(data_train, left_substr(parser[0],".") + "_train.xml");
save_image_dataset_metadata(data_test, left_substr(parser[0],".") + "_test.xml");
return EXIT_SUCCESS;
}
// ----------------------------------------------------------------------------------------
void print_all_labels (
const dlib::image_dataset_metadata::dataset& data
)
{
std::set<std::string> labels;
for (unsigned long i = 0; i < data.images.size(); ++i)
{
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
labels.insert(data.images[i].boxes[j].label);
}
}
for (std::set<std::string>::iterator i = labels.begin(); i != labels.end(); ++i)
{
if (i->size() != 0)
{
cout << *i << endl;
}
}
}
// ----------------------------------------------------------------------------------------
void print_all_label_stats (
const dlib::image_dataset_metadata::dataset& data
)
{
std::map<std::string, running_stats<double> > area_stats, aspect_ratio;
std::map<std::string, int> image_hits;
std::set<std::string> labels;
unsigned long num_unignored_boxes = 0;
for (unsigned long i = 0; i < data.images.size(); ++i)
{
std::set<std::string> temp;
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
labels.insert(data.images[i].boxes[j].label);
temp.insert(data.images[i].boxes[j].label);
area_stats[data.images[i].boxes[j].label].add(data.images[i].boxes[j].rect.area());
aspect_ratio[data.images[i].boxes[j].label].add(data.images[i].boxes[j].rect.width()/
(double)data.images[i].boxes[j].rect.height());
if (!data.images[i].boxes[j].ignore)
++num_unignored_boxes;
}
// count the number of images for each label
for (std::set<std::string>::iterator i = temp.begin(); i != temp.end(); ++i)
image_hits[*i] += 1;
}
cout << "Number of images: "<< data.images.size() << endl;
cout << "Number of different labels: "<< labels.size() << endl;
cout << "Number of non-ignored boxes: " << num_unignored_boxes << endl << endl;
for (std::set<std::string>::iterator i = labels.begin(); i != labels.end(); ++i)
{
if (i->size() == 0)
cout << "Unlabeled Boxes:" << endl;
else
cout << "Label: "<< *i << endl;
cout << " number of images: " << image_hits[*i] << endl;
cout << " number of occurrences: " << area_stats[*i].current_n() << endl;
cout << " min box area: " << area_stats[*i].min() << endl;
cout << " max box area: " << area_stats[*i].max() << endl;
cout << " mean box area: " << area_stats[*i].mean() << endl;
cout << " stddev box area: " << area_stats[*i].stddev() << endl;
cout << " mean width/height ratio: " << aspect_ratio[*i].mean() << endl;
cout << " stddev width/height ratio: " << aspect_ratio[*i].stddev() << endl;
cout << endl;
}
}
// ----------------------------------------------------------------------------------------
void rename_labels (
dlib::image_dataset_metadata::dataset& data,
const std::string& from,
const std::string& to
)
{
for (unsigned long i = 0; i < data.images.size(); ++i)
{
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
if (data.images[i].boxes[j].label == from)
data.images[i].boxes[j].label = to;
}
}
}
// ----------------------------------------------------------------------------------------
void ignore_labels (
dlib::image_dataset_metadata::dataset& data,
const std::string& label
)
{
for (unsigned long i = 0; i < data.images.size(); ++i)
{
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
if (data.images[i].boxes[j].label == label)
data.images[i].boxes[j].ignore = true;
}
}
}
// ----------------------------------------------------------------------------------------
void merge_metadata_files (
const command_line_parser& parser
)
{
image_dataset_metadata::dataset src, dest;
load_image_dataset_metadata(src, parser.option("add").argument(0));
load_image_dataset_metadata(dest, parser.option("add").argument(1));
std::map<string,image_dataset_metadata::image> merged_data;
for (unsigned long i = 0; i < dest.images.size(); ++i)
merged_data[dest.images[i].filename] = dest.images[i];
// now add in the src data and overwrite anything if there are duplicate entries.
for (unsigned long i = 0; i < src.images.size(); ++i)
merged_data[src.images[i].filename] = src.images[i];
// copy merged data into dest
dest.images.clear();
for (std::map<string,image_dataset_metadata::image>::const_iterator i = merged_data.begin();
i != merged_data.end(); ++i)
{
dest.images.push_back(i->second);
}
save_image_dataset_metadata(dest, "merged.xml");
}
// ----------------------------------------------------------------------------------------
void rotate_dataset(const command_line_parser& parser)
{
image_dataset_metadata::dataset metadata;
const string datasource = parser[0];
load_image_dataset_metadata(metadata,datasource);
double angle = get_option(parser, "rotate", 0);
// Set the current directory to be the one that contains the
// metadata file. We do this because the file might contain
// file paths which are relative to this folder.
set_current_dir(get_parent_directory(file(datasource)));
const string file_prefix = "rotated_"+ cast_to_string(angle) + "_";
const string metadata_filename = get_parent_directory(file(datasource)).full_name() +
directory::get_separator() + file_prefix + file(datasource).name();
array2d<rgb_pixel> img, temp;
for (unsigned long i = 0; i < metadata.images.size(); ++i)
{
file f(metadata.images[i].filename);
string filename = get_parent_directory(f).full_name() + directory::get_separator() + file_prefix + to_png_name(f.name());
load_image(img, metadata.images[i].filename);
const point_transform_affine tran = rotate_image(img, temp, angle*pi/180);
if (parser.option("jpg"))
{
filename = to_jpg_name(filename);
save_jpeg(temp, filename,JPEG_QUALITY);
}
else
{
save_png(temp, filename);
}
rectangle_transform rtran = tran;
for (unsigned long j = 0; j < metadata.images[i].boxes.size(); ++j)
{
metadata.images[i].boxes[j].rect = rtran(metadata.images[i].boxes[j].rect);
for (auto& p : metadata.images[i].boxes[j].parts)
p.second = tran(p.second);
}
metadata.images[i].filename = filename;
}
save_image_dataset_metadata(metadata, metadata_filename);
}
// ----------------------------------------------------------------------------------------
int resample_dataset(const command_line_parser& parser)
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --resample option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
const size_t obj_size = get_option(parser,"cropped-object-size",100*100);
const double margin_scale = get_option(parser,"crop-size",2.5); // cropped image will be this times wider than the object.
const unsigned long min_object_size = get_option(parser,"min-object-size",1);
const bool one_object_per_image = parser.option("one-object-per-image");
dlib::image_dataset_metadata::dataset data, resampled_data;
std::ostringstream sout;
sout << "\nThe --resample parameters which generated this dataset were:" << endl;
sout << " cropped-object-size: "<< obj_size << endl;
sout << " crop-size: "<< margin_scale << endl;
sout << " min-object-size: "<< min_object_size << endl;
if (one_object_per_image)
sout << " one_object_per_image: true" << endl;
resampled_data.comment = data.comment + sout.str();
resampled_data.name = data.name + " RESAMPLED";
load_image_dataset_metadata(data, parser[0]);
locally_change_current_dir chdir(get_parent_directory(file(parser[0])));
dlib::rand rnd;
const size_t image_size = std::round(std::sqrt(obj_size*margin_scale*margin_scale));
const chip_dims cdims(image_size, image_size);
console_progress_indicator pbar(data.images.size());
for (unsigned long i = 0; i < data.images.size(); ++i)
{
// don't even bother loading images that don't have objects.
if (data.images[i].boxes.size() == 0)
continue;
pbar.print_status(i);
array2d<rgb_pixel> img, chip;
load_image(img, data.images[i].filename);
// figure out what chips we want to take from this image
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
const rectangle rect = data.images[i].boxes[j].rect;
if (data.images[i].boxes[j].ignore || rect.area() < min_object_size)
continue;
const auto max_dim = std::max(rect.width(), rect.height());
const double rand_scale_perturb = 1 - 0.3*(rnd.get_random_double()-0.5);
const rectangle crop_rect = centered_rect(rect, max_dim*margin_scale*rand_scale_perturb, max_dim*margin_scale*rand_scale_perturb);
const rectangle_transform tform = get_mapping_to_chip(chip_details(crop_rect, cdims));
extract_image_chip(img, chip_details(crop_rect, cdims), chip);
image_dataset_metadata::image dimg;
// Now transform the boxes to the crop and also mark them as ignored if they
// have already been cropped out or are outside the crop.
for (size_t k = 0; k < data.images[i].boxes.size(); ++k)
{
image_dataset_metadata::box box = data.images[i].boxes[k];
// ignore boxes outside the cropped image
if (crop_rect.intersect(box.rect).area() == 0)
continue;
// mark boxes we include in the crop as ignored. Also mark boxes that
// aren't totally within the crop as ignored.
if (crop_rect.contains(grow_rect(box.rect,10)) && (!one_object_per_image || k==j))
data.images[i].boxes[k].ignore = true;
else
box.ignore = true;
if (box.rect.area() < min_object_size)
box.ignore = true;
box.rect = tform(box.rect);
for (auto&& p : box.parts)
p.second = tform.get_tform()(p.second);
dimg.boxes.push_back(box);
}
// Put a 64bit hash of the image data into the name to make sure there are no
// file name conflicts.
std::ostringstream sout;
sout << hex << murmur_hash3_128bit(&chip[0][0], chip.size()*sizeof(chip[0][0])).second;
dimg.filename = data.images[i].filename + "_RESAMPLED_"+sout.str()+".png";
if (parser.option("jpg"))
{
dimg.filename = to_jpg_name(dimg.filename);
save_jpeg(chip,dimg.filename, JPEG_QUALITY);
}
else
{
save_png(chip,dimg.filename);
}
resampled_data.images.push_back(dimg);
}
}
save_image_dataset_metadata(resampled_data, parser[0] + ".RESAMPLED.xml");
return EXIT_SUCCESS;
}
// ----------------------------------------------------------------------------------------
int tile_dataset(const command_line_parser& parser)
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --tile option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
string out_image = parser.option("tile").argument();
string ext = right_substr(out_image,".");
if (ext != "png" && ext != "jpg")
{
cerr << "The output image file must have either .png or .jpg extension." << endl;
return EXIT_FAILURE;
}
const unsigned long chip_size = get_option(parser, "size", 8000);
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
locally_change_current_dir chdir(get_parent_directory(file(parser[0])));
dlib::array<array2d<rgb_pixel> > images;
console_progress_indicator pbar(data.images.size());
for (unsigned long i = 0; i < data.images.size(); ++i)
{
// don't even bother loading images that don't have objects.
if (data.images[i].boxes.size() == 0)
continue;
pbar.print_status(i);
array2d<rgb_pixel> img;
load_image(img, data.images[i].filename);
// figure out what chips we want to take from this image
std::vector<chip_details> dets;
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
if (data.images[i].boxes[j].ignore)
continue;
rectangle rect = data.images[i].boxes[j].rect;
dets.push_back(chip_details(rect, chip_size));
}
// Now grab all those chips at once.
dlib::array<array2d<rgb_pixel> > chips;
extract_image_chips(img, dets, chips);
// and put the chips into the output.
for (unsigned long j = 0; j < chips.size(); ++j)
images.push_back(chips[j]);
}
chdir.revert();
if (ext == "png")
save_png(tile_images(images), out_image);
else
save_jpeg(tile_images(images), out_image);
return EXIT_SUCCESS;
}
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv)
{
try
{
command_line_parser parser;
parser.add_option("h","Displays this information.");
parser.add_option("v","Display version.");
parser.set_group_name("Creating XML files");
parser.add_option("c","Create an XML file named <arg> listing a set of images.",1);
parser.add_option("r","Search directories recursively for images.");
parser.add_option("convert","Convert foreign image Annotations from <arg> format to the imglab format. "
"Supported formats: pascal-xml, pascal-v1, idl.",1);
parser.set_group_name("Viewing XML files");
parser.add_option("tile","Chip out all the objects and save them as one big image called <arg>.",1);
parser.add_option("size","When using --tile or --cluster, make each extracted object contain "
"about <arg> pixels (default 8000).",1);
parser.add_option("l","List all the labels in the given XML file.");
parser.add_option("stats","List detailed statistics on the object labels in the given XML file.");
parser.add_option("files","List all the files in the given XML file.");
parser.set_group_name("Editing/Transforming XML datasets");
parser.add_option("rename", "Rename all labels of <arg1> to <arg2>.",2);
parser.add_option("parts","The display will allow image parts to be labeled. The set of allowable parts "
"is defined by <arg> which should be a space separated list of parts.",1);
parser.add_option("rmempty","Remove all images that don't contain non-ignored annotations and save the results to a new XML file.");
parser.add_option("rmdupes","Remove duplicate images from the dataset. This is done by comparing "
"the md5 hash of each image file and removing duplicate images. " );
parser.add_option("rmdiff","Set the ignored flag to true for boxes marked as difficult.");
parser.add_option("rmtrunc","Set the ignored flag to true for boxes that are partially outside the image.");
parser.add_option("box-images","Add a box to each image that contains the entire image.");
parser.add_option("sort-num-objects","Sort the images listed an XML file so images with many objects are listed first.");
parser.add_option("sort","Alphabetically sort the images in an XML file.");
parser.add_option("shuffle","Randomly shuffle the order of the images listed in an XML file.");
parser.add_option("seed", "When using --shuffle, set the random seed to the string <arg>.",1);
parser.add_option("split", "Split the contents of an XML file into two separate files. One containing the "
"images with objects labeled <arg> and another file with all the other images. ",1);
parser.add_option("split-train-test", "Split the contents of an XML file into two separate files. A training "
"file containing <arg> fraction of the images and a testing file containing the remaining (1-<arg>) images. "
"The partitioning is done deterministically by putting the first images in the input xml file into the training split "
"and the later images into the test split.",1);
parser.add_option("add", "Add the image metadata from <arg1> into <arg2>. If any of the image "
"tags are in both files then the ones in <arg2> are deleted and replaced with the "
"image tags from <arg1>. The results are saved into merged.xml and neither <arg1> or "
"<arg2> files are modified.",2);
parser.add_option("flip", "Read an XML image dataset from the <arg> XML file and output a left-right flipped "
"version of the dataset and an accompanying flipped XML file named flipped_<arg>. "
"We also adjust object part labels after flipping so that the new flipped dataset "
"has the same average part layout as the source dataset." ,1);
parser.add_option("flip-basic", "This option is just like --flip, except we don't adjust any object part labels after flipping. "
"The parts are instead simply mirrored to the flipped dataset.", 1);
parser.add_option("rotate", "Read an XML image dataset and output a copy that is rotated counter clockwise by <arg> degrees. "
"The output is saved to an XML file prefixed with rotated_<arg>.",1);
parser.add_option("cluster", "Cluster all the objects in an XML file into <arg> different clusters (pass 0 to find automatically) and save "
"the results as cluster_###.xml and cluster_###.jpg files.",1);
parser.add_option("ignore", "Mark boxes labeled as <arg> as ignored. The resulting XML file is output as a separate file and the original is not modified.",1);
parser.add_option("rmlabel","Remove all boxes labeled <arg> and save the results to a new XML file.",1);
parser.add_option("rm-other-labels","Remove all boxes not labeled <arg> and save the results to a new XML file.",1);
parser.add_option("rmignore","Remove all boxes marked ignore and save the results to a new XML file.");
parser.add_option("rm-if-overlaps","Remove all boxes labeled <arg> if they overlap any box not labeled <arg> and save the results to a new XML file.",1);
parser.add_option("jpg", "When saving images to disk, write them as jpg files instead of png.");
parser.set_group_name("Cropping sub images");
parser.add_option("resample", "Crop out images that are centered on each object in the dataset. "
"The output is a new XML dataset.");
parser.add_option("cropped-object-size", "When doing --resample, make the cropped objects contain about <arg> pixels (default 10000).",1);
parser.add_option("min-object-size", "When doing --resample, skip objects that have fewer than <arg> pixels in them (default 1).",1);
parser.add_option("crop-size", "When doing --resample, the entire cropped image will be <arg> times wider than the object (default 2.5).",1);
parser.add_option("one-object-per-image", "When doing --resample, only include one non-ignored object per image (i.e. the central object).");
parser.parse(argc, argv);
const char* singles[] = {"h","c","r","l","files","convert","parts","rmdiff", "rmtrunc", "rmdupes", "seed", "shuffle", "split", "add",
"flip-basic", "flip", "rotate", "tile", "size", "cluster", "resample", "min-object-size", "rmempty",
"crop-size", "cropped-object-size", "rmlabel", "rm-other-labels", "rm-if-overlaps", "sort-num-objects",
"one-object-per-image", "jpg", "rmignore", "sort", "split-train-test", "box-images"};
parser.check_one_time_options(singles);
const char* c_sub_ops[] = {"r", "convert"};
parser.check_sub_options("c", c_sub_ops);
parser.check_sub_option("shuffle", "seed");
const char* resample_sub_ops[] = {"min-object-size", "crop-size", "cropped-object-size", "one-object-per-image"};
parser.check_sub_options("resample", resample_sub_ops);
const char* size_parent_ops[] = {"tile", "cluster"};
parser.check_sub_options(size_parent_ops, "size");
parser.check_incompatible_options("c", "l");
parser.check_incompatible_options("c", "files");
parser.check_incompatible_options("c", "rmdiff");
parser.check_incompatible_options("c", "rmempty");
parser.check_incompatible_options("c", "rmlabel");
parser.check_incompatible_options("c", "rm-other-labels");
parser.check_incompatible_options("c", "rmignore");
parser.check_incompatible_options("c", "rm-if-overlaps");
parser.check_incompatible_options("c", "rmdupes");
parser.check_incompatible_options("c", "rmtrunc");
parser.check_incompatible_options("c", "box-images");
parser.check_incompatible_options("c", "add");
parser.check_incompatible_options("c", "flip");
parser.check_incompatible_options("c", "flip-basic");
parser.check_incompatible_options("flip", "flip-basic");
parser.check_incompatible_options("c", "rotate");
parser.check_incompatible_options("c", "rename");
parser.check_incompatible_options("c", "ignore");
parser.check_incompatible_options("c", "parts");
parser.check_incompatible_options("c", "tile");
parser.check_incompatible_options("c", "cluster");
parser.check_incompatible_options("c", "resample");
parser.check_incompatible_options("l", "rename");
parser.check_incompatible_options("l", "ignore");
parser.check_incompatible_options("l", "add");
parser.check_incompatible_options("l", "parts");
parser.check_incompatible_options("l", "flip");
parser.check_incompatible_options("l", "flip-basic");
parser.check_incompatible_options("l", "rotate");
parser.check_incompatible_options("files", "rename");
parser.check_incompatible_options("files", "ignore");
parser.check_incompatible_options("files", "add");
parser.check_incompatible_options("files", "parts");
parser.check_incompatible_options("files", "flip");
parser.check_incompatible_options("files", "flip-basic");
parser.check_incompatible_options("files", "rotate");
parser.check_incompatible_options("add", "flip");
parser.check_incompatible_options("add", "flip-basic");
parser.check_incompatible_options("add", "rotate");
parser.check_incompatible_options("add", "tile");
parser.check_incompatible_options("flip", "tile");
parser.check_incompatible_options("flip-basic", "tile");
parser.check_incompatible_options("rotate", "tile");
parser.check_incompatible_options("cluster", "tile");
parser.check_incompatible_options("resample", "tile");
parser.check_incompatible_options("flip", "cluster");
parser.check_incompatible_options("flip-basic", "cluster");
parser.check_incompatible_options("rotate", "cluster");
parser.check_incompatible_options("add", "cluster");
parser.check_incompatible_options("flip", "resample");
parser.check_incompatible_options("flip-basic", "resample");
parser.check_incompatible_options("rotate", "resample");
parser.check_incompatible_options("add", "resample");
parser.check_incompatible_options("shuffle", "tile");
parser.check_incompatible_options("sort-num-objects", "tile");
parser.check_incompatible_options("sort", "tile");
parser.check_incompatible_options("convert", "l");
parser.check_incompatible_options("convert", "files");
parser.check_incompatible_options("convert", "rename");
parser.check_incompatible_options("convert", "ignore");
parser.check_incompatible_options("convert", "parts");
parser.check_incompatible_options("convert", "cluster");
parser.check_incompatible_options("convert", "resample");
parser.check_incompatible_options("rmdiff", "rename");
parser.check_incompatible_options("rmdiff", "ignore");
parser.check_incompatible_options("rmempty", "ignore");
parser.check_incompatible_options("rmempty", "rename");
parser.check_incompatible_options("rmlabel", "ignore");
parser.check_incompatible_options("rmlabel", "rename");
parser.check_incompatible_options("rm-other-labels", "ignore");
parser.check_incompatible_options("rm-other-labels", "rename");
parser.check_incompatible_options("rmignore", "ignore");
parser.check_incompatible_options("rmignore", "rename");
parser.check_incompatible_options("rm-if-overlaps", "ignore");
parser.check_incompatible_options("rm-if-overlaps", "rename");
parser.check_incompatible_options("rmdupes", "rename");
parser.check_incompatible_options("rmdupes", "ignore");
parser.check_incompatible_options("rmtrunc", "rename");
parser.check_incompatible_options("rmtrunc", "ignore");
parser.check_incompatible_options("box-images", "rename");
parser.check_incompatible_options("box-images", "ignore");
const char* convert_args[] = {"pascal-xml","pascal-v1","idl"};
parser.check_option_arg_range("convert", convert_args);
parser.check_option_arg_range("cluster", 0, 999);
parser.check_option_arg_range("rotate", -360, 360);
parser.check_option_arg_range("size", 10*10, 1000*1000);
parser.check_option_arg_range("min-object-size", 1, 10000*10000);
parser.check_option_arg_range("cropped-object-size", 4, 10000*10000);
parser.check_option_arg_range("crop-size", 1.0, 100.0);
parser.check_option_arg_range("split-train-test", 0.0, 1.0);
if (parser.option("h"))
{
cout << "Usage: imglab [options] <image files/directories or XML file>\n";
parser.print_options(cout);
cout << endl << endl;
return EXIT_SUCCESS;
}
if (parser.option("add"))
{
merge_metadata_files(parser);
return EXIT_SUCCESS;
}
if (parser.option("flip") || parser.option("flip-basic"))
{
flip_dataset(parser);
return EXIT_SUCCESS;
}
if (parser.option("rotate"))
{
rotate_dataset(parser);
return EXIT_SUCCESS;
}
if (parser.option("v"))
{
cout << "imglab v" << VERSION
<< "\nCompiled: " << __TIME__ << " " << __DATE__
<< "\nWritten by Davis King\n";
cout << "Check for updates at http://dlib.net\n\n";
return EXIT_SUCCESS;
}
if (parser.option("tile"))
{
return tile_dataset(parser);
}
if (parser.option("cluster"))
{
return cluster_dataset(parser);
}
if (parser.option("resample"))
{
return resample_dataset(parser);
}
if (parser.option("c"))
{
if (parser.option("convert"))
{
if (parser.option("convert").argument() == "pascal-xml")
convert_pascal_xml(parser);
else if (parser.option("convert").argument() == "pascal-v1")
convert_pascal_v1(parser);
else if (parser.option("convert").argument() == "idl")
convert_idl(parser);
}
else
{
create_new_dataset(parser);
}
return EXIT_SUCCESS;
}
if (parser.option("rmdiff"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --rmdiff option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
for (unsigned long i = 0; i < data.images.size(); ++i)
{
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
if (data.images[i].boxes[j].difficult)
data.images[i].boxes[j].ignore = true;
}
}
save_image_dataset_metadata(data, parser[0]);
return EXIT_SUCCESS;
}
if (parser.option("rmempty"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --rmempty option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data, data2;
load_image_dataset_metadata(data, parser[0]);
data2 = data;
data2.images.clear();
for (unsigned long i = 0; i < data.images.size(); ++i)
{
bool has_label = false;
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
if (!data.images[i].boxes[j].ignore)
has_label = true;
}
if (has_label)
data2.images.push_back(data.images[i]);
}
save_image_dataset_metadata(data2, parser[0] + ".rmempty.xml");
return EXIT_SUCCESS;
}
if (parser.option("rmlabel"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --rmlabel option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
const auto label = parser.option("rmlabel").argument();
for (auto&& img : data.images)
{
std::vector<dlib::image_dataset_metadata::box> boxes;
for (auto&& b : img.boxes)
{
if (b.label != label)
boxes.push_back(b);
}
img.boxes = boxes;
}
save_image_dataset_metadata(data, parser[0] + ".rmlabel-"+label+".xml");
return EXIT_SUCCESS;
}
if (parser.option("rm-other-labels"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --rm-other-labels option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
const auto labels = parser.option("rm-other-labels").argument();
// replace comma by dash to form the file name
std::string strlabels = labels;
std::replace(strlabels.begin(), strlabels.end(), ',', '-');
std::vector<string> all_labels = split(labels, ",");
for (auto&& img : data.images)
{
std::vector<dlib::image_dataset_metadata::box> boxes;
for (auto&& b : img.boxes)
{
if (std::find(all_labels.begin(), all_labels.end(), b.label) != all_labels.end())
boxes.push_back(b);
}
img.boxes = boxes;
}
save_image_dataset_metadata(data, parser[0] + ".rm-other-labels-"+ strlabels +".xml");
return EXIT_SUCCESS;
}
if (parser.option("rmignore"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --rmignore option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
for (auto&& img : data.images)
{
std::vector<dlib::image_dataset_metadata::box> boxes;
for (auto&& b : img.boxes)
{
if (!b.ignore)
boxes.push_back(b);
}
img.boxes = boxes;
}
save_image_dataset_metadata(data, parser[0] + ".rmignore.xml");
return EXIT_SUCCESS;
}
if (parser.option("rm-if-overlaps"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --rm-if-overlaps option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
const auto label = parser.option("rm-if-overlaps").argument();
test_box_overlap overlaps(0.5);
for (auto&& img : data.images)
{
std::vector<dlib::image_dataset_metadata::box> boxes;
for (auto&& b : img.boxes)
{
if (b.label != label)
{
boxes.push_back(b);
}
else
{
bool has_overlap = false;
for (auto&& b2 : img.boxes)
{
if (b2.label != label && overlaps(b2.rect, b.rect))
{
has_overlap = true;
break;
}
}
if (!has_overlap)
boxes.push_back(b);
}
}
img.boxes = boxes;
}
save_image_dataset_metadata(data, parser[0] + ".rm-if-overlaps-"+label+".xml");
return EXIT_SUCCESS;
}
if (parser.option("rmdupes"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --rmdupes option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data, data_out;
std::set<std::string> hashes;
load_image_dataset_metadata(data, parser[0]);
data_out = data;
data_out.images.clear();
for (unsigned long i = 0; i < data.images.size(); ++i)
{
ifstream fin(data.images[i].filename.c_str(), ios::binary);
string hash = md5(fin);
if (hashes.count(hash) == 0)
{
hashes.insert(hash);
data_out.images.push_back(data.images[i]);
}
}
save_image_dataset_metadata(data_out, parser[0]);
return EXIT_SUCCESS;
}
if (parser.option("box-images"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --box-images option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
{
locally_change_current_dir chdir(get_parent_directory(file(parser[0])));
parallel_for(0, data.images.size(), [&](long i)
{
array2d<unsigned char> img;
load_image(img, data.images[i].filename);
data.images[i].boxes.emplace_back(get_rect(img));
});
}
save_image_dataset_metadata(data, parser[0]+".boxed.xml");
return EXIT_SUCCESS;
}
if (parser.option("rmtrunc"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --rmtrunc option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
{
locally_change_current_dir chdir(get_parent_directory(file(parser[0])));
for (unsigned long i = 0; i < data.images.size(); ++i)
{
array2d<unsigned char> img;
load_image(img, data.images[i].filename);
const rectangle area = get_rect(img);
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
if (!area.contains(data.images[i].boxes[j].rect))
data.images[i].boxes[j].ignore = true;
}
}
}
save_image_dataset_metadata(data, parser[0]);
return EXIT_SUCCESS;
}
if (parser.option("l"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The -l option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
print_all_labels(data);
return EXIT_SUCCESS;
}
if (parser.option("files"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --files option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
for (size_t i = 0; i < data.images.size(); ++i)
cout << data.images[i].filename << "\n";
return EXIT_SUCCESS;
}
if (parser.option("split"))
{
return split_dataset(parser);
}
if (parser.option("split-train-test"))
{
return make_train_test_splits(parser);
}
if (parser.option("shuffle"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --shuffle option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
const string default_seed = cast_to_string(time(0));
const string seed = get_option(parser, "seed", default_seed);
dlib::rand rnd(seed);
randomize_samples(data.images, rnd);
save_image_dataset_metadata(data, parser[0]);
return EXIT_SUCCESS;
}
if (parser.option("sort-num-objects"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --sort-num-objects option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
std::sort(data.images.rbegin(), data.images.rend(),
[](const image_dataset_metadata::image& a, const image_dataset_metadata::image& b) { return a.boxes.size() < b.boxes.size(); });
save_image_dataset_metadata(data, parser[0]);
return EXIT_SUCCESS;
}
if (parser.option("sort"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --sort option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
std::sort(data.images.begin(), data.images.end(),
[](const image_dataset_metadata::image& a, const image_dataset_metadata::image& b) { return a.filename < b.filename; });
save_image_dataset_metadata(data, parser[0]);
return EXIT_SUCCESS;
}
if (parser.option("stats"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --stats option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
print_all_label_stats(data);
return EXIT_SUCCESS;
}
if (parser.option("rename"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --rename option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
for (unsigned long i = 0; i < parser.option("rename").count(); ++i)
{
rename_labels(data, parser.option("rename").argument(0,i), parser.option("rename").argument(1,i));
}
save_image_dataset_metadata(data, parser[0]);
return EXIT_SUCCESS;
}
if (parser.option("ignore"))
{
if (parser.number_of_arguments() != 1)
{
cerr << "The --ignore option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
dlib::image_dataset_metadata::dataset data;
load_image_dataset_metadata(data, parser[0]);
for (unsigned long i = 0; i < parser.option("ignore").count(); ++i)
{
ignore_labels(data, parser.option("ignore").argument());
}
save_image_dataset_metadata(data, parser[0]+".ignored.xml");
return EXIT_SUCCESS;
}
if (parser.number_of_arguments() == 1)
{
metadata_editor editor(parser[0]);
if (parser.option("parts"))
{
std::vector<string> parts = split(parser.option("parts").argument());
for (unsigned long i = 0; i < parts.size(); ++i)
{
editor.add_labelable_part_name(parts[i]);
}
}
editor.wait_until_closed();
return EXIT_SUCCESS;
}
cout << "Invalid command, give -h to see options." << endl;
return EXIT_FAILURE;
}
catch (exception& e)
{
cerr << e.what() << endl;
return EXIT_FAILURE;
}
}
// ----------------------------------------------------------------------------------------
|