File size: 8,976 Bytes
e222c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d366e7d
 
 
e222c3f
 
 
 
 
 
 
 
 
c48cb63
 
6970eba
c48cb63
e222c3f
6970eba
 
e222c3f
 
 
 
6970eba
e222c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0670f39
e222c3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import subprocess

os.system("pip install gradio==3.50")
os.system("pip install dlib==19.24.2")

#############################################

import torch
print(f"Is CUDA available: {torch.cuda.is_available()}")
# True
print(f"CUDA device: {torch.cuda.get_device_name(torch.cuda.current_device())}")

###################################################


from argparse import Namespace
import pprint
import numpy as np
from PIL import Image
import torch
import torchvision.transforms as transforms
import cv2
import dlib
import matplotlib.pyplot as plt
import gradio as gr  # Importing Gradio as gr
import tensorflow as tf
from tensorflow.keras.models import load_model
from tensorflow.keras.losses import MeanSquaredError
from tensorflow.keras.preprocessing.image import img_to_array
from huggingface_hub import hf_hub_download, login
from datasets.augmentations import AgeTransformer
from utils.common import tensor2im
from models.psp import pSp

# Huggingface login
login(token=os.getenv("TOKENKEY"))

# If 'mse' is a custom function needed, 
#custom_objects = {'mse': MeanSquaredError()}
#new_age_model = load_model("age_prediction_model.h5")

# Download models from Huggingface
age_prototxt = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="age.prototxt")
caffe_model = hf_hub_download(repo_id="AshanGimhana/Age_Detection_caffe", filename="dex_imdb_wiki.caffemodel")
sam_ffhq_aging = hf_hub_download(repo_id="AshanGimhana/Face_Agin_model", filename="sam_ffhq_aging.pt")


# Age prediction model setup
age_net = cv2.dnn.readNetFromCaffe(age_prototxt, caffe_model)

# Face detection and landmarks predictor setup
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor("shape_predictor_68_face_landmarks.dat")

# Load the pretrained aging model
EXPERIMENT_TYPE = 'ffhq_aging'
EXPERIMENT_DATA_ARGS = {
    "ffhq_aging": {
        "model_path": sam_ffhq_aging,
        "transform": transforms.Compose([
            transforms.Resize((256, 256)),
            transforms.ToTensor(),
            transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
        ])
    }
}
EXPERIMENT_ARGS = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]
model_path = EXPERIMENT_ARGS['model_path']
ckpt = torch.load(model_path, map_location='cpu')
opts = ckpt['opts']
pprint.pprint(opts)
opts['checkpoint_path'] = model_path
opts = Namespace(**opts)
net = pSp(opts)
net.eval()
net.cuda()

print('Model successfully loaded!')

def check_image_quality(image):
    # Convert the image to grayscale
    gray_image = np.array(image.convert("L"))
    
    # Check for under/over-exposure using histogram
    hist = exposure.histogram(gray_image)
    low_exposure = hist[0][:5].sum() > 0.5 * hist[0].sum()  # Significant pixels in dark range
    high_exposure = hist[0][-5:].sum() > 0.5 * hist[0].sum()  # Significant pixels in bright range
    
    # Check sharpness using Laplacian variance
    sharpness = cv2.Laplacian(np.array(image), cv2.CV_64F).var()
    low_sharpness = sharpness < 70  # Threshold for sharpness
    
    # Check overall quality
    if low_exposure or high_exposure or low_sharpness:
        return False  # Image quality is insufficient
    return True  # Image quality is sufficient

# Functions for face and mouth region
def get_face_region(image):
    gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
    faces = detector(gray)
    if len(faces) > 0:
        return faces[0]
    return None

def get_mouth_region(image):
    gray = cv2.cvtColor(np.array(image), cv2.COLOR_BGR2GRAY)
    faces = detector(gray)
    for face in faces:
        landmarks = predictor(gray, face)
        mouth_points = [(landmarks.part(i).x, landmarks.part(i).y) for i in range(48, 68)]
        return np.array(mouth_points, np.int32)
    return None


# Function to predict age

def predict_age(image):
    image = np.array(image.resize((64, 64)))
    image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) 
    image = image / 255.0  
    image = np.expand_dims(image, axis=0)

    # Predict age
    val = new_age_model.predict(np.array(image))
    age = val[0][0]
    return int(age)

# Function for color correction
def color_correct(source, target):
    mean_src = np.mean(source, axis=(0, 1))
    std_src = np.std(source, axis=(0, 1))
    mean_tgt = np.mean(target, axis=(0, 1))
    std_tgt = np.std(target, axis=(0, 1))
    src_normalized = (source - mean_src) / std_src
    src_corrected = (src_normalized * std_tgt) + mean_tgt
    return np.clip(src_corrected, 0, 255).astype(np.uint8)

# Function to replace teeth
def replace_teeth(temp_image, aged_image):
    temp_image = np.array(temp_image)
    aged_image = np.array(aged_image)
    temp_mouth = get_mouth_region(temp_image)
    aged_mouth = get_mouth_region(aged_image)
    if temp_mouth is None or aged_mouth is None:
        return aged_image
    temp_mask = np.zeros_like(temp_image)
    cv2.fillConvexPoly(temp_mask, temp_mouth, (255, 255, 255))
    temp_mouth_region = cv2.bitwise_and(temp_image, temp_mask)
    temp_mouth_bbox = cv2.boundingRect(temp_mouth)
    aged_mouth_bbox = cv2.boundingRect(aged_mouth)
    temp_mouth_crop = temp_mouth_region[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
    temp_mask_crop = temp_mask[temp_mouth_bbox[1]:temp_mouth_bbox[1] + temp_mouth_bbox[3], temp_mouth_bbox[0]:temp_mouth_bbox[0] + temp_mouth_bbox[2]]
    temp_mouth_crop_resized = cv2.resize(temp_mouth_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
    temp_mask_crop_resized = cv2.resize(temp_mask_crop, (aged_mouth_bbox[2], aged_mouth_bbox[3]))
    aged_mouth_crop = aged_image[aged_mouth_bbox[1]:aged_mouth_bbox[1] + aged_mouth_bbox[3], aged_mouth_bbox[0]:aged_mouth_bbox[0] + aged_mouth_bbox[2]]
    temp_mouth_crop_resized = color_correct(temp_mouth_crop_resized, aged_mouth_crop)
    center = (aged_mouth_bbox[0] + aged_mouth_bbox[2] // 2, aged_mouth_bbox[1] + aged_mouth_bbox[3] // 2)
    seamless_teeth = cv2.seamlessClone(temp_mouth_crop_resized, aged_image, temp_mask_crop_resized, center, cv2.NORMAL_CLONE)
    return seamless_teeth

# Function to run alignment
def run_alignment(image):
    from scripts.align_all_parallel import align_face
    temp_image_path = "/tmp/temp_image.jpg"
    image.save(temp_image_path)
    aligned_image = align_face(filepath=temp_image_path, predictor=predictor)
    return aligned_image

# Function to apply aging
def apply_aging(image, target_age):
    img_transforms = EXPERIMENT_DATA_ARGS[EXPERIMENT_TYPE]['transform']
    input_image = img_transforms(image)
    age_transformers = [AgeTransformer(target_age=target_age)]
    results = []
    for age_transformer in age_transformers:
        with torch.no_grad():
            input_image_age = [age_transformer(input_image.cpu()).to('cuda')]
            input_image_age = torch.stack(input_image_age)
            result_tensor = net(input_image_age.float(), randomize_noise=False, resize=False)[0]
            result_image = tensor2im(result_tensor)
            results.append(np.array(result_image))
    final_result = results[0]
    return final_result

# Function to process the image
def process_image(uploaded_image):
    # Loading images for good and bad teeth
    temp_images_good = [Image.open(f"good_teeth/G{i}.JPG") for i in range(1, 4)]
    temp_images_bad = [Image.open(f"bad_teeth/B{i}.jpeg") for i in range(1, 5)]

    # Predicting the age
    predicted_age = predict_age(uploaded_image)
    target_age = predicted_age + 5

    # Aligning the face in the uploaded image
    aligned_image = run_alignment(uploaded_image)

    # Applying aging effect
    aged_image = apply_aging(aligned_image, target_age=target_age)

    # Randomly selecting teeth images
    good_teeth_image = temp_images_good[np.random.randint(0, len(temp_images_good))]
    bad_teeth_image = temp_images_bad[np.random.randint(0, len(temp_images_bad))]

    # Replacing teeth in aged image
    aged_image_good_teeth = replace_teeth(good_teeth_image, aged_image)
    aged_image_bad_teeth = replace_teeth(bad_teeth_image, aged_image)

    return aged_image_good_teeth, aged_image_bad_teeth, predicted_age, target_age

# Gradio Interface
def show_results(uploaded_image):
    # Perform quality check
    if not check_image_quality(uploaded_image):
        return None, None, "Not_Allowed"

    # If quality is acceptable, continue with processing
    aged_image_good_teeth, aged_image_bad_teeth, predicted_age, target_age = process_image(uploaded_image)
    return aged_image_good_teeth, aged_image_bad_teeth, f"Predicted Age: {predicted_age}, Target Age: {target_age}"

iface = gr.Interface(
    fn=show_results,
    inputs=gr.Image(type="pil"),
    outputs=[gr.Image(type="pil"), gr.Image(type="pil"), gr.Textbox()],
    title="Aging Effect with Teeth Replacement",
    description="Upload an image to apply an aging effect. The application will generate two results: one with good teeth and one with bad teeth."
)

iface.launch()