File size: 18,333 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
// Copyright (C) 2012 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_MIN_CuT_ABSTRACT_Hh_
#ifdef DLIB_MIN_CuT_ABSTRACT_Hh_
#include "../graph_utils.h"
// ----------------------------------------------------------------------------------------
namespace dlib
{
/*!A node_label
The node_label type is the type used to label which part of a graph cut
a node is on. It is used by all the graph cut tools. The three possible
values of a node label are SOURCE_CUT, SINK_CUT, or FREE_NODE.
!*/
typedef unsigned char node_label;
const node_label SOURCE_CUT = 0;
const node_label SINK_CUT = 254;
const node_label FREE_NODE = 255;
// ----------------------------------------------------------------------------------------
class flow_graph
{
/*!
WHAT THIS OBJECT REPRESENTS
This object represents a flow capacity graph for use with the
min_cut algorithm defined below. In particular, this object
is a kind of directed graph where the edge weights specify the
flow capacities.
Note that there is no dlib::flow_graph object. What you are
looking at here is simply the interface definition for a graph
which can be used with the min_cut algorithm. You must implement
your own version of this object for the graph you wish to work with
and then pass it to the min_cut::operator() routine.
It's also worth pointing out that this graph has symmetric edge
connections. That is, if there is an edge from node A to node B
then there must also be an edge from node B to node A.
!*/
public:
class out_edge_iterator
{
/*!
WHAT THIS OBJECT REPRESENTS
This is a simple forward iterator for iterating over the neighbors
of a node in the graph. It also represents the fact that the neighbors
are on the end of an outgoing edge. That is, the edge represents
the amount of flow which can flow towards the neighbor.
!*/
public:
out_edge_iterator(
);
/*!
ensures
- constructs an iterator in an undefined state. It can't
be used until assigned with a valid iterator.
!*/
out_edge_iterator(
const out_edge_iterator& item
);
/*!
ensures
- #*this is a copy of item
!*/
out_edge_iterator& operator=(
const out_edge_iterator& item
);
/*!
ensures
- #*this is a copy of item
- returns #*this
!*/
bool operator!= (
const out_edge_iterator& item
) const;
/*!
requires
- *this and item are iterators over the neighbors for the
same node.
ensures
- returns false if *this and item both reference the same
node in the graph and true otherwise.
!*/
out_edge_iterator& operator++(
);
/*!
ensures
- advances *this to the next neighbor node.
- returns a reference to the updated *this
(i.e. this is the ++object form of the increment operator)
!*/
};
class in_edge_iterator
{
/*!
WHAT THIS OBJECT REPRESENTS
This is a simple forward iterator for iterating over the neighbors
of a node in the graph. It also represents the fact that the neighbors
are on the end of an incoming edge. That is, the edge represents
the amount of flow which can flow out of the neighbor node.
!*/
public:
in_edge_iterator(
);
/*!
ensures
- constructs an iterator in an undefined state. It can't
be used until assigned with a valid iterator.
!*/
in_edge_iterator(
const in_edge_iterator& item
);
/*!
ensures
- #*this is a copy of item
!*/
in_edge_iterator& operator=(
const in_edge_iterator& item
);
/*!
ensures
- #*this is a copy of item
- returns #*this
!*/
bool operator!= (
const in_edge_iterator& item
) const;
/*!
requires
- *this and item are iterators over the neighbors for the
same node.
ensures
- returns false if *this and item both reference the same
node in the graph and true otherwise.
!*/
in_edge_iterator& operator++(
);
/*!
ensures
- advances *this to the next neighbor node.
- returns a reference to the updated *this
(i.e. this is the ++object form of the increment operator)
!*/
};
unsigned long number_of_nodes (
) const;
/*!
ensures
- returns the number of nodes in the graph.
!*/
out_edge_iterator out_begin(
const unsigned long& idx
) const;
/*!
requires
- idx < number_of_nodes()
ensures
- returns an iterator pointing to the first neighboring node of
the idx-th node. If no such node exists then returns out_end(idx).
- The returned iterator also represents the directed edge going from
node idx to the neighbor.
!*/
in_edge_iterator in_begin(
const unsigned long& idx
) const;
/*!
requires
- idx < number_of_nodes()
ensures
- returns an iterator pointing to the first neighboring node of
the idx-th node. If no such node exists then returns in_end(idx).
- The returned iterator also represents the directed edge going from
the neighbor to node idx.
!*/
out_edge_iterator out_end(
const unsigned long& idx
) const;
/*!
requires
- idx < number_of_nodes()
ensures
- returns an iterator to one past the last neighboring node of
the idx-th node.
!*/
in_edge_iterator in_end(
const unsigned long& idx
) const;
/*!
requires
- idx < number_of_nodes()
ensures
- returns an iterator to one past the last neighboring node of
the idx-th node.
!*/
unsigned long node_id (
const out_edge_iterator& it
) const;
/*!
requires
- it == a valid iterator (i.e. it must be in the range [out_begin(idx), out_end(idx))
for some valid idx)
ensures
- returns a number IDX such that:
- 0 <= IDX < number_of_nodes()
- IDX == The index which uniquely identifies the node pointed to by the
iterator it. This number can be used with any member function in this
object which expect a node index. (e.g. get_label(IDX) == the label for the
node pointed to by it)
!*/
unsigned long node_id (
const in_edge_iterator& it
) const;
/*!
requires
- it == a valid iterator (i.e. it must be in the range [in_begin(idx), in_end(idx))
for some valid idx)
ensures
- returns a number IDX such that:
- 0 <= IDX < number_of_nodes()
- IDX == The index which uniquely identifies the node pointed to by the
iterator it. This number can be used with any member function in this
object which expect a node index. (e.g. get_label(IDX) == the label for the
node pointed to by it)
!*/
// This typedef should be for a type like int or double. It
// must also be capable of representing signed values.
typedef an_integer_or_real_type edge_type;
edge_type get_flow (
const unsigned long& idx1,
const unsigned long& idx2
) const;
/*!
requires
- idx1 < number_of_nodes()
- idx2 < number_of_nodes()
- idx1 and idx2 are neighbors in the graph
ensures
- returns the residual flow capacity from the idx1-th node to the idx2-th node.
- It is valid for this function to return a floating point value of infinity.
This value means this edge has an unlimited capacity.
!*/
edge_type get_flow (
const out_edge_iterator& it
) const;
/*!
requires
- it == a valid iterator (i.e. it must be in the range [out_begin(idx), out_end(idx))
for some valid idx)
ensures
- let IDX = node_id(it)
- it represents the directed edge from a node, call it H, to the node IDX. Therefore,
this function returns get_flow(H,IDX)
- It is valid for this function to return a floating point value of infinity.
This value means this edge has an unlimited capacity.
!*/
edge_type get_flow (
const in_edge_iterator& it
) const;
/*!
requires
- it == a valid iterator (i.e. it must be in the range [in_begin(idx), in_end(idx))
for some valid idx)
ensures
- let IDX = node_id(it)
- it represents the directed edge from node IDX to another node, call it H. Therefore,
this function returns get_flow(IDX,H)
- It is valid for this function to return a floating point value of infinity.
This value means this edge has an unlimited capacity.
!*/
void adjust_flow (
const unsigned long& idx1,
const unsigned long& idx2,
const edge_type& value
);
/*!
requires
- idx1 < number_of_nodes()
- idx2 < number_of_nodes()
- idx1 and idx2 are neighbors in the graph
ensures
- #get_flow(idx1,idx2) == get_flow(idx1,idx2) + value
- #get_flow(idx2,idx1) == get_flow(idx2,idx1) - value
!*/
void set_label (
const unsigned long& idx,
node_label value
);
/*!
requires
- idx < number_of_nodes()
ensures
- #get_label(idx) == value
!*/
node_label get_label (
const unsigned long& idx
) const;
/*!
requires
- idx < number_of_nodes()
ensures
- returns the label for the idx-th node in the graph.
!*/
};
// ----------------------------------------------------------------------------------------
template <
typename flow_graph
>
typename flow_graph::edge_type graph_cut_score (
const flow_graph& g
);
/*!
requires
- flow_graph == an object with an interface compatible with the flow_graph
object defined at the top of this file, or, an implementation of
dlib/directed_graph/directed_graph_kernel_abstract.h.
ensures
- returns the sum of the outgoing flows from nodes with a label of SOURCE_CUT
to nodes with a label != SOURCE_CUT. Note that for a directed_graph object,
the labels are stored in the node's data field.
!*/
// ----------------------------------------------------------------------------------------
class min_cut
{
/*!
WHAT THIS OBJECT REPRESENTS
This is a function object which can be used to find the min cut
on a graph.
The implementation is based on the method described in the following
paper:
An Experimental Comparison of Min-Cut/Max-Flow Algorithms for
Energy Minimization in Vision, by Yuri Boykov and Vladimir Kolmogorov,
in PAMI 2004.
!*/
public:
min_cut(
);
/*!
ensures
- this object is properly initialized
!*/
template <
typename flow_graph
>
void operator() (
flow_graph& g,
const unsigned long source_node,
const unsigned long sink_node
) const;
/*!
requires
- flow_graph == an object with an interface compatible with the flow_graph
object defined at the top of this file.
- source_node != sink_node
- source_node < g.number_of_nodes()
- sink_node < g.number_of_nodes()
- for all valid i and j:
- g.get_flow(i,j) >= 0
(i.e. all the flow capacities/edge weights are non-negative)
- g does not contain any self loops. That is, no nodes are neighbors with
themselves.
ensures
- Finds the minimum cut on the given graph. That is, this function finds
a labeling of nodes in g such that graph_cut_score(g) would be minimized. Note
that the flow values in #g are modified by this algorithm so if you want
to obtain the min cut score you must call min_cut::operator(), then copy
the flow values back into #g, and then call graph_cut_score(#g). But in most
cases you don't care about the value of the min cut score, rather, you
just want the labels in #g.
- #g.get_label(source_node) == SOURCE_CUT
- #g.get_label(sink_node) == SINK_CUT
- for all valid i:
- #g.get_label(i) == SOURCE_CUT, SINK_CUT, or FREE_NODE
- if (#g.get_label(i) == SOURCE_CUT) then
- The minimum cut of g places node i into the source side of the cut.
- if (#g.get_label(i) == SINK_CUT) then
- The minimum cut of g places node i into the sink side of the cut.
- if (#g.get_label(i) == FREE_NODE) then
- Node i can be labeled SOURCE_CUT or SINK_CUT. Both labelings
result in the same cut score.
- When interpreting g as a graph of flow capacities from the source_node
to the sink_node we can say that the min cut problem is equivalent to
the max flow problem. This equivalent problem is to find out how to push
as much "flow" from the source node to the sink node as possible.
Upon termination, #g will contain the final flow residuals in addition to
the graph cut labels. That is, for all valid i and j:
- #g.get_flow(i,j) == the residual flow capacity left after the max
possible amount of flow is passing from the source node to the sink
node. For example, this means that #g.get_flow(i,j) == 0 whenever
node i is in the SOURCE_CUT and j is in the SINK_CUT.
- #g.get_flow(i,j) >= 0
!*/
template <
typename directed_graph
>
void operator() (
directed_graph& g,
const unsigned long source_node,
const unsigned long sink_node
) const;
/*!
requires
- directed_graph == an implementation of dlib/directed_graph/directed_graph_kernel_abstract.h
- directed_graph::type == node_label
- directed_graph::edge_type == and integer or double type
- source_node != sink_node
- source_node < g.number_of_nodes()
- sink_node < g.number_of_nodes()
- for all valid i and j:
- edge(g,i,j) >= 0
(i.e. all the flow capacities/edge weights are positive)
- graph_contains_length_one_cycle(g) == false
- graph_has_symmetric_edges(g) == true
ensures
- This routine simply converts g into a flow graph and calls the version
of operator() defined above. Note that the conversion is done in O(1)
time, it's just an interface adaptor.
- edge weights in g correspond to network flows while the .data field of
each node in g corresponds to the graph node labels.
- upon termination, the flows and labels in g will have been modified
as described in the above operator() routine.
!*/
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MIN_CuT_ABSTRACT_Hh_
|