File size: 6,668 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This is an example illustrating the use of the deep learning tools from the
dlib C++ Library. I'm assuming you have already read the introductory
dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp examples. In this
example we are going to show how to create inception networks.
An inception network is composed of inception blocks of the form:
input from SUBNET
/ | \
/ | \
block1 block2 ... blockN
\ | /
\ | /
concatenate tensors from blocks
|
output
That is, an inception block runs a number of smaller networks (e.g. block1,
block2) and then concatenates their results. For further reading refer to:
Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
*/
#include <dlib/dnn.h>
#include <iostream>
#include <dlib/data_io.h>
using namespace std;
using namespace dlib;
// Inception layer has some different convolutions inside. Here we define
// blocks as convolutions with different kernel size that we will use in
// inception layer block.
template <typename SUBNET> using block_a1 = relu<con<10,1,1,1,1,SUBNET>>;
template <typename SUBNET> using block_a2 = relu<con<10,3,3,1,1,relu<con<16,1,1,1,1,SUBNET>>>>;
template <typename SUBNET> using block_a3 = relu<con<10,5,5,1,1,relu<con<16,1,1,1,1,SUBNET>>>>;
template <typename SUBNET> using block_a4 = relu<con<10,1,1,1,1,max_pool<3,3,1,1,SUBNET>>>;
// Here is inception layer definition. It uses different blocks to process input
// and returns combined output. Dlib includes a number of these inceptionN
// layer types which are themselves created using concat layers.
template <typename SUBNET> using incept_a = inception4<block_a1,block_a2,block_a3,block_a4, SUBNET>;
// Network can have inception layers of different structure. It will work
// properly so long as all the sub-blocks inside a particular inception block
// output tensors with the same number of rows and columns.
template <typename SUBNET> using block_b1 = relu<con<4,1,1,1,1,SUBNET>>;
template <typename SUBNET> using block_b2 = relu<con<4,3,3,1,1,SUBNET>>;
template <typename SUBNET> using block_b3 = relu<con<4,1,1,1,1,max_pool<3,3,1,1,SUBNET>>>;
template <typename SUBNET> using incept_b = inception3<block_b1,block_b2,block_b3,SUBNET>;
// Now we can define a simple network for classifying MNIST digits. We will
// train and test this network in the code below.
using net_type = loss_multiclass_log<
fc<10,
relu<fc<32,
max_pool<2,2,2,2,incept_b<
max_pool<2,2,2,2,incept_a<
input<matrix<unsigned char>>
>>>>>>>>;
int main(int argc, char** argv) try
{
// This example is going to run on the MNIST dataset.
if (argc != 2)
{
cout << "This example needs the MNIST dataset to run!" << endl;
cout << "You can get MNIST from http://yann.lecun.com/exdb/mnist/" << endl;
cout << "Download the 4 files that comprise the dataset, decompress them, and" << endl;
cout << "put them in a folder. Then give that folder as input to this program." << endl;
return 1;
}
std::vector<matrix<unsigned char>> training_images;
std::vector<unsigned long> training_labels;
std::vector<matrix<unsigned char>> testing_images;
std::vector<unsigned long> testing_labels;
load_mnist_dataset(argv[1], training_images, training_labels, testing_images, testing_labels);
// Make an instance of our inception network.
net_type net;
cout << "The net has " << net.num_layers << " layers in it." << endl;
cout << net << endl;
cout << "Training NN..." << endl;
dnn_trainer<net_type> trainer(net);
trainer.set_learning_rate(0.01);
trainer.set_min_learning_rate(0.00001);
trainer.set_mini_batch_size(128);
trainer.be_verbose();
trainer.set_synchronization_file("inception_sync", std::chrono::seconds(20));
// Train the network. This might take a few minutes...
trainer.train(training_images, training_labels);
// At this point our net object should have learned how to classify MNIST images. But
// before we try it out let's save it to disk. Note that, since the trainer has been
// running images through the network, net will have a bunch of state in it related to
// the last batch of images it processed (e.g. outputs from each layer). Since we
// don't care about saving that kind of stuff to disk we can tell the network to forget
// about that kind of transient data so that our file will be smaller. We do this by
// "cleaning" the network before saving it.
net.clean();
serialize("mnist_network_inception.dat") << net;
// Now if we later wanted to recall the network from disk we can simply say:
// deserialize("mnist_network_inception.dat") >> net;
// Now let's run the training images through the network. This statement runs all the
// images through it and asks the loss layer to convert the network's raw output into
// labels. In our case, these labels are the numbers between 0 and 9.
std::vector<unsigned long> predicted_labels = net(training_images);
int num_right = 0;
int num_wrong = 0;
// And then let's see if it classified them correctly.
for (size_t i = 0; i < training_images.size(); ++i)
{
if (predicted_labels[i] == training_labels[i])
++num_right;
else
++num_wrong;
}
cout << "training num_right: " << num_right << endl;
cout << "training num_wrong: " << num_wrong << endl;
cout << "training accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
// Let's also see if the network can correctly classify the testing images.
// Since MNIST is an easy dataset, we should see 99% accuracy.
predicted_labels = net(testing_images);
num_right = 0;
num_wrong = 0;
for (size_t i = 0; i < testing_images.size(); ++i)
{
if (predicted_labels[i] == testing_labels[i])
++num_right;
else
++num_wrong;
}
cout << "testing num_right: " << num_right << endl;
cout << "testing num_wrong: " << num_wrong << endl;
cout << "testing accuracy: " << num_right/(double)(num_right+num_wrong) << endl;
}
catch(std::exception& e)
{
cout << e.what() << endl;
}
|