File size: 28,309 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
// Copyright (C) 2013 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include "testing_results.h"
#include <dlib/svm.h>
#include <chrono>
using namespace dlib;
using namespace std;
namespace py = pybind11;
typedef matrix<double,0,1> sample_type;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
void np_to_cpp (
const numpy_image<double>& x_,
std::vector<matrix<double,0,1>>& samples
)
{
auto x = make_image_view(x_);
DLIB_CASSERT(x.nc() > 0);
DLIB_CASSERT(x.nr() > 0);
samples.resize(x.nr());
for (long r = 0; r < x.nr(); ++r)
{
samples[r].set_size(x.nc());
for (long c = 0; c < x.nc(); ++c)
{
samples[r](c) = x[r][c];
}
}
}
void np_to_cpp (
const numpy_image<double>& x_,
const py::array_t<double>& y,
std::vector<matrix<double,0,1>>& samples,
std::vector<double>& labels
)
{
DLIB_CASSERT(y.ndim() == 1 && y.size() > 0);
labels.assign(y.data(), y.data()+y.size());
auto x = make_image_view(x_);
DLIB_CASSERT(x.nr() == y.size(), "The x matrix must have as many rows as y has elements.");
DLIB_CASSERT(x.nc() > 0);
samples.resize(x.nr());
for (long r = 0; r < x.nr(); ++r)
{
samples[r].set_size(x.nc());
for (long c = 0; c < x.nc(); ++c)
{
samples[r](c) = x[r][c];
}
}
}
template <typename decision_function>
double predict (
const decision_function& df,
const typename decision_function::kernel_type::sample_type& samp
)
{
typedef typename decision_function::kernel_type::sample_type T;
if (df.basis_vectors.size() == 0)
{
return 0;
}
else if (is_matrix<T>::value && df.basis_vectors(0).size() != samp.size())
{
std::ostringstream sout;
sout << "Input vector should have " << df.basis_vectors(0).size()
<< " dimensions, not " << samp.size() << ".";
PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
throw py::error_already_set();
}
return df(samp);
}
inline matrix<double,0,1> np_to_mat(
const py::array_t<double>& samp
)
{
matrix<double,0,1> temp(samp.size());
const auto data = samp.data();
for (long i = 0; i < temp.size(); ++i)
temp(i) = data[i];
return temp;
}
template <typename decision_function>
double normalized_predict (
const normalized_function<decision_function>& df,
const typename decision_function::kernel_type::sample_type& samp
)
{
typedef typename decision_function::kernel_type::sample_type T;
if (df.function.basis_vectors.size() == 0)
{
return 0;
}
else if (is_matrix<T>::value && df.function.basis_vectors(0).size() != samp.size())
{
std::ostringstream sout;
sout << "Input vector should have " << df.function.basis_vectors(0).size()
<< " dimensions, not " << samp.size() << ".";
PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
throw py::error_already_set();
}
return df(samp);
}
template <typename decision_function>
std::vector<double> normalized_predict_vec (
const normalized_function<decision_function>& df,
const std::vector<typename decision_function::kernel_type::sample_type>& samps
)
{
std::vector<double> out;
out.reserve(samps.size());
for (const auto& x : samps)
out.push_back(normalized_predict(df,x));
return out;
}
template <typename decision_function>
py::array_t<double> normalized_predict_np_vec (
const normalized_function<decision_function>& df,
const numpy_image<double>& samps_
)
{
auto samps = make_image_view(samps_);
if (df.function.basis_vectors(0).size() != samps.nc())
{
std::ostringstream sout;
sout << "Input vector should have " << df.function.basis_vectors(0).size()
<< " dimensions, not " << samps.nc() << ".";
PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
throw py::error_already_set();
}
py::array_t<double, py::array::c_style> out((size_t)samps.nr());
matrix<double,0,1> temp(samps.nc());
auto data = out.mutable_data();
for (long r = 0; r < samps.nr(); ++r)
{
for (long c = 0; c < samps.nc(); ++c)
temp(c) = samps[r][c];
*data++ = df(temp);
}
return out;
}
template <typename decision_function>
double normalized_predict_np (
const normalized_function<decision_function>& df,
const py::array_t<double>& samp
)
{
typedef typename decision_function::kernel_type::sample_type T;
if (df.function.basis_vectors.size() == 0)
{
return 0;
}
else if (is_matrix<T>::value && df.function.basis_vectors(0).size() != samp.size())
{
std::ostringstream sout;
sout << "Input vector should have " << df.function.basis_vectors(0).size()
<< " dimensions, not " << samp.size() << ".";
PyErr_SetString( PyExc_ValueError, sout.str().c_str() );
throw py::error_already_set();
}
return df(np_to_mat(samp));
}
template <typename kernel_type>
void add_df (
py::module& m,
const std::string name
)
{
typedef decision_function<kernel_type> df_type;
py::class_<df_type>(m, name.c_str())
.def("__call__", &predict<df_type>)
.def_property_readonly("alpha", [](const df_type& df) {return df.alpha;})
.def_property_readonly("b", [](const df_type& df) {return df.b;})
.def_property_readonly("kernel_function", [](const df_type& df) {return df.kernel_function;})
.def_property_readonly("basis_vectors", [](const df_type& df) {
std::vector<matrix<double,0,1>> temp;
for (long i = 0; i < df.basis_vectors.size(); ++i)
temp.push_back(sparse_to_dense(df.basis_vectors(i)));
return temp;
})
.def(py::pickle(&getstate<df_type>, &setstate<df_type>));
}
template <typename kernel_type>
void add_normalized_df (
py::module& m,
const std::string name
)
{
using df_type = normalized_function<decision_function<kernel_type>>;
py::class_<df_type>(m, name.c_str())
.def("__call__", &normalized_predict<decision_function<kernel_type>>)
.def("__call__", &normalized_predict_np<decision_function<kernel_type>>)
.def("batch_predict", &normalized_predict_vec<decision_function<kernel_type>>)
.def("batch_predict", &normalized_predict_np_vec<decision_function<kernel_type>>)
.def_property_readonly("alpha", [](const df_type& df) {return df.function.alpha;})
.def_property_readonly("b", [](const df_type& df) {return df.function.b;})
.def_property_readonly("kernel_function", [](const df_type& df) {return df.function.kernel_function;})
.def_property_readonly("basis_vectors", [](const df_type& df) {
std::vector<matrix<double,0,1>> temp;
for (long i = 0; i < df.function.basis_vectors.size(); ++i)
temp.push_back(sparse_to_dense(df.function.basis_vectors(i)));
return temp;
})
.def_property_readonly("means", [](const df_type& df) {return df.normalizer.means();},
"Input vectors are normalized by the equation, (x-means)*invstd_devs, before being passed to the underlying RBF function.")
.def_property_readonly("invstd_devs", [](const df_type& df) {return df.normalizer.std_devs();},
"Input vectors are normalized by the equation, (x-means)*invstd_devs, before being passed to the underlying RBF function.")
.def(py::pickle(&getstate<df_type>, &setstate<df_type>));
}
template <typename df_type>
typename df_type::sample_type get_weights(
const df_type& df
)
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
throw py::error_already_set();
}
df_type temp = simplify_linear_decision_function(df);
return temp.basis_vectors(0);
}
template <typename df_type>
typename df_type::scalar_type get_bias(
const df_type& df
)
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
throw py::error_already_set();
}
return df.b;
}
template <typename df_type>
void set_bias(
df_type& df,
double b
)
{
if (df.basis_vectors.size() == 0)
{
PyErr_SetString( PyExc_ValueError, "Decision function is empty." );
throw py::error_already_set();
}
df.b = b;
}
template <typename kernel_type>
void add_linear_df (
py::module &m,
const std::string name
)
{
typedef decision_function<kernel_type> df_type;
py::class_<df_type>(m, name.c_str())
.def("__call__", predict<df_type>)
.def_property_readonly("weights", &get_weights<df_type>)
.def_property("bias", get_bias<df_type>, set_bias<df_type>)
.def(py::pickle(&getstate<df_type>, &setstate<df_type>));
}
// ----------------------------------------------------------------------------------------
std::string radial_basis_kernel__repr__(const radial_basis_kernel<sample_type>& item)
{
std::ostringstream sout;
sout << "radial_basis_kernel(gamma="<< item.gamma<<")";
return sout.str();
}
std::string linear_kernel__repr__(const linear_kernel<sample_type>& item)
{
std::ostringstream sout;
sout << "linear_kernel()";
return sout.str();
}
// ----------------------------------------------------------------------------------------
std::string binary_test__str__(const binary_test& item)
{
std::ostringstream sout;
sout << "class1_accuracy: "<< item.class1_accuracy << " class2_accuracy: "<< item.class2_accuracy;
return sout.str();
}
std::string binary_test__repr__(const binary_test& item) { return "< " + binary_test__str__(item) + " >";}
std::string regression_test__str__(const regression_test& item)
{
std::ostringstream sout;
sout << "mean_squared_error: "<< item.mean_squared_error << " R_squared: "<< item.R_squared;
sout << " mean_average_error: "<< item.mean_average_error << " mean_error_stddev: "<< item.mean_error_stddev;
return sout.str();
}
std::string regression_test__repr__(const regression_test& item) { return "< " + regression_test__str__(item) + " >";}
std::string ranking_test__str__(const ranking_test& item)
{
std::ostringstream sout;
sout << "ranking_accuracy: "<< item.ranking_accuracy << " mean_ap: "<< item.mean_ap;
return sout.str();
}
std::string ranking_test__repr__(const ranking_test& item) { return "< " + ranking_test__str__(item) + " >";}
// ----------------------------------------------------------------------------------------
template <typename K>
binary_test _normalized_test_binary_decision_function (
const normalized_function<decision_function<K>>& dec_funct,
const std::vector<typename K::sample_type>& x_test,
const std::vector<double>& y_test
) { return binary_test(test_binary_decision_function(dec_funct, x_test, y_test)); }
template <typename K>
binary_test _normalized_test_binary_decision_function_np (
const normalized_function<decision_function<K>>& dec_funct,
const numpy_image<double>& x_test_,
const py::array_t<double>& y_test_
)
{
std::vector<typename K::sample_type> x_test;
std::vector<double> y_test;
np_to_cpp(x_test_,y_test_, x_test,y_test);
return binary_test(test_binary_decision_function(dec_funct, x_test, y_test));
}
template <typename K>
binary_test _test_binary_decision_function (
const decision_function<K>& dec_funct,
const std::vector<typename K::sample_type>& x_test,
const std::vector<double>& y_test
) { return binary_test(test_binary_decision_function(dec_funct, x_test, y_test)); }
template <typename K>
regression_test _test_regression_function (
const decision_function<K>& reg_funct,
const std::vector<typename K::sample_type>& x_test,
const std::vector<double>& y_test
) { return regression_test(test_regression_function(reg_funct, x_test, y_test)); }
template < typename K >
ranking_test _test_ranking_function1 (
const decision_function<K>& funct,
const std::vector<ranking_pair<typename K::sample_type> >& samples
) { return ranking_test(test_ranking_function(funct, samples)); }
template < typename K >
ranking_test _test_ranking_function2 (
const decision_function<K>& funct,
const ranking_pair<typename K::sample_type>& sample
) { return ranking_test(test_ranking_function(funct, sample)); }
// ----------------------------------------------------------------------------------------
void setup_auto_train_rbf_classifier (py::module& m)
{
m.def("auto_train_rbf_classifier", [](
const std::vector<matrix<double,0,1>>& x,
const std::vector<double>& y,
double max_runtime_seconds,
bool be_verbose
) { return auto_train_rbf_classifier(x,y,std::chrono::microseconds((uint64_t)(max_runtime_seconds*1e6)),be_verbose); },
py::arg("x"), py::arg("y"), py::arg("max_runtime_seconds"), py::arg("be_verbose")=true,
"requires \n\
- y contains at least 6 examples of each class. Moreover, every element in y \n\
is either +1 or -1. \n\
- max_runtime_seconds >= 0 \n\
- len(x) == len(y) \n\
- all the vectors in x have the same dimension. \n\
ensures \n\
- This routine trains a radial basis function SVM on the given binary \n\
classification training data. It uses the svm_c_trainer to do this. It also \n\
uses find_max_global() and 6-fold cross-validation to automatically determine \n\
the best settings of the SVM's hyper parameters. \n\
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the \n\
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as \n\
often as possible. \n\
- The hyperparameter search will run for about max_runtime and will print \n\
messages to the screen as it runs if be_verbose==true."
/*!
requires
- y contains at least 6 examples of each class. Moreover, every element in y
is either +1 or -1.
- max_runtime_seconds >= 0
- len(x) == len(y)
- all the vectors in x have the same dimension.
ensures
- This routine trains a radial basis function SVM on the given binary
classification training data. It uses the svm_c_trainer to do this. It also
uses find_max_global() and 6-fold cross-validation to automatically determine
the best settings of the SVM's hyper parameters.
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as
often as possible.
- The hyperparameter search will run for about max_runtime and will print
messages to the screen as it runs if be_verbose==true.
!*/
);
m.def("auto_train_rbf_classifier", [](
const numpy_image<double>& x_,
const py::array_t<double>& y_,
double max_runtime_seconds,
bool be_verbose
) {
std::vector<matrix<double,0,1>> x;
std::vector<double> y;
np_to_cpp(x_,y_, x, y);
return auto_train_rbf_classifier(x,y,std::chrono::microseconds((uint64_t)(max_runtime_seconds*1e6)),be_verbose); },
py::arg("x"), py::arg("y"), py::arg("max_runtime_seconds"), py::arg("be_verbose")=true,
"requires \n\
- y contains at least 6 examples of each class. Moreover, every element in y \n\
is either +1 or -1. \n\
- max_runtime_seconds >= 0 \n\
- len(x.shape(0)) == len(y) \n\
- x.shape(1) > 0 \n\
ensures \n\
- This routine trains a radial basis function SVM on the given binary \n\
classification training data. It uses the svm_c_trainer to do this. It also \n\
uses find_max_global() and 6-fold cross-validation to automatically determine \n\
the best settings of the SVM's hyper parameters. \n\
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the \n\
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as \n\
often as possible. \n\
- The hyperparameter search will run for about max_runtime and will print \n\
messages to the screen as it runs if be_verbose==true."
/*!
requires
- y contains at least 6 examples of each class. Moreover, every element in y
is either +1 or -1.
- max_runtime_seconds >= 0
- len(x.shape(0)) == len(y)
- x.shape(1) > 0
ensures
- This routine trains a radial basis function SVM on the given binary
classification training data. It uses the svm_c_trainer to do this. It also
uses find_max_global() and 6-fold cross-validation to automatically determine
the best settings of the SVM's hyper parameters.
- Note that we interpret y[i] as the label for the vector x[i]. Therefore, the
returned function, df, should generally satisfy sign(df(x[i])) == y[i] as
often as possible.
- The hyperparameter search will run for about max_runtime and will print
messages to the screen as it runs if be_verbose==true.
!*/
);
m.def("reduce", [](const normalized_function<decision_function<radial_basis_kernel<matrix<double,0,1>>>>& df,
const std::vector<matrix<double,0,1>>& x,
long num_bv,
double eps)
{
auto out = df;
// null_trainer doesn't use y so we can leave it empty.
std::vector<double> y;
out.function = reduced2(null_trainer(df.function),num_bv,eps).train(x,y);
return out;
}, py::arg("df"), py::arg("x"), py::arg("num_basis_vectors"), py::arg("eps")=1e-3
);
m.def("reduce", [](const normalized_function<decision_function<radial_basis_kernel<matrix<double,0,1>>>>& df,
const numpy_image<double>& x_,
long num_bv,
double eps)
{
std::vector<matrix<double,0,1>> x;
np_to_cpp(x_, x);
// null_trainer doesn't use y so we can leave it empty.
std::vector<double> y;
auto out = df;
out.function = reduced2(null_trainer(df.function),num_bv,eps).train(x,y);
return out;
}, py::arg("df"), py::arg("x"), py::arg("num_basis_vectors"), py::arg("eps")=1e-3,
"requires \n\
- eps > 0 \n\
- num_bv > 0 \n\
ensures \n\
- This routine takes a learned radial basis function and tries to find a \n\
new RBF function with num_basis_vectors basis vectors that approximates \n\
the given df() as closely as possible. In particular, it finds a \n\
function new_df() such that new_df(x[i])==df(x[i]) as often as possible. \n\
- This is accomplished using a reduced set method that begins by using a \n\
projection, in kernel space, onto a random set of num_basis_vectors \n\
vectors in x. Then, L-BFGS is used to further optimize new_df() to match \n\
df(). The eps parameter controls how long L-BFGS will run, smaller \n\
values of eps possibly giving better solutions but taking longer to \n\
execute."
/*!
requires
- eps > 0
- num_bv > 0
ensures
- This routine takes a learned radial basis function and tries to find a
new RBF function with num_basis_vectors basis vectors that approximates
the given df() as closely as possible. In particular, it finds a
function new_df() such that new_df(x[i])==df(x[i]) as often as possible.
- This is accomplished using a reduced set method that begins by using a
projection, in kernel space, onto a random set of num_basis_vectors
vectors in x. Then, L-BFGS is used to further optimize new_df() to match
df(). The eps parameter controls how long L-BFGS will run, smaller
values of eps possibly giving better solutions but taking longer to
execute.
!*/
);
}
// ----------------------------------------------------------------------------------------
void bind_decision_functions(py::module &m)
{
add_linear_df<linear_kernel<sample_type> >(m, "_decision_function_linear");
add_linear_df<sparse_linear_kernel<sparse_vect> >(m, "_decision_function_sparse_linear");
add_df<histogram_intersection_kernel<sample_type> >(m, "_decision_function_histogram_intersection");
add_df<sparse_histogram_intersection_kernel<sparse_vect> >(m, "_decision_function_sparse_histogram_intersection");
add_df<polynomial_kernel<sample_type> >(m, "_decision_function_polynomial");
add_df<sparse_polynomial_kernel<sparse_vect> >(m, "_decision_function_sparse_polynomial");
py::class_<radial_basis_kernel<sample_type>>(m, "_radial_basis_kernel")
.def("__repr__", radial_basis_kernel__repr__)
.def_property_readonly("gamma", [](const radial_basis_kernel<sample_type>& k){return k.gamma; });
py::class_<linear_kernel<sample_type>>(m, "_linear_kernel")
.def("__repr__", linear_kernel__repr__);
add_df<radial_basis_kernel<sample_type> >(m, "_decision_function_radial_basis");
add_df<sparse_radial_basis_kernel<sparse_vect> >(m, "_decision_function_sparse_radial_basis");
add_normalized_df<radial_basis_kernel<sample_type>>(m, "_normalized_decision_function_radial_basis");
setup_auto_train_rbf_classifier(m);
add_df<sigmoid_kernel<sample_type> >(m, "_decision_function_sigmoid");
add_df<sparse_sigmoid_kernel<sparse_vect> >(m, "_decision_function_sparse_sigmoid");
m.def("test_binary_decision_function", _normalized_test_binary_decision_function<radial_basis_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _normalized_test_binary_decision_function_np<radial_basis_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<linear_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<radial_basis_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_radial_basis_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<polynomial_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_polynomial_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<histogram_intersection_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_histogram_intersection_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sigmoid_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_binary_decision_function", _test_binary_decision_function<sparse_sigmoid_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("labels"));
m.def("test_regression_function", _test_regression_function<linear_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<radial_basis_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_radial_basis_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<histogram_intersection_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_histogram_intersection_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sigmoid_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_sigmoid_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<polynomial_kernel<sample_type> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_regression_function", _test_regression_function<sparse_polynomial_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"), py::arg("targets"));
m.def("test_ranking_function", _test_ranking_function1<linear_kernel<sample_type> >,
py::arg("function"), py::arg("samples"));
m.def("test_ranking_function", _test_ranking_function1<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("samples"));
m.def("test_ranking_function", _test_ranking_function2<linear_kernel<sample_type> >,
py::arg("function"), py::arg("sample"));
m.def("test_ranking_function", _test_ranking_function2<sparse_linear_kernel<sparse_vect> >,
py::arg("function"), py::arg("sample"));
py::class_<binary_test>(m, "_binary_test")
.def("__str__", binary_test__str__)
.def("__repr__", binary_test__repr__)
.def_readwrite("class1_accuracy", &binary_test::class1_accuracy,
"A value between 0 and 1, measures accuracy on the +1 class.")
.def_readwrite("class2_accuracy", &binary_test::class2_accuracy,
"A value between 0 and 1, measures accuracy on the -1 class.");
py::class_<ranking_test>(m, "_ranking_test")
.def("__str__", ranking_test__str__)
.def("__repr__", ranking_test__repr__)
.def_readwrite("ranking_accuracy", &ranking_test::ranking_accuracy,
"A value between 0 and 1, measures the fraction of times a relevant sample was ordered before a non-relevant sample.")
.def_readwrite("mean_ap", &ranking_test::mean_ap,
"A value between 0 and 1, measures the mean average precision of the ranking.");
py::class_<regression_test>(m, "_regression_test")
.def("__str__", regression_test__str__)
.def("__repr__", regression_test__repr__)
.def_readwrite("mean_average_error", ®ression_test::mean_average_error,
"The mean average error of a regression function on a dataset.")
.def_readwrite("mean_error_stddev", ®ression_test::mean_error_stddev,
"The standard deviation of the absolute value of the error of a regression function on a dataset.")
.def_readwrite("mean_squared_error", ®ression_test::mean_squared_error,
"The mean squared error of a regression function on a dataset.")
.def_readwrite("R_squared", ®ression_test::R_squared,
"A value between 0 and 1, measures the squared correlation between the output of a \n"
"regression function and the target values.");
}
|