File size: 41,168 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
// Copyright (C) 2018  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include "dlib/pixel.h"
#include <dlib/image_transforms.h>
#include <dlib/image_processing.h>

using namespace dlib;
using namespace std;

namespace py = pybind11;

// ----------------------------------------------------------------------------------------

template <typename T>
numpy_image<T> py_resize_image (
    const numpy_image<T>& img,
    unsigned long rows,
    unsigned long cols
)
{
    numpy_image<T> out;
    set_image_size(out, rows, cols);
    resize_image(img, out);
    return out;
}

// ----------------------------------------------------------------------------------------

template <typename T>
numpy_image<T> py_scale_image (
    const numpy_image<T>& img,
    double scale
)
{
    DLIB_CASSERT(scale > 0, "Scale factor must be greater than 0");
    numpy_image<T> out = img;
    resize_image(scale, out);
    return out;
}

// ----------------------------------------------------------------------------------------

template <typename T>
numpy_image<T> py_equalize_histogram (
    const numpy_image<T>& img
)
{
    numpy_image<T> out;
    equalize_histogram(img,out);
    return out;
}

// ----------------------------------------------------------------------------------------

std::vector<point> py_remove_incoherent_edge_pixels (
    const std::vector<point>& line,
    const numpy_image<float>& horz_gradient,
    const numpy_image<float>& vert_gradient,
    double angle_threshold
)
{

    DLIB_CASSERT(num_rows(horz_gradient) == num_rows(vert_gradient));
    DLIB_CASSERT(num_columns(horz_gradient) == num_columns(vert_gradient));
    DLIB_CASSERT(angle_threshold >= 0);
    for (const auto& p : line)
        DLIB_CASSERT(get_rect(horz_gradient).contains(p), "All line points must be inside the given images.");

    return remove_incoherent_edge_pixels(line, horz_gradient, vert_gradient, angle_threshold);
}

// ----------------------------------------------------------------------------------------

template <typename T>
numpy_image<T> py_extract_image_4points (
    const numpy_image<T>& img,
    const py::list& corners,
    long rows,
    long columns
)
{
    DLIB_CASSERT(rows >= 0);
    DLIB_CASSERT(columns >= 0);
    DLIB_CASSERT(len(corners) == 4);

    numpy_image<T> out;
    set_image_size(out, rows, columns);
    try
    {
        extract_image_4points(img, out, python_list_to_array<dpoint,4>(corners));
        return out;
    } 
    catch (py::cast_error&){}

    try
    {
        extract_image_4points(img, out, python_list_to_array<line,4>(corners));
        return out;
    }
    catch(py::cast_error&)
    {
        throw dlib::error("extract_image_4points() requires the corners argument to be a list of 4 dpoints or 4 lines.");
    }
}

// ----------------------------------------------------------------------------------------

template <typename T>
numpy_image<T> py_mbd (
    const numpy_image<T>& img,
    size_t iterations,
    bool do_left_right_scans 
)
{
    numpy_image<T> out;
    min_barrier_distance(img, out, iterations, do_left_right_scans);
    return out;
}

numpy_image<unsigned char> py_mbd2 (
    const numpy_image<rgb_pixel>& img,
    size_t iterations,
    bool do_left_right_scans 
)
{
    numpy_image<unsigned char> out;
    min_barrier_distance(img, out, iterations, do_left_right_scans);
    return out;
}

// ----------------------------------------------------------------------------------------

template <typename T>
numpy_image<T> py_extract_image_chip (
    const numpy_image<T>& img,
    const chip_details& chip_location 
)
{
    numpy_image<T> out;
    extract_image_chip(img, chip_location, out);
    return out;
}

template <typename T>
py::list py_extract_image_chips (
    const numpy_image<T>& img,
    const py::list& chip_locations
)
{
    dlib::array<numpy_image<T>> out;
    extract_image_chips(img, python_list_to_vector<chip_details>(chip_locations), out);
    py::list ret;
    for (const auto& i : out)
        ret.append(i);
    return ret;
}

// ----------------------------------------------------------------------------------------

void register_extract_image_chip (py::module& m)
{
    const char* class_docs = 
"WHAT THIS OBJECT REPRESENTS \n\
    This is a simple tool for passing in a pair of row and column values to the \n\
    chip_details constructor.";


    auto print_chip_dims_str = [](const chip_dims& d)
    {
        std::ostringstream sout;
        sout << "rows="<< d.rows << ", cols=" << d.cols; 
        return sout.str();
    };
    auto print_chip_dims_repr = [](const chip_dims& d)
    {
        std::ostringstream sout;
        sout << "chip_dims(rows="<< d.rows << ", cols=" << d.cols << ")"; 
        return sout.str();
    };

    py::class_<chip_dims>(m, "chip_dims", class_docs)
        .def(py::init<unsigned long, unsigned long>(), py::arg("rows"), py::arg("cols"))
        .def("__str__", print_chip_dims_str)
        .def("__repr__", print_chip_dims_repr)
        .def_readwrite("rows", &chip_dims::rows)
        .def_readwrite("cols", &chip_dims::cols);



    auto print_chip_details_str = [](const chip_details& d)
    {
        std::ostringstream sout;
        sout << "rect=" << d.rect << ", angle="<< d.angle << ", rows="<< d.rows << ", cols=" << d.cols; 
        return sout.str();
    };
    auto print_chip_details_repr = [](const chip_details& d)
    {
        std::ostringstream sout;
        sout << "chip_details(rect=drectangle(" 
            << d.rect.left()<<","<<d.rect.top()<<","<<d.rect.right()<<","<<d.rect.bottom()
            <<"), angle="<< d.angle << ", dims=chip_dims(rows="<< d.rows << ", cols=" << d.cols << "))"; 
        return sout.str();
    };


    class_docs =
"WHAT THIS OBJECT REPRESENTS \n\
    This object describes where an image chip is to be extracted from within \n\
    another image.  In particular, it specifies that the image chip is \n\
    contained within the rectangle self.rect and that prior to extraction the \n\
    image should be rotated counter-clockwise by self.angle radians.  Finally, \n\
    the extracted chip should have self.rows rows and self.cols columns in it \n\
    regardless of the shape of self.rect.  This means that the extracted chip \n\
    will be stretched to fit via bilinear interpolation when necessary." ;
        /*!
            WHAT THIS OBJECT REPRESENTS
                This object describes where an image chip is to be extracted from within
                another image.  In particular, it specifies that the image chip is
                contained within the rectangle self.rect and that prior to extraction the
                image should be rotated counter-clockwise by self.angle radians.  Finally,
                the extracted chip should have self.rows rows and self.cols columns in it
                regardless of the shape of self.rect.  This means that the extracted chip
                will be stretched to fit via bilinear interpolation when necessary.
        !*/
    py::class_<chip_details>(m, "chip_details", class_docs)
        .def(py::init<drectangle>(), py::arg("rect"))
        .def(py::init<rectangle>(), py::arg("rect"),
"ensures \n\
    - self.rect == rect_ \n\
    - self.angle == 0 \n\
    - self.rows == rect.height() \n\
    - self.cols == rect.width()" 
        /*!
            ensures
                - self.rect == rect_
                - self.angle == 0
                - self.rows == rect.height()
                - self.cols == rect.width()
        !*/
            )
        .def(py::init<drectangle,unsigned long>(), py::arg("rect"), py::arg("size"))
        .def(py::init<rectangle,unsigned long>(), py::arg("rect"), py::arg("size"),
"ensures \n\
    - self.rect == rect \n\
    - self.angle == 0 \n\
    - self.rows and self.cols is set such that the total size of the chip is as close \n\
      to size as possible but still matches the aspect ratio of rect. \n\
    - As long as size and the aspect ratio of rect stays constant then \n\
      self.rows and self.cols will always have the same values.  This means \n\
      that, for example, if you want all your chips to have the same dimensions \n\
      then ensure that size is always the same and also that rect always has \n\
      the same aspect ratio.  Otherwise the calculated values of self.rows and \n\
      self.cols may be different for different chips.  Alternatively, you can \n\
      use the chip_details constructor below that lets you specify the exact \n\
      values for rows and cols." 
        /*!
            ensures
                - self.rect == rect
                - self.angle == 0
                - self.rows and self.cols is set such that the total size of the chip is as close
                  to size as possible but still matches the aspect ratio of rect.
                - As long as size and the aspect ratio of rect stays constant then
                  self.rows and self.cols will always have the same values.  This means
                  that, for example, if you want all your chips to have the same dimensions
                  then ensure that size is always the same and also that rect always has
                  the same aspect ratio.  Otherwise the calculated values of self.rows and
                  self.cols may be different for different chips.  Alternatively, you can
                  use the chip_details constructor below that lets you specify the exact
                  values for rows and cols.
        !*/
            )
        .def(py::init<drectangle,unsigned long,double>(), py::arg("rect"), py::arg("size"), py::arg("angle"))
        .def(py::init<rectangle,unsigned long,double>(), py::arg("rect"), py::arg("size"), py::arg("angle"),
"ensures \n\
    - self.rect == rect \n\
    - self.angle == angle \n\
    - self.rows and self.cols is set such that the total size of the chip is as \n\
      close to size as possible but still matches the aspect ratio of rect. \n\
    - As long as size and the aspect ratio of rect stays constant then \n\
      self.rows and self.cols will always have the same values.  This means \n\
      that, for example, if you want all your chips to have the same dimensions \n\
      then ensure that size is always the same and also that rect always has \n\
      the same aspect ratio.  Otherwise the calculated values of self.rows and \n\
      self.cols may be different for different chips.  Alternatively, you can \n\
      use the chip_details constructor below that lets you specify the exact \n\
      values for rows and cols." 
        /*!
            ensures
                - self.rect == rect
                - self.angle == angle
                - self.rows and self.cols is set such that the total size of the chip is as
                  close to size as possible but still matches the aspect ratio of rect.
                - As long as size and the aspect ratio of rect stays constant then
                  self.rows and self.cols will always have the same values.  This means
                  that, for example, if you want all your chips to have the same dimensions
                  then ensure that size is always the same and also that rect always has
                  the same aspect ratio.  Otherwise the calculated values of self.rows and
                  self.cols may be different for different chips.  Alternatively, you can
                  use the chip_details constructor below that lets you specify the exact
                  values for rows and cols.
        !*/
            )
        .def(py::init<drectangle,chip_dims>(), py::arg("rect"), py::arg("dims"))
        .def(py::init<rectangle,chip_dims>(), py::arg("rect"), py::arg("dims"),
"ensures \n\
    - self.rect == rect \n\
    - self.angle == 0 \n\
    - self.rows == dims.rows \n\
    - self.cols == dims.cols" 
        /*!
            ensures
                - self.rect == rect
                - self.angle == 0
                - self.rows == dims.rows
                - self.cols == dims.cols
        !*/
            )
        .def(py::init<drectangle,chip_dims,double>(), py::arg("rect"), py::arg("dims"), py::arg("angle"))
        .def(py::init<rectangle,chip_dims,double>(), py::arg("rect"), py::arg("dims"), py::arg("angle"),
"ensures \n\
    - self.rect == rect \n\
    - self.angle == angle \n\
    - self.rows == dims.rows \n\
    - self.cols == dims.cols" 
        /*!
            ensures
                - self.rect == rect
                - self.angle == angle
                - self.rows == dims.rows
                - self.cols == dims.cols
        !*/
            )
        .def(py::init<std::vector<dpoint>,std::vector<dpoint>,chip_dims>(), py::arg("chip_points"), py::arg("img_points"), py::arg("dims"))
        .def(py::init<std::vector<point>,std::vector<point>,chip_dims>(), py::arg("chip_points"), py::arg("img_points"), py::arg("dims"),
"requires \n\
    - len(chip_points) == len(img_points) \n\
    - len(chip_points) >= 2  \n\
ensures \n\
    - The chip will be extracted such that the pixel locations chip_points[i] \n\
      in the chip are mapped to img_points[i] in the original image by a \n\
      similarity transform.  That is, if you know the pixelwize mapping you \n\
      want between the chip and the original image then you use this function \n\
      of chip_details constructor to define the mapping. \n\
    - self.rows == dims.rows \n\
    - self.cols == dims.cols \n\
    - self.rect and self.angle are computed based on the given size of the output chip \n\
      (specified by dims) and the similarity transform between the chip and \n\
      image (specified by chip_points and img_points)." 
        /*!
            requires
                - len(chip_points) == len(img_points)
                - len(chip_points) >= 2 
            ensures
                - The chip will be extracted such that the pixel locations chip_points[i]
                  in the chip are mapped to img_points[i] in the original image by a
                  similarity transform.  That is, if you know the pixelwize mapping you
                  want between the chip and the original image then you use this function
                  of chip_details constructor to define the mapping.
                - self.rows == dims.rows
                - self.cols == dims.cols
                - self.rect and self.angle are computed based on the given size of the output chip
                  (specified by dims) and the similarity transform between the chip and
                  image (specified by chip_points and img_points).
        !*/
            )
        .def("__str__", print_chip_details_str)
        .def("__repr__", print_chip_details_repr)
        .def_readwrite("rect", &chip_details::rect)
        .def_readwrite("angle", &chip_details::angle)
        .def_readwrite("rows", &chip_details::rows)
        .def_readwrite("cols", &chip_details::cols);

    {
    typedef std::vector<chip_details> type;
    py::bind_vector<type>(m, "chip_detailss", "An array of chip_details objects.")
        .def("extend", extend_vector_with_python_list<type>);
    }

    m.def("extract_image_chip", &py_extract_image_chip<uint8_t>, py::arg("img"), py::arg("chip_location"));
    m.def("extract_image_chip", &py_extract_image_chip<uint16_t>, py::arg("img"), py::arg("chip_location"));
    m.def("extract_image_chip", &py_extract_image_chip<uint32_t>, py::arg("img"), py::arg("chip_location"));
    m.def("extract_image_chip", &py_extract_image_chip<uint64_t>, py::arg("img"), py::arg("chip_location"));
    m.def("extract_image_chip", &py_extract_image_chip<int8_t>, py::arg("img"), py::arg("chip_location"));
    m.def("extract_image_chip", &py_extract_image_chip<int16_t>, py::arg("img"), py::arg("chip_location"));
    m.def("extract_image_chip", &py_extract_image_chip<int32_t>, py::arg("img"), py::arg("chip_location"));
    m.def("extract_image_chip", &py_extract_image_chip<int64_t>, py::arg("img"), py::arg("chip_location"));
    m.def("extract_image_chip", &py_extract_image_chip<float>, py::arg("img"), py::arg("chip_location"));
    m.def("extract_image_chip", &py_extract_image_chip<double>, py::arg("img"), py::arg("chip_location"));
    m.def("extract_image_chip", &py_extract_image_chip<rgb_pixel>, py::arg("img"), py::arg("chip_location"),
        "    This routine is just like extract_image_chips() except it takes a single \n"
        "    chip_details object and returns a single chip image rather than a list of images."
        );

    m.def("extract_image_chips", &py_extract_image_chips<uint8_t>, py::arg("img"), py::arg("chip_locations"));
    m.def("extract_image_chips", &py_extract_image_chips<uint16_t>, py::arg("img"), py::arg("chip_locations"));
    m.def("extract_image_chips", &py_extract_image_chips<uint32_t>, py::arg("img"), py::arg("chip_locations"));
    m.def("extract_image_chips", &py_extract_image_chips<uint64_t>, py::arg("img"), py::arg("chip_locations"));
    m.def("extract_image_chips", &py_extract_image_chips<int8_t>, py::arg("img"), py::arg("chip_locations"));
    m.def("extract_image_chips", &py_extract_image_chips<int16_t>, py::arg("img"), py::arg("chip_locations"));
    m.def("extract_image_chips", &py_extract_image_chips<int32_t>, py::arg("img"), py::arg("chip_locations"));
    m.def("extract_image_chips", &py_extract_image_chips<int64_t>, py::arg("img"), py::arg("chip_locations"));
    m.def("extract_image_chips", &py_extract_image_chips<float>, py::arg("img"), py::arg("chip_locations"));
    m.def("extract_image_chips", &py_extract_image_chips<double>, py::arg("img"), py::arg("chip_locations"));
    m.def("extract_image_chips", &py_extract_image_chips<rgb_pixel>, py::arg("img"), py::arg("chip_locations"),
"requires \n\
    - for all valid i:  \n\
        - chip_locations[i].rect.is_empty() == false \n\
        - chip_locations[i].rows*chip_locations[i].cols != 0 \n\
ensures \n\
    - This function extracts \"chips\" from an image.  That is, it takes a list of \n\
      rectangular sub-windows (i.e. chips) within an image and extracts those \n\
      sub-windows, storing each into its own image.  It also scales and rotates the \n\
      image chips according to the instructions inside each chip_details object. \n\
      It uses bilinear interpolation. \n\
    - The extracted image chips are returned in a python list of numpy arrays.  The \n\
      length of the returned array is len(chip_locations). \n\
    - Let CHIPS be the returned array, then we have: \n\
        - for all valid i: \n\
            - #CHIPS[i] == The image chip extracted from the position \n\
              chip_locations[i].rect in img. \n\
            - #CHIPS[i].shape(0) == chip_locations[i].rows \n\
            - #CHIPS[i].shape(1) == chip_locations[i].cols \n\
            - The image will have been rotated counter-clockwise by \n\
              chip_locations[i].angle radians, around the center of \n\
              chip_locations[i].rect, before the chip was extracted.  \n\
    - Any pixels in an image chip that go outside img are set to 0 (i.e. black)." 
    /*!
        requires
            - for all valid i: 
                - chip_locations[i].rect.is_empty() == false
                - chip_locations[i].rows*chip_locations[i].cols != 0
        ensures
            - This function extracts "chips" from an image.  That is, it takes a list of
              rectangular sub-windows (i.e. chips) within an image and extracts those
              sub-windows, storing each into its own image.  It also scales and rotates the
              image chips according to the instructions inside each chip_details object.
              It uses bilinear interpolation.
            - The extracted image chips are returned in a python list of numpy arrays.  The
              length of the returned array is len(chip_locations).
            - Let CHIPS be the returned array, then we have:
                - for all valid i:
                    - #CHIPS[i] == The image chip extracted from the position
                      chip_locations[i].rect in img.
                    - #CHIPS[i].shape(0) == chip_locations[i].rows
                    - #CHIPS[i].shape(1) == chip_locations[i].cols
                    - The image will have been rotated counter-clockwise by
                      chip_locations[i].angle radians, around the center of
                      chip_locations[i].rect, before the chip was extracted. 
            - Any pixels in an image chip that go outside img are set to 0 (i.e. black).
    !*/
        );

    m.def("get_face_chip_details",
          static_cast<chip_details (*)(const full_object_detection&, const unsigned long, const double)>(&get_face_chip_details),
          py::arg("det"), py::arg("size")=200, py::arg("padding")=0.2,
        "Given a full_object_detection det, returns a chip_details object which can be \n\
         used to extract an image of given size and padding."
        );

    m.def("get_face_chip_details",
          static_cast<std::vector<chip_details> (*)(const std::vector<full_object_detection>&, const unsigned long, const double)>(&get_face_chip_details),
          py::arg("dets"), py::arg("size")=200, py::arg("padding")=0.2,
        "Given a list of full_object_detection dets, returns a chip_details object which can be \n\
         used to extract an image of given size and padding."
        );
}

// ----------------------------------------------------------------------------------------

py::array py_tile_images (
    const py::list& images
)
{
    DLIB_CASSERT(len(images) > 0);

    if (is_image<rgb_pixel>(images[0].cast<py::array>()))
    {
        std::vector<numpy_image<rgb_pixel>> tmp(len(images));
        for (size_t i = 0; i < tmp.size(); ++i)
            assign_image(tmp[i], images[i].cast<py::array>());
        return numpy_image<rgb_pixel>(tile_images(tmp));
    }
    else
    {
        std::vector<numpy_image<unsigned char>> tmp(len(images));
        for (size_t i = 0; i < tmp.size(); ++i)
            assign_image(tmp[i], images[i].cast<py::array>());
        return numpy_image<unsigned char>(tile_images(tmp));
    }
}

// ----------------------------------------------------------------------------------------

template <typename T>
py::array_t<unsigned long> py_get_histogram (
    const numpy_image<T>& img,
    size_t hist_size
)
{
    matrix<unsigned long,1> hist;
    get_histogram(img,hist,hist_size);

    return numpy_image<unsigned long>(std::move(hist)).squeeze();
}

// ----------------------------------------------------------------------------------------

py::array py_sub_image (
    const py::array& img,
    const rectangle& win
)
{
    DLIB_CASSERT(img.ndim() >= 2);

    auto width_step = img.strides(0);

    const long nr = img.shape(0);
    const long nc = img.shape(1);
    rectangle rect(0,0,nc-1,nr-1);
    rect = rect.intersect(win);

    std::vector<size_t> shape(img.ndim()), strides(img.ndim());
    for (size_t i = 0; i < shape.size(); ++i)
    {
        shape[i] = img.shape(i);
        strides[i] = img.strides(i);
    }

    shape[0] = rect.height();
    shape[1] = rect.width();

    size_t col_stride = 1;
    for (size_t i = 1; i < strides.size(); ++i)
        col_stride *= strides[i];

    const void* data = (char*)img.data() + col_stride*rect.left() + rect.top()*strides[0];

    return py::array(img.dtype(), shape, strides, data, img);
}

py::array py_sub_image2 (
    const py::tuple& image_and_rect_tuple
)
{
    DLIB_CASSERT(len(image_and_rect_tuple) == 2);
    return py_sub_image(image_and_rect_tuple[0].cast<py::array>(), image_and_rect_tuple[1].cast<rectangle>());
}

// ----------------------------------------------------------------------------------------

void bind_image_classes2(py::module& m)
{

    const char* docs = "Resizes img, using bilinear interpolation, to have the indicated number of rows and columns.";


    m.def("resize_image", &py_resize_image<uint8_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
    m.def("resize_image", &py_resize_image<uint16_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
    m.def("resize_image", &py_resize_image<uint32_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
    m.def("resize_image", &py_resize_image<uint64_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
    m.def("resize_image", &py_resize_image<int8_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
    m.def("resize_image", &py_resize_image<int16_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
    m.def("resize_image", &py_resize_image<int32_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
    m.def("resize_image", &py_resize_image<int64_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
    m.def("resize_image", &py_resize_image<float>, py::arg("img"), py::arg("rows"), py::arg("cols"));
    m.def("resize_image", &py_resize_image<double>, docs, py::arg("img"), py::arg("rows"), py::arg("cols"));
    m.def("resize_image", &py_resize_image<rgb_pixel>, docs, py::arg("img"), py::arg("rows"), py::arg("cols"));
    m.def("resize_image", &py_scale_image<int8_t>, py::arg("img"), py::arg("scale"));
    m.def("resize_image", &py_scale_image<int16_t>, py::arg("img"), py::arg("scale"));
    m.def("resize_image", &py_scale_image<int32_t>, py::arg("img"), py::arg("scale"));
    m.def("resize_image", &py_scale_image<int64_t>, py::arg("img"), py::arg("scale"));
    m.def("resize_image", &py_scale_image<float>, py::arg("img"), py::arg("scale"));
    m.def("resize_image", &py_scale_image<double>, py::arg("img"), py::arg("scale"));
    m.def("resize_image", &py_scale_image<rgb_pixel>, py::arg("img"), py::arg("scale"),
        "Resizes img, using bilinear interpolation, to have the new size (img rows * scale, img cols * scale)"
        );

    register_extract_image_chip(m);

    m.def("sub_image", &py_sub_image, py::arg("img"), py::arg("rect"),
"Returns a new numpy array that references the sub window in img defined by rect. \n\
If rect is larger than img then rect is cropped so that it does not go outside img. \n\
Therefore, this routine is equivalent to performing: \n\
    win = get_rect(img).intersect(rect) \n\
    subimg = img[win.top():win.bottom()-1,win.left():win.right()-1]" 
    /*!
        Returns a new numpy array that references the sub window in img defined by rect.
        If rect is larger than img then rect is cropped so that it does not go outside img.
        Therefore, this routine is equivalent to performing:
            win = get_rect(img).intersect(rect)
            subimg = img[win.top():win.bottom()-1,win.left():win.right()-1]
    !*/
        );
    m.def("sub_image", &py_sub_image2, py::arg("image_and_rect_tuple"),
        "Performs: return sub_image(image_and_rect_tuple[0], image_and_rect_tuple[1])");


    m.def("get_histogram", &py_get_histogram<uint8_t>, py::arg("img"), py::arg("hist_size"));
    m.def("get_histogram", &py_get_histogram<uint16_t>, py::arg("img"), py::arg("hist_size"));
    m.def("get_histogram", &py_get_histogram<uint32_t>, py::arg("img"), py::arg("hist_size"));
    m.def("get_histogram", &py_get_histogram<uint64_t>, py::arg("img"), py::arg("hist_size"),
"ensures \n\
    - Returns a numpy array, HIST, that contains a histogram of the pixels in img. \n\
      In particular, we will have: \n\
        - len(HIST) == hist_size \n\
        - for all valid i:  \n\
            - HIST[i] == the number of times a pixel with intensity i appears in img." 
    /*!
        ensures
            - Returns a numpy array, HIST, that contains a histogram of the pixels in img.
              In particular, we will have:
                - len(HIST) == hist_size
                - for all valid i: 
                    - HIST[i] == the number of times a pixel with intensity i appears in img.
    !*/
        );


    m.def("tile_images", py_tile_images, py::arg("images"),
"requires \n\
    - images is a list of numpy arrays that can be interpreted as images.  They \n\
      must all be the same type of image as well. \n\
ensures \n\
    - This function takes the given images and tiles them into a single large \n\
      square image and returns this new big tiled image.  Therefore, it is a \n\
      useful method to visualize many small images at once." 
        /*!
            requires
                - images is a list of numpy arrays that can be interpreted as images.  They
                  must all be the same type of image as well.
            ensures
                - This function takes the given images and tiles them into a single large
                  square image and returns this new big tiled image.  Therefore, it is a
                  useful method to visualize many small images at once.
        !*/
        );

    docs = "Returns a histogram equalized version of img.";
    m.def("equalize_histogram", &py_equalize_histogram<uint8_t>, py::arg("img"));
    m.def("equalize_histogram", &py_equalize_histogram<uint16_t>, docs, py::arg("img"));

    m.def("min_barrier_distance", &py_mbd<uint8_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
    m.def("min_barrier_distance", &py_mbd<uint16_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
    m.def("min_barrier_distance", &py_mbd<uint32_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
    m.def("min_barrier_distance", &py_mbd<uint64_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
    m.def("min_barrier_distance", &py_mbd<int8_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
    m.def("min_barrier_distance", &py_mbd<int16_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
    m.def("min_barrier_distance", &py_mbd<int32_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
    m.def("min_barrier_distance", &py_mbd<int64_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
    m.def("min_barrier_distance", &py_mbd<float>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
    m.def("min_barrier_distance", &py_mbd<double>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
    m.def("min_barrier_distance", &py_mbd2, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true,
"requires \n\
    - iterations > 0 \n\
ensures \n\
    - This function implements the salient object detection method described in the paper: \n\
        \"Minimum barrier salient object detection at 80 fps\" by Zhang, Jianming, et al.  \n\
      In particular, we compute the minimum barrier distance between the borders of \n\
      the image and all the other pixels.  The resulting image is returned.  Note that \n\
      the paper talks about a bunch of other things you could do beyond computing \n\
      the minimum barrier distance, but this function doesn't do any of that. It's \n\
      just the vanilla MBD. \n\
    - We will perform iterations iterations of MBD passes over the image.  Larger \n\
      values might give better results but run slower. \n\
    - During each MBD iteration we make raster scans over the image.  These pass \n\
      from top->bottom, bottom->top, left->right, and right->left.  If \n\
      do_left_right_scans==false then the left/right passes are not executed. \n\
      Skipping them makes the algorithm about 2x faster but might reduce the \n\
      quality of the output." 
    /*!
        requires
            - iterations > 0
        ensures
            - This function implements the salient object detection method described in the paper:
                "Minimum barrier salient object detection at 80 fps" by Zhang, Jianming, et al. 
              In particular, we compute the minimum barrier distance between the borders of
              the image and all the other pixels.  The resulting image is returned.  Note that
              the paper talks about a bunch of other things you could do beyond computing
              the minimum barrier distance, but this function doesn't do any of that. It's
              just the vanilla MBD.
            - We will perform iterations iterations of MBD passes over the image.  Larger
              values might give better results but run slower.
            - During each MBD iteration we make raster scans over the image.  These pass
              from top->bottom, bottom->top, left->right, and right->left.  If
              do_left_right_scans==false then the left/right passes are not executed.
              Skipping them makes the algorithm about 2x faster but might reduce the
              quality of the output.
    !*/
    );


    m.def("normalize_image_gradients", normalize_image_gradients<numpy_image<double>>, py::arg("img1"), py::arg("img2"));
    m.def("normalize_image_gradients", normalize_image_gradients<numpy_image<float>>, py::arg("img1"), py::arg("img2"),
"requires \n\
    - img1 and img2 have the same dimensions. \n\
ensures \n\
    - This function assumes img1 and img2 are the two gradient images produced by a \n\
      function like sobel_edge_detector().  It then unit normalizes the gradient \n\
      vectors. That is, for all valid r and c, this function ensures that: \n\
        - img1[r][c]*img1[r][c] + img2[r][c]*img2[r][c] == 1  \n\
          unless both img1[r][c] and img2[r][c] were 0 initially, then they stay zero.");
    /*!
        requires
            - img1 and img2 have the same dimensions.
        ensures
            - This function assumes img1 and img2 are the two gradient images produced by a
              function like sobel_edge_detector().  It then unit normalizes the gradient
              vectors. That is, for all valid r and c, this function ensures that:
                - img1[r][c]*img1[r][c] + img2[r][c]*img2[r][c] == 1 
                  unless both img1[r][c] and img2[r][c] were 0 initially, then they stay zero.
    !*/


    m.def("remove_incoherent_edge_pixels", &py_remove_incoherent_edge_pixels, py::arg("line"), py::arg("horz_gradient"),
        py::arg("vert_gradient"), py::arg("angle_thresh"),
"requires \n\
    - horz_gradient and vert_gradient have the same dimensions. \n\
    - horz_gradient and vert_gradient represent unit normalized vectors.  That is, \n\
      you should have called normalize_image_gradients(horz_gradient,vert_gradient) \n\
      or otherwise caused all the gradients to have unit norm. \n\
    - for all valid i: \n\
        get_rect(horz_gradient).contains(line[i]) \n\
ensures \n\
    - This routine looks at all the points in the given line and discards the ones that \n\
      have outlying gradient directions.  To be specific, this routine returns a set \n\
      of points PTS such that:  \n\
        - for all valid i,j: \n\
            - The difference in angle between the gradients for PTS[i] and PTS[j] is  \n\
              less than angle_threshold degrees.   \n\
        - len(PTS) <= len(line) \n\
        - PTS is just line with some elements removed." );
    /*!
        requires
            - horz_gradient and vert_gradient have the same dimensions.
            - horz_gradient and vert_gradient represent unit normalized vectors.  That is,
              you should have called normalize_image_gradients(horz_gradient,vert_gradient)
              or otherwise caused all the gradients to have unit norm.
            - for all valid i:
                get_rect(horz_gradient).contains(line[i])
        ensures
            - This routine looks at all the points in the given line and discards the ones that
              have outlying gradient directions.  To be specific, this routine returns a set
              of points PTS such that: 
                - for all valid i,j:
                    - The difference in angle between the gradients for PTS[i] and PTS[j] is 
                      less than angle_threshold degrees.  
                - len(PTS) <= len(line)
                - PTS is just line with some elements removed.
    !*/

    py::register_exception<no_convex_quadrilateral>(m, "no_convex_quadrilateral");

    m.def("extract_image_4points", &py_extract_image_4points<uint8_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
    m.def("extract_image_4points", &py_extract_image_4points<uint16_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
    m.def("extract_image_4points", &py_extract_image_4points<uint32_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
    m.def("extract_image_4points", &py_extract_image_4points<uint64_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
    m.def("extract_image_4points", &py_extract_image_4points<int8_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
    m.def("extract_image_4points", &py_extract_image_4points<int16_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
    m.def("extract_image_4points", &py_extract_image_4points<int32_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
    m.def("extract_image_4points", &py_extract_image_4points<int64_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
    m.def("extract_image_4points", &py_extract_image_4points<float>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
    m.def("extract_image_4points", &py_extract_image_4points<double>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
    m.def("extract_image_4points", &py_extract_image_4points<rgb_pixel>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"),
"requires \n\
    - corners is a list of dpoint or line objects. \n\
    - len(corners) == 4 \n\
    - rows >= 0 \n\
    - columns >= 0 \n\
ensures \n\
    - The returned image has the given number of rows and columns. \n\
    - if (corners contains dpoints) then \n\
        - The 4 points in corners define a convex quadrilateral and this function \n\
          extracts that part of the input image img and returns it.  Therefore, \n\
          each corner of the quadrilateral is associated to a corner of the \n\
          extracted image and bilinear interpolation and a projective mapping is \n\
          used to transform the pixels in the quadrilateral into the output image. \n\
          To determine which corners of the quadrilateral map to which corners of \n\
          the returned image we fit the tightest possible rectangle to the \n\
          quadrilateral and map its vertices to their nearest rectangle corners. \n\
          These corners are then trivially mapped to the output image (i.e.  upper \n\
          left corner to upper left corner, upper right corner to upper right \n\
          corner, etc.). \n\
    - else \n\
        - This routine finds the 4 intersecting points of the given lines which \n\
          form a convex quadrilateral and uses them as described above to extract \n\
          an image.   i.e. It just then calls: extract_image_4points(img, \n\
          intersections_between_lines, rows, columns). \n\
        - If no convex quadrilateral can be made from the given lines then this \n\
          routine throws no_convex_quadrilateral." 
    /*!
        requires
            - corners is a list of dpoint or line objects.
            - len(corners) == 4
            - rows >= 0
            - columns >= 0
        ensures
            - The returned image has the given number of rows and columns.
            - if (corners contains dpoints) then
                - The 4 points in corners define a convex quadrilateral and this function
                  extracts that part of the input image img and returns it.  Therefore,
                  each corner of the quadrilateral is associated to a corner of the
                  extracted image and bilinear interpolation and a projective mapping is
                  used to transform the pixels in the quadrilateral into the output image.
                  To determine which corners of the quadrilateral map to which corners of
                  the returned image we fit the tightest possible rectangle to the
                  quadrilateral and map its vertices to their nearest rectangle corners.
                  These corners are then trivially mapped to the output image (i.e.  upper
                  left corner to upper left corner, upper right corner to upper right
                  corner, etc.).
            - else
                - This routine finds the 4 intersecting points of the given lines which
                  form a convex quadrilateral and uses them as described above to extract
                  an image.   i.e. It just then calls: extract_image_4points(img,
                  intersections_between_lines, rows, columns).
                - If no convex quadrilateral can be made from the given lines then this
                  routine throws no_convex_quadrilateral.
    !*/
          );


}