File size: 41,168 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 |
// Copyright (C) 2018 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include "dlib/pixel.h"
#include <dlib/image_transforms.h>
#include <dlib/image_processing.h>
using namespace dlib;
using namespace std;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
template <typename T>
numpy_image<T> py_resize_image (
const numpy_image<T>& img,
unsigned long rows,
unsigned long cols
)
{
numpy_image<T> out;
set_image_size(out, rows, cols);
resize_image(img, out);
return out;
}
// ----------------------------------------------------------------------------------------
template <typename T>
numpy_image<T> py_scale_image (
const numpy_image<T>& img,
double scale
)
{
DLIB_CASSERT(scale > 0, "Scale factor must be greater than 0");
numpy_image<T> out = img;
resize_image(scale, out);
return out;
}
// ----------------------------------------------------------------------------------------
template <typename T>
numpy_image<T> py_equalize_histogram (
const numpy_image<T>& img
)
{
numpy_image<T> out;
equalize_histogram(img,out);
return out;
}
// ----------------------------------------------------------------------------------------
std::vector<point> py_remove_incoherent_edge_pixels (
const std::vector<point>& line,
const numpy_image<float>& horz_gradient,
const numpy_image<float>& vert_gradient,
double angle_threshold
)
{
DLIB_CASSERT(num_rows(horz_gradient) == num_rows(vert_gradient));
DLIB_CASSERT(num_columns(horz_gradient) == num_columns(vert_gradient));
DLIB_CASSERT(angle_threshold >= 0);
for (const auto& p : line)
DLIB_CASSERT(get_rect(horz_gradient).contains(p), "All line points must be inside the given images.");
return remove_incoherent_edge_pixels(line, horz_gradient, vert_gradient, angle_threshold);
}
// ----------------------------------------------------------------------------------------
template <typename T>
numpy_image<T> py_extract_image_4points (
const numpy_image<T>& img,
const py::list& corners,
long rows,
long columns
)
{
DLIB_CASSERT(rows >= 0);
DLIB_CASSERT(columns >= 0);
DLIB_CASSERT(len(corners) == 4);
numpy_image<T> out;
set_image_size(out, rows, columns);
try
{
extract_image_4points(img, out, python_list_to_array<dpoint,4>(corners));
return out;
}
catch (py::cast_error&){}
try
{
extract_image_4points(img, out, python_list_to_array<line,4>(corners));
return out;
}
catch(py::cast_error&)
{
throw dlib::error("extract_image_4points() requires the corners argument to be a list of 4 dpoints or 4 lines.");
}
}
// ----------------------------------------------------------------------------------------
template <typename T>
numpy_image<T> py_mbd (
const numpy_image<T>& img,
size_t iterations,
bool do_left_right_scans
)
{
numpy_image<T> out;
min_barrier_distance(img, out, iterations, do_left_right_scans);
return out;
}
numpy_image<unsigned char> py_mbd2 (
const numpy_image<rgb_pixel>& img,
size_t iterations,
bool do_left_right_scans
)
{
numpy_image<unsigned char> out;
min_barrier_distance(img, out, iterations, do_left_right_scans);
return out;
}
// ----------------------------------------------------------------------------------------
template <typename T>
numpy_image<T> py_extract_image_chip (
const numpy_image<T>& img,
const chip_details& chip_location
)
{
numpy_image<T> out;
extract_image_chip(img, chip_location, out);
return out;
}
template <typename T>
py::list py_extract_image_chips (
const numpy_image<T>& img,
const py::list& chip_locations
)
{
dlib::array<numpy_image<T>> out;
extract_image_chips(img, python_list_to_vector<chip_details>(chip_locations), out);
py::list ret;
for (const auto& i : out)
ret.append(i);
return ret;
}
// ----------------------------------------------------------------------------------------
void register_extract_image_chip (py::module& m)
{
const char* class_docs =
"WHAT THIS OBJECT REPRESENTS \n\
This is a simple tool for passing in a pair of row and column values to the \n\
chip_details constructor.";
auto print_chip_dims_str = [](const chip_dims& d)
{
std::ostringstream sout;
sout << "rows="<< d.rows << ", cols=" << d.cols;
return sout.str();
};
auto print_chip_dims_repr = [](const chip_dims& d)
{
std::ostringstream sout;
sout << "chip_dims(rows="<< d.rows << ", cols=" << d.cols << ")";
return sout.str();
};
py::class_<chip_dims>(m, "chip_dims", class_docs)
.def(py::init<unsigned long, unsigned long>(), py::arg("rows"), py::arg("cols"))
.def("__str__", print_chip_dims_str)
.def("__repr__", print_chip_dims_repr)
.def_readwrite("rows", &chip_dims::rows)
.def_readwrite("cols", &chip_dims::cols);
auto print_chip_details_str = [](const chip_details& d)
{
std::ostringstream sout;
sout << "rect=" << d.rect << ", angle="<< d.angle << ", rows="<< d.rows << ", cols=" << d.cols;
return sout.str();
};
auto print_chip_details_repr = [](const chip_details& d)
{
std::ostringstream sout;
sout << "chip_details(rect=drectangle("
<< d.rect.left()<<","<<d.rect.top()<<","<<d.rect.right()<<","<<d.rect.bottom()
<<"), angle="<< d.angle << ", dims=chip_dims(rows="<< d.rows << ", cols=" << d.cols << "))";
return sout.str();
};
class_docs =
"WHAT THIS OBJECT REPRESENTS \n\
This object describes where an image chip is to be extracted from within \n\
another image. In particular, it specifies that the image chip is \n\
contained within the rectangle self.rect and that prior to extraction the \n\
image should be rotated counter-clockwise by self.angle radians. Finally, \n\
the extracted chip should have self.rows rows and self.cols columns in it \n\
regardless of the shape of self.rect. This means that the extracted chip \n\
will be stretched to fit via bilinear interpolation when necessary." ;
/*!
WHAT THIS OBJECT REPRESENTS
This object describes where an image chip is to be extracted from within
another image. In particular, it specifies that the image chip is
contained within the rectangle self.rect and that prior to extraction the
image should be rotated counter-clockwise by self.angle radians. Finally,
the extracted chip should have self.rows rows and self.cols columns in it
regardless of the shape of self.rect. This means that the extracted chip
will be stretched to fit via bilinear interpolation when necessary.
!*/
py::class_<chip_details>(m, "chip_details", class_docs)
.def(py::init<drectangle>(), py::arg("rect"))
.def(py::init<rectangle>(), py::arg("rect"),
"ensures \n\
- self.rect == rect_ \n\
- self.angle == 0 \n\
- self.rows == rect.height() \n\
- self.cols == rect.width()"
/*!
ensures
- self.rect == rect_
- self.angle == 0
- self.rows == rect.height()
- self.cols == rect.width()
!*/
)
.def(py::init<drectangle,unsigned long>(), py::arg("rect"), py::arg("size"))
.def(py::init<rectangle,unsigned long>(), py::arg("rect"), py::arg("size"),
"ensures \n\
- self.rect == rect \n\
- self.angle == 0 \n\
- self.rows and self.cols is set such that the total size of the chip is as close \n\
to size as possible but still matches the aspect ratio of rect. \n\
- As long as size and the aspect ratio of rect stays constant then \n\
self.rows and self.cols will always have the same values. This means \n\
that, for example, if you want all your chips to have the same dimensions \n\
then ensure that size is always the same and also that rect always has \n\
the same aspect ratio. Otherwise the calculated values of self.rows and \n\
self.cols may be different for different chips. Alternatively, you can \n\
use the chip_details constructor below that lets you specify the exact \n\
values for rows and cols."
/*!
ensures
- self.rect == rect
- self.angle == 0
- self.rows and self.cols is set such that the total size of the chip is as close
to size as possible but still matches the aspect ratio of rect.
- As long as size and the aspect ratio of rect stays constant then
self.rows and self.cols will always have the same values. This means
that, for example, if you want all your chips to have the same dimensions
then ensure that size is always the same and also that rect always has
the same aspect ratio. Otherwise the calculated values of self.rows and
self.cols may be different for different chips. Alternatively, you can
use the chip_details constructor below that lets you specify the exact
values for rows and cols.
!*/
)
.def(py::init<drectangle,unsigned long,double>(), py::arg("rect"), py::arg("size"), py::arg("angle"))
.def(py::init<rectangle,unsigned long,double>(), py::arg("rect"), py::arg("size"), py::arg("angle"),
"ensures \n\
- self.rect == rect \n\
- self.angle == angle \n\
- self.rows and self.cols is set such that the total size of the chip is as \n\
close to size as possible but still matches the aspect ratio of rect. \n\
- As long as size and the aspect ratio of rect stays constant then \n\
self.rows and self.cols will always have the same values. This means \n\
that, for example, if you want all your chips to have the same dimensions \n\
then ensure that size is always the same and also that rect always has \n\
the same aspect ratio. Otherwise the calculated values of self.rows and \n\
self.cols may be different for different chips. Alternatively, you can \n\
use the chip_details constructor below that lets you specify the exact \n\
values for rows and cols."
/*!
ensures
- self.rect == rect
- self.angle == angle
- self.rows and self.cols is set such that the total size of the chip is as
close to size as possible but still matches the aspect ratio of rect.
- As long as size and the aspect ratio of rect stays constant then
self.rows and self.cols will always have the same values. This means
that, for example, if you want all your chips to have the same dimensions
then ensure that size is always the same and also that rect always has
the same aspect ratio. Otherwise the calculated values of self.rows and
self.cols may be different for different chips. Alternatively, you can
use the chip_details constructor below that lets you specify the exact
values for rows and cols.
!*/
)
.def(py::init<drectangle,chip_dims>(), py::arg("rect"), py::arg("dims"))
.def(py::init<rectangle,chip_dims>(), py::arg("rect"), py::arg("dims"),
"ensures \n\
- self.rect == rect \n\
- self.angle == 0 \n\
- self.rows == dims.rows \n\
- self.cols == dims.cols"
/*!
ensures
- self.rect == rect
- self.angle == 0
- self.rows == dims.rows
- self.cols == dims.cols
!*/
)
.def(py::init<drectangle,chip_dims,double>(), py::arg("rect"), py::arg("dims"), py::arg("angle"))
.def(py::init<rectangle,chip_dims,double>(), py::arg("rect"), py::arg("dims"), py::arg("angle"),
"ensures \n\
- self.rect == rect \n\
- self.angle == angle \n\
- self.rows == dims.rows \n\
- self.cols == dims.cols"
/*!
ensures
- self.rect == rect
- self.angle == angle
- self.rows == dims.rows
- self.cols == dims.cols
!*/
)
.def(py::init<std::vector<dpoint>,std::vector<dpoint>,chip_dims>(), py::arg("chip_points"), py::arg("img_points"), py::arg("dims"))
.def(py::init<std::vector<point>,std::vector<point>,chip_dims>(), py::arg("chip_points"), py::arg("img_points"), py::arg("dims"),
"requires \n\
- len(chip_points) == len(img_points) \n\
- len(chip_points) >= 2 \n\
ensures \n\
- The chip will be extracted such that the pixel locations chip_points[i] \n\
in the chip are mapped to img_points[i] in the original image by a \n\
similarity transform. That is, if you know the pixelwize mapping you \n\
want between the chip and the original image then you use this function \n\
of chip_details constructor to define the mapping. \n\
- self.rows == dims.rows \n\
- self.cols == dims.cols \n\
- self.rect and self.angle are computed based on the given size of the output chip \n\
(specified by dims) and the similarity transform between the chip and \n\
image (specified by chip_points and img_points)."
/*!
requires
- len(chip_points) == len(img_points)
- len(chip_points) >= 2
ensures
- The chip will be extracted such that the pixel locations chip_points[i]
in the chip are mapped to img_points[i] in the original image by a
similarity transform. That is, if you know the pixelwize mapping you
want between the chip and the original image then you use this function
of chip_details constructor to define the mapping.
- self.rows == dims.rows
- self.cols == dims.cols
- self.rect and self.angle are computed based on the given size of the output chip
(specified by dims) and the similarity transform between the chip and
image (specified by chip_points and img_points).
!*/
)
.def("__str__", print_chip_details_str)
.def("__repr__", print_chip_details_repr)
.def_readwrite("rect", &chip_details::rect)
.def_readwrite("angle", &chip_details::angle)
.def_readwrite("rows", &chip_details::rows)
.def_readwrite("cols", &chip_details::cols);
{
typedef std::vector<chip_details> type;
py::bind_vector<type>(m, "chip_detailss", "An array of chip_details objects.")
.def("extend", extend_vector_with_python_list<type>);
}
m.def("extract_image_chip", &py_extract_image_chip<uint8_t>, py::arg("img"), py::arg("chip_location"));
m.def("extract_image_chip", &py_extract_image_chip<uint16_t>, py::arg("img"), py::arg("chip_location"));
m.def("extract_image_chip", &py_extract_image_chip<uint32_t>, py::arg("img"), py::arg("chip_location"));
m.def("extract_image_chip", &py_extract_image_chip<uint64_t>, py::arg("img"), py::arg("chip_location"));
m.def("extract_image_chip", &py_extract_image_chip<int8_t>, py::arg("img"), py::arg("chip_location"));
m.def("extract_image_chip", &py_extract_image_chip<int16_t>, py::arg("img"), py::arg("chip_location"));
m.def("extract_image_chip", &py_extract_image_chip<int32_t>, py::arg("img"), py::arg("chip_location"));
m.def("extract_image_chip", &py_extract_image_chip<int64_t>, py::arg("img"), py::arg("chip_location"));
m.def("extract_image_chip", &py_extract_image_chip<float>, py::arg("img"), py::arg("chip_location"));
m.def("extract_image_chip", &py_extract_image_chip<double>, py::arg("img"), py::arg("chip_location"));
m.def("extract_image_chip", &py_extract_image_chip<rgb_pixel>, py::arg("img"), py::arg("chip_location"),
" This routine is just like extract_image_chips() except it takes a single \n"
" chip_details object and returns a single chip image rather than a list of images."
);
m.def("extract_image_chips", &py_extract_image_chips<uint8_t>, py::arg("img"), py::arg("chip_locations"));
m.def("extract_image_chips", &py_extract_image_chips<uint16_t>, py::arg("img"), py::arg("chip_locations"));
m.def("extract_image_chips", &py_extract_image_chips<uint32_t>, py::arg("img"), py::arg("chip_locations"));
m.def("extract_image_chips", &py_extract_image_chips<uint64_t>, py::arg("img"), py::arg("chip_locations"));
m.def("extract_image_chips", &py_extract_image_chips<int8_t>, py::arg("img"), py::arg("chip_locations"));
m.def("extract_image_chips", &py_extract_image_chips<int16_t>, py::arg("img"), py::arg("chip_locations"));
m.def("extract_image_chips", &py_extract_image_chips<int32_t>, py::arg("img"), py::arg("chip_locations"));
m.def("extract_image_chips", &py_extract_image_chips<int64_t>, py::arg("img"), py::arg("chip_locations"));
m.def("extract_image_chips", &py_extract_image_chips<float>, py::arg("img"), py::arg("chip_locations"));
m.def("extract_image_chips", &py_extract_image_chips<double>, py::arg("img"), py::arg("chip_locations"));
m.def("extract_image_chips", &py_extract_image_chips<rgb_pixel>, py::arg("img"), py::arg("chip_locations"),
"requires \n\
- for all valid i: \n\
- chip_locations[i].rect.is_empty() == false \n\
- chip_locations[i].rows*chip_locations[i].cols != 0 \n\
ensures \n\
- This function extracts \"chips\" from an image. That is, it takes a list of \n\
rectangular sub-windows (i.e. chips) within an image and extracts those \n\
sub-windows, storing each into its own image. It also scales and rotates the \n\
image chips according to the instructions inside each chip_details object. \n\
It uses bilinear interpolation. \n\
- The extracted image chips are returned in a python list of numpy arrays. The \n\
length of the returned array is len(chip_locations). \n\
- Let CHIPS be the returned array, then we have: \n\
- for all valid i: \n\
- #CHIPS[i] == The image chip extracted from the position \n\
chip_locations[i].rect in img. \n\
- #CHIPS[i].shape(0) == chip_locations[i].rows \n\
- #CHIPS[i].shape(1) == chip_locations[i].cols \n\
- The image will have been rotated counter-clockwise by \n\
chip_locations[i].angle radians, around the center of \n\
chip_locations[i].rect, before the chip was extracted. \n\
- Any pixels in an image chip that go outside img are set to 0 (i.e. black)."
/*!
requires
- for all valid i:
- chip_locations[i].rect.is_empty() == false
- chip_locations[i].rows*chip_locations[i].cols != 0
ensures
- This function extracts "chips" from an image. That is, it takes a list of
rectangular sub-windows (i.e. chips) within an image and extracts those
sub-windows, storing each into its own image. It also scales and rotates the
image chips according to the instructions inside each chip_details object.
It uses bilinear interpolation.
- The extracted image chips are returned in a python list of numpy arrays. The
length of the returned array is len(chip_locations).
- Let CHIPS be the returned array, then we have:
- for all valid i:
- #CHIPS[i] == The image chip extracted from the position
chip_locations[i].rect in img.
- #CHIPS[i].shape(0) == chip_locations[i].rows
- #CHIPS[i].shape(1) == chip_locations[i].cols
- The image will have been rotated counter-clockwise by
chip_locations[i].angle radians, around the center of
chip_locations[i].rect, before the chip was extracted.
- Any pixels in an image chip that go outside img are set to 0 (i.e. black).
!*/
);
m.def("get_face_chip_details",
static_cast<chip_details (*)(const full_object_detection&, const unsigned long, const double)>(&get_face_chip_details),
py::arg("det"), py::arg("size")=200, py::arg("padding")=0.2,
"Given a full_object_detection det, returns a chip_details object which can be \n\
used to extract an image of given size and padding."
);
m.def("get_face_chip_details",
static_cast<std::vector<chip_details> (*)(const std::vector<full_object_detection>&, const unsigned long, const double)>(&get_face_chip_details),
py::arg("dets"), py::arg("size")=200, py::arg("padding")=0.2,
"Given a list of full_object_detection dets, returns a chip_details object which can be \n\
used to extract an image of given size and padding."
);
}
// ----------------------------------------------------------------------------------------
py::array py_tile_images (
const py::list& images
)
{
DLIB_CASSERT(len(images) > 0);
if (is_image<rgb_pixel>(images[0].cast<py::array>()))
{
std::vector<numpy_image<rgb_pixel>> tmp(len(images));
for (size_t i = 0; i < tmp.size(); ++i)
assign_image(tmp[i], images[i].cast<py::array>());
return numpy_image<rgb_pixel>(tile_images(tmp));
}
else
{
std::vector<numpy_image<unsigned char>> tmp(len(images));
for (size_t i = 0; i < tmp.size(); ++i)
assign_image(tmp[i], images[i].cast<py::array>());
return numpy_image<unsigned char>(tile_images(tmp));
}
}
// ----------------------------------------------------------------------------------------
template <typename T>
py::array_t<unsigned long> py_get_histogram (
const numpy_image<T>& img,
size_t hist_size
)
{
matrix<unsigned long,1> hist;
get_histogram(img,hist,hist_size);
return numpy_image<unsigned long>(std::move(hist)).squeeze();
}
// ----------------------------------------------------------------------------------------
py::array py_sub_image (
const py::array& img,
const rectangle& win
)
{
DLIB_CASSERT(img.ndim() >= 2);
auto width_step = img.strides(0);
const long nr = img.shape(0);
const long nc = img.shape(1);
rectangle rect(0,0,nc-1,nr-1);
rect = rect.intersect(win);
std::vector<size_t> shape(img.ndim()), strides(img.ndim());
for (size_t i = 0; i < shape.size(); ++i)
{
shape[i] = img.shape(i);
strides[i] = img.strides(i);
}
shape[0] = rect.height();
shape[1] = rect.width();
size_t col_stride = 1;
for (size_t i = 1; i < strides.size(); ++i)
col_stride *= strides[i];
const void* data = (char*)img.data() + col_stride*rect.left() + rect.top()*strides[0];
return py::array(img.dtype(), shape, strides, data, img);
}
py::array py_sub_image2 (
const py::tuple& image_and_rect_tuple
)
{
DLIB_CASSERT(len(image_and_rect_tuple) == 2);
return py_sub_image(image_and_rect_tuple[0].cast<py::array>(), image_and_rect_tuple[1].cast<rectangle>());
}
// ----------------------------------------------------------------------------------------
void bind_image_classes2(py::module& m)
{
const char* docs = "Resizes img, using bilinear interpolation, to have the indicated number of rows and columns.";
m.def("resize_image", &py_resize_image<uint8_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
m.def("resize_image", &py_resize_image<uint16_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
m.def("resize_image", &py_resize_image<uint32_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
m.def("resize_image", &py_resize_image<uint64_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
m.def("resize_image", &py_resize_image<int8_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
m.def("resize_image", &py_resize_image<int16_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
m.def("resize_image", &py_resize_image<int32_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
m.def("resize_image", &py_resize_image<int64_t>, py::arg("img"), py::arg("rows"), py::arg("cols"));
m.def("resize_image", &py_resize_image<float>, py::arg("img"), py::arg("rows"), py::arg("cols"));
m.def("resize_image", &py_resize_image<double>, docs, py::arg("img"), py::arg("rows"), py::arg("cols"));
m.def("resize_image", &py_resize_image<rgb_pixel>, docs, py::arg("img"), py::arg("rows"), py::arg("cols"));
m.def("resize_image", &py_scale_image<int8_t>, py::arg("img"), py::arg("scale"));
m.def("resize_image", &py_scale_image<int16_t>, py::arg("img"), py::arg("scale"));
m.def("resize_image", &py_scale_image<int32_t>, py::arg("img"), py::arg("scale"));
m.def("resize_image", &py_scale_image<int64_t>, py::arg("img"), py::arg("scale"));
m.def("resize_image", &py_scale_image<float>, py::arg("img"), py::arg("scale"));
m.def("resize_image", &py_scale_image<double>, py::arg("img"), py::arg("scale"));
m.def("resize_image", &py_scale_image<rgb_pixel>, py::arg("img"), py::arg("scale"),
"Resizes img, using bilinear interpolation, to have the new size (img rows * scale, img cols * scale)"
);
register_extract_image_chip(m);
m.def("sub_image", &py_sub_image, py::arg("img"), py::arg("rect"),
"Returns a new numpy array that references the sub window in img defined by rect. \n\
If rect is larger than img then rect is cropped so that it does not go outside img. \n\
Therefore, this routine is equivalent to performing: \n\
win = get_rect(img).intersect(rect) \n\
subimg = img[win.top():win.bottom()-1,win.left():win.right()-1]"
/*!
Returns a new numpy array that references the sub window in img defined by rect.
If rect is larger than img then rect is cropped so that it does not go outside img.
Therefore, this routine is equivalent to performing:
win = get_rect(img).intersect(rect)
subimg = img[win.top():win.bottom()-1,win.left():win.right()-1]
!*/
);
m.def("sub_image", &py_sub_image2, py::arg("image_and_rect_tuple"),
"Performs: return sub_image(image_and_rect_tuple[0], image_and_rect_tuple[1])");
m.def("get_histogram", &py_get_histogram<uint8_t>, py::arg("img"), py::arg("hist_size"));
m.def("get_histogram", &py_get_histogram<uint16_t>, py::arg("img"), py::arg("hist_size"));
m.def("get_histogram", &py_get_histogram<uint32_t>, py::arg("img"), py::arg("hist_size"));
m.def("get_histogram", &py_get_histogram<uint64_t>, py::arg("img"), py::arg("hist_size"),
"ensures \n\
- Returns a numpy array, HIST, that contains a histogram of the pixels in img. \n\
In particular, we will have: \n\
- len(HIST) == hist_size \n\
- for all valid i: \n\
- HIST[i] == the number of times a pixel with intensity i appears in img."
/*!
ensures
- Returns a numpy array, HIST, that contains a histogram of the pixels in img.
In particular, we will have:
- len(HIST) == hist_size
- for all valid i:
- HIST[i] == the number of times a pixel with intensity i appears in img.
!*/
);
m.def("tile_images", py_tile_images, py::arg("images"),
"requires \n\
- images is a list of numpy arrays that can be interpreted as images. They \n\
must all be the same type of image as well. \n\
ensures \n\
- This function takes the given images and tiles them into a single large \n\
square image and returns this new big tiled image. Therefore, it is a \n\
useful method to visualize many small images at once."
/*!
requires
- images is a list of numpy arrays that can be interpreted as images. They
must all be the same type of image as well.
ensures
- This function takes the given images and tiles them into a single large
square image and returns this new big tiled image. Therefore, it is a
useful method to visualize many small images at once.
!*/
);
docs = "Returns a histogram equalized version of img.";
m.def("equalize_histogram", &py_equalize_histogram<uint8_t>, py::arg("img"));
m.def("equalize_histogram", &py_equalize_histogram<uint16_t>, docs, py::arg("img"));
m.def("min_barrier_distance", &py_mbd<uint8_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
m.def("min_barrier_distance", &py_mbd<uint16_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
m.def("min_barrier_distance", &py_mbd<uint32_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
m.def("min_barrier_distance", &py_mbd<uint64_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
m.def("min_barrier_distance", &py_mbd<int8_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
m.def("min_barrier_distance", &py_mbd<int16_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
m.def("min_barrier_distance", &py_mbd<int32_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
m.def("min_barrier_distance", &py_mbd<int64_t>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
m.def("min_barrier_distance", &py_mbd<float>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
m.def("min_barrier_distance", &py_mbd<double>, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true);
m.def("min_barrier_distance", &py_mbd2, py::arg("img"), py::arg("iterations")=10, py::arg("do_left_right_scans")=true,
"requires \n\
- iterations > 0 \n\
ensures \n\
- This function implements the salient object detection method described in the paper: \n\
\"Minimum barrier salient object detection at 80 fps\" by Zhang, Jianming, et al. \n\
In particular, we compute the minimum barrier distance between the borders of \n\
the image and all the other pixels. The resulting image is returned. Note that \n\
the paper talks about a bunch of other things you could do beyond computing \n\
the minimum barrier distance, but this function doesn't do any of that. It's \n\
just the vanilla MBD. \n\
- We will perform iterations iterations of MBD passes over the image. Larger \n\
values might give better results but run slower. \n\
- During each MBD iteration we make raster scans over the image. These pass \n\
from top->bottom, bottom->top, left->right, and right->left. If \n\
do_left_right_scans==false then the left/right passes are not executed. \n\
Skipping them makes the algorithm about 2x faster but might reduce the \n\
quality of the output."
/*!
requires
- iterations > 0
ensures
- This function implements the salient object detection method described in the paper:
"Minimum barrier salient object detection at 80 fps" by Zhang, Jianming, et al.
In particular, we compute the minimum barrier distance between the borders of
the image and all the other pixels. The resulting image is returned. Note that
the paper talks about a bunch of other things you could do beyond computing
the minimum barrier distance, but this function doesn't do any of that. It's
just the vanilla MBD.
- We will perform iterations iterations of MBD passes over the image. Larger
values might give better results but run slower.
- During each MBD iteration we make raster scans over the image. These pass
from top->bottom, bottom->top, left->right, and right->left. If
do_left_right_scans==false then the left/right passes are not executed.
Skipping them makes the algorithm about 2x faster but might reduce the
quality of the output.
!*/
);
m.def("normalize_image_gradients", normalize_image_gradients<numpy_image<double>>, py::arg("img1"), py::arg("img2"));
m.def("normalize_image_gradients", normalize_image_gradients<numpy_image<float>>, py::arg("img1"), py::arg("img2"),
"requires \n\
- img1 and img2 have the same dimensions. \n\
ensures \n\
- This function assumes img1 and img2 are the two gradient images produced by a \n\
function like sobel_edge_detector(). It then unit normalizes the gradient \n\
vectors. That is, for all valid r and c, this function ensures that: \n\
- img1[r][c]*img1[r][c] + img2[r][c]*img2[r][c] == 1 \n\
unless both img1[r][c] and img2[r][c] were 0 initially, then they stay zero.");
/*!
requires
- img1 and img2 have the same dimensions.
ensures
- This function assumes img1 and img2 are the two gradient images produced by a
function like sobel_edge_detector(). It then unit normalizes the gradient
vectors. That is, for all valid r and c, this function ensures that:
- img1[r][c]*img1[r][c] + img2[r][c]*img2[r][c] == 1
unless both img1[r][c] and img2[r][c] were 0 initially, then they stay zero.
!*/
m.def("remove_incoherent_edge_pixels", &py_remove_incoherent_edge_pixels, py::arg("line"), py::arg("horz_gradient"),
py::arg("vert_gradient"), py::arg("angle_thresh"),
"requires \n\
- horz_gradient and vert_gradient have the same dimensions. \n\
- horz_gradient and vert_gradient represent unit normalized vectors. That is, \n\
you should have called normalize_image_gradients(horz_gradient,vert_gradient) \n\
or otherwise caused all the gradients to have unit norm. \n\
- for all valid i: \n\
get_rect(horz_gradient).contains(line[i]) \n\
ensures \n\
- This routine looks at all the points in the given line and discards the ones that \n\
have outlying gradient directions. To be specific, this routine returns a set \n\
of points PTS such that: \n\
- for all valid i,j: \n\
- The difference in angle between the gradients for PTS[i] and PTS[j] is \n\
less than angle_threshold degrees. \n\
- len(PTS) <= len(line) \n\
- PTS is just line with some elements removed." );
/*!
requires
- horz_gradient and vert_gradient have the same dimensions.
- horz_gradient and vert_gradient represent unit normalized vectors. That is,
you should have called normalize_image_gradients(horz_gradient,vert_gradient)
or otherwise caused all the gradients to have unit norm.
- for all valid i:
get_rect(horz_gradient).contains(line[i])
ensures
- This routine looks at all the points in the given line and discards the ones that
have outlying gradient directions. To be specific, this routine returns a set
of points PTS such that:
- for all valid i,j:
- The difference in angle between the gradients for PTS[i] and PTS[j] is
less than angle_threshold degrees.
- len(PTS) <= len(line)
- PTS is just line with some elements removed.
!*/
py::register_exception<no_convex_quadrilateral>(m, "no_convex_quadrilateral");
m.def("extract_image_4points", &py_extract_image_4points<uint8_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
m.def("extract_image_4points", &py_extract_image_4points<uint16_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
m.def("extract_image_4points", &py_extract_image_4points<uint32_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
m.def("extract_image_4points", &py_extract_image_4points<uint64_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
m.def("extract_image_4points", &py_extract_image_4points<int8_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
m.def("extract_image_4points", &py_extract_image_4points<int16_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
m.def("extract_image_4points", &py_extract_image_4points<int32_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
m.def("extract_image_4points", &py_extract_image_4points<int64_t>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
m.def("extract_image_4points", &py_extract_image_4points<float>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
m.def("extract_image_4points", &py_extract_image_4points<double>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"));
m.def("extract_image_4points", &py_extract_image_4points<rgb_pixel>, py::arg("img"), py::arg("corners"), py::arg("rows"), py::arg("columns"),
"requires \n\
- corners is a list of dpoint or line objects. \n\
- len(corners) == 4 \n\
- rows >= 0 \n\
- columns >= 0 \n\
ensures \n\
- The returned image has the given number of rows and columns. \n\
- if (corners contains dpoints) then \n\
- The 4 points in corners define a convex quadrilateral and this function \n\
extracts that part of the input image img and returns it. Therefore, \n\
each corner of the quadrilateral is associated to a corner of the \n\
extracted image and bilinear interpolation and a projective mapping is \n\
used to transform the pixels in the quadrilateral into the output image. \n\
To determine which corners of the quadrilateral map to which corners of \n\
the returned image we fit the tightest possible rectangle to the \n\
quadrilateral and map its vertices to their nearest rectangle corners. \n\
These corners are then trivially mapped to the output image (i.e. upper \n\
left corner to upper left corner, upper right corner to upper right \n\
corner, etc.). \n\
- else \n\
- This routine finds the 4 intersecting points of the given lines which \n\
form a convex quadrilateral and uses them as described above to extract \n\
an image. i.e. It just then calls: extract_image_4points(img, \n\
intersections_between_lines, rows, columns). \n\
- If no convex quadrilateral can be made from the given lines then this \n\
routine throws no_convex_quadrilateral."
/*!
requires
- corners is a list of dpoint or line objects.
- len(corners) == 4
- rows >= 0
- columns >= 0
ensures
- The returned image has the given number of rows and columns.
- if (corners contains dpoints) then
- The 4 points in corners define a convex quadrilateral and this function
extracts that part of the input image img and returns it. Therefore,
each corner of the quadrilateral is associated to a corner of the
extracted image and bilinear interpolation and a projective mapping is
used to transform the pixels in the quadrilateral into the output image.
To determine which corners of the quadrilateral map to which corners of
the returned image we fit the tightest possible rectangle to the
quadrilateral and map its vertices to their nearest rectangle corners.
These corners are then trivially mapped to the output image (i.e. upper
left corner to upper left corner, upper right corner to upper right
corner, etc.).
- else
- This routine finds the 4 intersecting points of the given lines which
form a convex quadrilateral and uses them as described above to extract
an image. i.e. It just then calls: extract_image_4points(img,
intersections_between_lines, rows, columns).
- If no convex quadrilateral can be made from the given lines then this
routine throws no_convex_quadrilateral.
!*/
);
}
|