File size: 43,992 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 |
// Copyright (C) 2018 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include "dlib/pixel.h"
#include <dlib/image_transforms.h>
#include <dlib/image_processing.h>
using namespace dlib;
using namespace std;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
template <typename T>
py::array convert_image_scaled (
const numpy_image<T>& img,
const string& dtype,
const double thresh = 4
)
{
if (dtype == "uint8") {numpy_image<uint8_t> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "uint16") {numpy_image<uint16_t> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "uint32") {numpy_image<uint32_t> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "uint64") {numpy_image<uint64_t> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "int8") {numpy_image<int8_t> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "int16") {numpy_image<int16_t> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "int32") {numpy_image<int32_t> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "int64") {numpy_image<int64_t> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "float32") {numpy_image<float> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "float64") {numpy_image<double> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "float") {numpy_image<float> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "double") {numpy_image<double> out; assign_image_scaled(out, img, thresh); return out;}
if (dtype == "rgb_pixel"){numpy_image<rgb_pixel> out; assign_image_scaled(out, img, thresh); return out;}
throw dlib::error("convert_image_scaled() called with invalid dtype, must be one of these strings: \n"
"uint8, int8, uint16, int16, uint32, int32, uint64, int64, float32, float, float64, double, or rgb_pixel");
}
// ----------------------------------------------------------------------------------------
struct py_pyramid_down
{
void dostuff(point) {}
py_pyramid_down(
) = default;
py_pyramid_down (
unsigned int N_
) : N(N_)
{
DLIB_CASSERT( 1 <= N && N <= 20, "pyramid downsampling rate must be between 1 and 20.");
}
unsigned int pyramid_downsampling_rate (
) const { return N; }
template <typename T>
dlib::vector<double,2> point_down (
const dlib::vector<T,2>& pp
) const
{
dpoint p = pp;
switch(N)
{
case 1: return pyr1.point_down(p);
case 2: return pyr2.point_down(p);
case 3: return pyr3.point_down(p);
case 4: return pyr4.point_down(p);
case 5: return pyr5.point_down(p);
case 6: return pyr6.point_down(p);
case 7: return pyr7.point_down(p);
case 8: return pyr8.point_down(p);
case 9: return pyr9.point_down(p);
case 10: return pyr10.point_down(p);
case 11: return pyr11.point_down(p);
case 12: return pyr12.point_down(p);
case 13: return pyr13.point_down(p);
case 14: return pyr14.point_down(p);
case 15: return pyr15.point_down(p);
case 16: return pyr16.point_down(p);
case 17: return pyr17.point_down(p);
case 18: return pyr18.point_down(p);
case 19: return pyr19.point_down(p);
case 20: return pyr20.point_down(p);
}
DLIB_CASSERT(false, "This should never happen");
}
template <typename T>
dlib::vector<double,2> point_up (
const dlib::vector<T,2>& pp
) const
{
dpoint p = pp;
switch(N)
{
case 1: return pyr1.point_up(p);
case 2: return pyr2.point_up(p);
case 3: return pyr3.point_up(p);
case 4: return pyr4.point_up(p);
case 5: return pyr5.point_up(p);
case 6: return pyr6.point_up(p);
case 7: return pyr7.point_up(p);
case 8: return pyr8.point_up(p);
case 9: return pyr9.point_up(p);
case 10: return pyr10.point_up(p);
case 11: return pyr11.point_up(p);
case 12: return pyr12.point_up(p);
case 13: return pyr13.point_up(p);
case 14: return pyr14.point_up(p);
case 15: return pyr15.point_up(p);
case 16: return pyr16.point_up(p);
case 17: return pyr17.point_up(p);
case 18: return pyr18.point_up(p);
case 19: return pyr19.point_up(p);
case 20: return pyr20.point_up(p);
}
DLIB_CASSERT(false, "This should never happen");
}
// -----------------------------
template <typename T>
dlib::vector<double,2> point_down2 (
const dlib::vector<T,2>& p,
unsigned int levels
) const
{
dlib::vector<double,2> temp = p;
for (unsigned int i = 0; i < levels; ++i)
temp = point_down(temp);
return temp;
}
template <typename T>
dlib::vector<double,2> point_up2 (
const dlib::vector<T,2>& p,
unsigned int levels
) const
{
dlib::vector<double,2> temp = p;
for (unsigned int i = 0; i < levels; ++i)
temp = point_up(temp);
return temp;
}
// -----------------------------
template <typename rect_type>
rect_type rect_up (
const rect_type& rect
) const
{
return rect_type(point_up(rect.tl_corner()), point_up(rect.br_corner()));
}
template <typename rect_type>
rect_type rect_up2 (
const rect_type& rect,
unsigned int levels
) const
{
return rect_type(point_up2(rect.tl_corner(),levels), point_up2(rect.br_corner(),levels));
}
// -----------------------------
template <typename rect_type>
rect_type rect_down (
const rect_type& rect
) const
{
return rect_type(point_down(rect.tl_corner()), point_down(rect.br_corner()));
}
template <typename rect_type>
rect_type rect_down2 (
const rect_type& rect,
unsigned int levels
) const
{
return rect_type(point_down2(rect.tl_corner(),levels), point_down2(rect.br_corner(),levels));
}
template <
typename T
>
numpy_image<T> down (
const numpy_image<T>& img
) const
{
numpy_image<T> down;
switch(N)
{
case 1: pyr1(img,down); break;
case 2: pyr2(img,down); break;
case 3: pyr3(img,down); break;
case 4: pyr4(img,down); break;
case 5: pyr5(img,down); break;
case 6: pyr6(img,down); break;
case 7: pyr7(img,down); break;
case 8: pyr8(img,down); break;
case 9: pyr9(img,down); break;
case 10: pyr10(img,down); break;
case 11: pyr11(img,down); break;
case 12: pyr12(img,down); break;
case 13: pyr13(img,down); break;
case 14: pyr14(img,down); break;
case 15: pyr15(img,down); break;
case 16: pyr16(img,down); break;
case 17: pyr17(img,down); break;
case 18: pyr18(img,down); break;
case 19: pyr19(img,down); break;
case 20: pyr20(img,down); break;
}
return down;
}
private:
unsigned int N = 2;
pyramid_down<1> pyr1;
pyramid_down<2> pyr2;
pyramid_down<3> pyr3;
pyramid_down<4> pyr4;
pyramid_down<5> pyr5;
pyramid_down<6> pyr6;
pyramid_down<7> pyr7;
pyramid_down<8> pyr8;
pyramid_down<9> pyr9;
pyramid_down<10> pyr10;
pyramid_down<11> pyr11;
pyramid_down<12> pyr12;
pyramid_down<13> pyr13;
pyramid_down<14> pyr14;
pyramid_down<15> pyr15;
pyramid_down<16> pyr16;
pyramid_down<17> pyr17;
pyramid_down<18> pyr18;
pyramid_down<19> pyr19;
pyramid_down<20> pyr20;
};
// ----------------------------------------------------------------------------------------
py::tuple py_find_bright_lines (
const numpy_image<float>& xx,
const numpy_image<float>& xy,
const numpy_image<float>& yy
)
{
numpy_image<float> horz, vert;
find_bright_lines(xx,xy,yy,horz,vert);
return py::make_tuple(horz,vert);
}
py::tuple py_find_dark_lines (
const numpy_image<float>& xx,
const numpy_image<float>& xy,
const numpy_image<float>& yy
)
{
numpy_image<float> horz, vert;
find_dark_lines(xx,xy,yy,horz,vert);
return py::make_tuple(horz,vert);
}
numpy_image<float> py_find_bright_keypoints (
const numpy_image<float>& xx,
const numpy_image<float>& xy,
const numpy_image<float>& yy
)
{
numpy_image<float> sal;
find_bright_keypoints(xx,xy,yy,sal);
return sal;
}
numpy_image<float> py_find_dark_keypoints (
const numpy_image<float>& xx,
const numpy_image<float>& xy,
const numpy_image<float>& yy
)
{
numpy_image<float> sal;
find_dark_keypoints(xx,xy,yy,sal);
return sal;
}
template <typename T>
py::tuple py_sobel_edge_detector (
const numpy_image<T>& img
)
{
numpy_image<float> horz, vert;
sobel_edge_detector(img, horz, vert);
return py::make_tuple(horz,vert);
}
numpy_image<float> py_suppress_non_maximum_edges (
const numpy_image<float>& horz,
const numpy_image<float>& vert
)
{
numpy_image<float> out;
suppress_non_maximum_edges(horz,vert,out);
return out;
}
numpy_image<float> py_suppress_non_maximum_edges2 (
const py::tuple& horz_and_vert_gradients
)
{
numpy_image<float> out, horz, vert;
horz = horz_and_vert_gradients[0];
vert = horz_and_vert_gradients[1];
suppress_non_maximum_edges(horz,vert,out);
return out;
}
template <typename T>
std::vector<point> py_find_peaks (
const numpy_image<T>& img,
const double non_max_suppression_radius,
const T& thresh
)
{
return find_peaks(img, non_max_suppression_radius, thresh);
}
template <typename T>
std::vector<point> py_find_peaks2 (
const numpy_image<T>& img,
const double non_max_suppression_radius
)
{
return find_peaks(img, non_max_suppression_radius, partition_pixels(img));
}
// ----------------------------------------------------------------------------------------
template <typename T>
numpy_image<unsigned char> py_hysteresis_threshold (
const numpy_image<T>& img,
T lower_thresh,
T upper_thresh
)
{
numpy_image<unsigned char> out;
hysteresis_threshold(img, out, lower_thresh, upper_thresh);
return out;
}
template <typename T>
numpy_image<unsigned char> py_hysteresis_threshold2 (
const numpy_image<T>& img
)
{
numpy_image<unsigned char> out;
hysteresis_threshold(img, out);
return out;
}
// ----------------------------------------------------------------------------------------
void bind_image_classes3(py::module& m)
{
const char* docs;
docs =
"requires \n\
- thresh > 0 \n\
ensures \n\
- Converts an image to a target pixel type. dtype must be a string containing one of the following: \n\
uint8, int8, uint16, int16, uint32, int32, uint64, int64, float32, float, float64, double, or rgb_pixel \n\
\n\
The contents of img will be scaled to fit the dynamic range of the target \n\
pixel type. The thresh parameter is used to filter source pixel values which \n\
are outliers. These outliers will saturate at the edge of the destination \n\
image's dynamic range. \n\
- Specifically, for all valid r and c: \n\
- We scale img[r][c] into the dynamic range of the target pixel type. This \n\
is done using the mean and standard deviation of img. Call the mean M and \n\
the standard deviation D. Then the scaling from source to destination is \n\
performed using the following mapping: \n\
let SRC_UPPER = min(M + thresh*D, max(img)) \n\
let SRC_LOWER = max(M - thresh*D, min(img)) \n\
let DEST_UPPER = max value possible for the selected dtype. \n\
let DEST_LOWER = min value possible for the selected dtype. \n\
\n\
MAPPING: [SRC_LOWER, SRC_UPPER] -> [DEST_LOWER, DEST_UPPER] \n\
\n\
Where this mapping is a linear mapping of values from the left range \n\
into the right range of values. Source pixel values outside the left \n\
range are modified to be at the appropriate end of the range.";
/*!
requires
- thresh > 0
ensures
- Converts an image to a target pixel type. dtype must be a string containing one of the following:
uint8, int8, uint16, int16, uint32, int32, uint64, int64, float32, float, float64, double, or rgb_pixel
The contents of img will be scaled to fit the dynamic range of the target
pixel type. The thresh parameter is used to filter source pixel values which
are outliers. These outliers will saturate at the edge of the destination
image's dynamic range.
- Specifically, for all valid r and c:
- We scale img[r][c] into the dynamic range of the target pixel type. This
is done using the mean and standard deviation of img. Call the mean M and
the standard deviation D. Then the scaling from source to destination is
performed using the following mapping:
let SRC_UPPER = min(M + thresh*D, max(img))
let SRC_LOWER = max(M - thresh*D, min(img))
let DEST_UPPER = max value possible for the selected dtype.
let DEST_LOWER = min value possible for the selected dtype.
MAPPING: [SRC_LOWER, SRC_UPPER] -> [DEST_LOWER, DEST_UPPER]
Where this mapping is a linear mapping of values from the left range
into the right range of values. Source pixel values outside the left
range are modified to be at the appropriate end of the range.
!*/
m.def("convert_image_scaled", convert_image_scaled<uint8_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
m.def("convert_image_scaled", convert_image_scaled<uint16_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
m.def("convert_image_scaled", convert_image_scaled<uint32_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
m.def("convert_image_scaled", convert_image_scaled<uint64_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
m.def("convert_image_scaled", convert_image_scaled<int8_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
m.def("convert_image_scaled", convert_image_scaled<int16_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
m.def("convert_image_scaled", convert_image_scaled<int32_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
m.def("convert_image_scaled", convert_image_scaled<int64_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
m.def("convert_image_scaled", convert_image_scaled<float>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
m.def("convert_image_scaled", convert_image_scaled<double>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
m.def("convert_image_scaled", convert_image_scaled<rgb_pixel>, docs, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
const char* class_docs;
class_docs =
"This is a simple object to help create image pyramids. In particular, it \n\
downsamples images at a ratio of N to N-1. \n\
\n\
Note that setting N to 1 means that this object functions like \n\
pyramid_disable (defined at the bottom of this file). \n\
\n\
WARNING, when mapping rectangles from one layer of a pyramid \n\
to another you might end up with rectangles which extend slightly \n\
outside your images. This is because points on the border of an \n\
image at a higher pyramid layer might correspond to points outside \n\
images at lower layers. So just keep this in mind. Note also \n\
that it's easy to deal with. Just say something like this: \n\
rect = rect.intersect(get_rect(my_image)); # keep rect inside my_image ";
/*!
This is a simple object to help create image pyramids. In particular, it
downsamples images at a ratio of N to N-1.
Note that setting N to 1 means that this object functions like
pyramid_disable (defined at the bottom of this file).
WARNING, when mapping rectangles from one layer of a pyramid
to another you might end up with rectangles which extend slightly
outside your images. This is because points on the border of an
image at a higher pyramid layer might correspond to points outside
images at lower layers. So just keep this in mind. Note also
that it's easy to deal with. Just say something like this:
rect = rect.intersect(get_rect(my_image)); # keep rect inside my_image
!*/
docs =
"- Downsamples img to make a new image that is roughly (pyramid_downsampling_rate()-1)/pyramid_downsampling_rate() \n\
times the size of the original image. \n\
- The location of a point P in original image will show up at point point_down(P) \n\
in the downsampled image. \n\
- Note that some points on the border of the original image might correspond to \n\
points outside the downsampled image.";
/*!
- Downsamples img to make a new image that is roughly (pyramid_downsampling_rate()-1)/pyramid_downsampling_rate()
times the size of the original image.
- The location of a point P in original image will show up at point point_down(P)
in the downsampled image.
- Note that some points on the border of the original image might correspond to
points outside the downsampled image.
!*/
py::class_<py_pyramid_down>(m, "pyramid_down", class_docs)
.def(py::init<unsigned int>(), "Creates this class with the provided downsampling rate. i.e. pyramid_downsampling_rate()==N. \nN must be in the range 1 to 20.", py::arg("N"))
.def(py::init<>(), "Creates this class with pyramid_downsampling_rate()==2")
.def("pyramid_downsampling_rate", &py_pyramid_down::pyramid_downsampling_rate,
"Returns a number N that defines the downsampling rate. In particular, images are downsampled by a factor of N to N-1.")
.def("point_up", &py_pyramid_down::point_up<long>, py::arg("p"))
.def("point_up", &py_pyramid_down::point_up<double>,
"Maps from pixels in a downsampled image to pixels in the original image.", py::arg("p"))
.def("point_up", &py_pyramid_down::point_up2<long>, py::arg("p"), py::arg("levels"))
.def("point_up", &py_pyramid_down::point_up2<double>,
"Applies point_up() to p levels times and returns the result.", py::arg("p"), py::arg("levels"))
.def("point_down", &py_pyramid_down::point_down<long>, py::arg("p"))
.def("point_down", &py_pyramid_down::point_down<double>,
"Maps from pixels in a source image to the corresponding pixels in the downsampled image.", py::arg("p"))
.def("point_down", &py_pyramid_down::point_down2<long>, py::arg("p"), py::arg("levels"))
.def("point_down", &py_pyramid_down::point_down2<double>, "Applies point_down() to p levels times and returns the result.",
py::arg("p"), py::arg("levels"))
.def("rect_down", &py_pyramid_down::rect_down<rectangle>, py::arg("rect"))
.def("rect_down", &py_pyramid_down::rect_down<drectangle>,
"returns drectangle(point_down(rect.tl_corner()), point_down(rect.br_corner()));\n (i.e. maps rect into a downsampled)",
py::arg("rect"))
.def("rect_down", &py_pyramid_down::rect_down2<rectangle>, py::arg("rect"), py::arg("levels"))
.def("rect_down", &py_pyramid_down::rect_down2<drectangle>, "Applies rect_down() to rect levels times and returns the result.",
py::arg("rect"), py::arg("levels"))
.def("rect_up", &py_pyramid_down::rect_up<rectangle>, py::arg("rect"))
.def("rect_up", &py_pyramid_down::rect_up<drectangle>,
"returns drectangle(point_up(rect.tl_corner()), point_up(rect.br_corner()));\n (i.e. maps rect into a parent image)",
py::arg("rect"))
.def("rect_up", &py_pyramid_down::rect_up2<rectangle>, py::arg("rect"), py::arg("levels"))
.def("rect_up", &py_pyramid_down::rect_up2<drectangle>, "Applies rect_up() to rect levels times and returns the result.",
py::arg("p"), py::arg("levels"))
.def("__call__", &py_pyramid_down::down<uint8_t>, py::arg("img"))
.def("__call__", &py_pyramid_down::down<uint16_t>, py::arg("img"))
.def("__call__", &py_pyramid_down::down<uint32_t>, py::arg("img"))
.def("__call__", &py_pyramid_down::down<uint64_t>, py::arg("img"))
.def("__call__", &py_pyramid_down::down<int8_t>, py::arg("img"))
.def("__call__", &py_pyramid_down::down<int16_t>, py::arg("img"))
.def("__call__", &py_pyramid_down::down<int32_t>, py::arg("img"))
.def("__call__", &py_pyramid_down::down<int64_t>, py::arg("img"))
.def("__call__", &py_pyramid_down::down<float>, py::arg("img"))
.def("__call__", &py_pyramid_down::down<double>, py::arg("img"))
.def("__call__", &py_pyramid_down::down<rgb_pixel>, docs, py::arg("img"));
docs =
"requires \n\
- xx, xy, and yy all have the same dimensions. \n\
ensures \n\
- This routine is similar to sobel_edge_detector(), except instead of finding \n\
an edge it finds a bright/white line. For example, the border between a \n\
black piece of paper and a white table is an edge, but a curve drawn with a \n\
pencil on a piece of paper makes a line. Therefore, the output of this \n\
routine is a vector field encoded in the horz and vert images, which are \n\
returned in a tuple where the first element is horz and the second is vert. \n\
\n\
The vector obtains a large magnitude when centered on a bright line in an image and the \n\
direction of the vector is perpendicular to the line. To be very precise, \n\
each vector points in the direction of greatest change in second derivative \n\
and the magnitude of the vector encodes the derivative magnitude in that \n\
direction. Moreover, if the second derivative is positive then the output \n\
vector is zero. This zeroing if positive gradients causes the output to be \n\
sensitive only to bright lines surrounded by darker pixels. \n\
\n\
- We assume that xx, xy, and yy are the 3 second order gradients of the image \n\
in question. You can obtain these gradients using the image_gradients class. \n\
- The output images will have the same dimensions as the input images. ";
/*!
requires
- xx, xy, and yy all have the same dimensions.
ensures
- This routine is similar to sobel_edge_detector(), except instead of finding
an edge it finds a bright/white line. For example, the border between a
black piece of paper and a white table is an edge, but a curve drawn with a
pencil on a piece of paper makes a line. Therefore, the output of this
routine is a vector field encoded in the horz and vert images, which are
returned in a tuple where the first element is horz and the second is vert.
The vector obtains a large magnitude when centered on a bright line in an image and the
direction of the vector is perpendicular to the line. To be very precise,
each vector points in the direction of greatest change in second derivative
and the magnitude of the vector encodes the derivative magnitude in that
direction. Moreover, if the second derivative is positive then the output
vector is zero. This zeroing if positive gradients causes the output to be
sensitive only to bright lines surrounded by darker pixels.
- We assume that xx, xy, and yy are the 3 second order gradients of the image
in question. You can obtain these gradients using the image_gradients class.
- The output images will have the same dimensions as the input images.
!*/
m.def("find_bright_lines", &py_find_bright_lines, docs, py::arg("xx"), py::arg("xy"), py::arg("yy"));
docs =
"requires \n\
- xx, xy, and yy all have the same dimensions. \n\
ensures \n\
- This routine is similar to sobel_edge_detector(), except instead of finding \n\
an edge it finds a dark line. For example, the border between a black piece \n\
of paper and a white table is an edge, but a curve drawn with a pencil on a \n\
piece of paper makes a line. Therefore, the output of this routine is a \n\
vector field encoded in the horz and vert images, which are returned in a \n\
tuple where the first element is horz and the second is vert. \n\
\n\
The vector obtains a large magnitude when centered on a dark line in an image \n\
and the direction of the vector is perpendicular to the line. To be very \n\
precise, each vector points in the direction of greatest change in second \n\
derivative and the magnitude of the vector encodes the derivative magnitude \n\
in that direction. Moreover, if the second derivative is negative then the \n\
output vector is zero. This zeroing if negative gradients causes the output \n\
to be sensitive only to dark lines surrounded by darker pixels. \n\
\n\
- We assume that xx, xy, and yy are the 3 second order gradients of the image \n\
in question. You can obtain these gradients using the image_gradients class. \n\
- The output images will have the same dimensions as the input images. ";
/*!
requires
- xx, xy, and yy all have the same dimensions.
ensures
- This routine is similar to sobel_edge_detector(), except instead of finding
an edge it finds a dark line. For example, the border between a black piece
of paper and a white table is an edge, but a curve drawn with a pencil on a
piece of paper makes a line. Therefore, the output of this routine is a
vector field encoded in the horz and vert images, which are returned in a
tuple where the first element is horz and the second is vert.
The vector obtains a large magnitude when centered on a dark line in an image
and the direction of the vector is perpendicular to the line. To be very
precise, each vector points in the direction of greatest change in second
derivative and the magnitude of the vector encodes the derivative magnitude
in that direction. Moreover, if the second derivative is negative then the
output vector is zero. This zeroing if negative gradients causes the output
to be sensitive only to dark lines surrounded by darker pixels.
- We assume that xx, xy, and yy are the 3 second order gradients of the image
in question. You can obtain these gradients using the image_gradients class.
- The output images will have the same dimensions as the input images.
!*/
m.def("find_dark_lines", &py_find_dark_lines, docs, py::arg("xx"), py::arg("xy"), py::arg("yy"));
docs =
"requires \n\
- xx, xy, and yy all have the same dimensions. \n\
ensures \n\
- This routine finds bright \"keypoints\" in an image. In general, these are \n\
bright/white localized blobs. It does this by computing the determinant of \n\
the image Hessian at each location and storing this value into the returned \n\
image if both eigenvalues of the Hessian are negative. If either eigenvalue \n\
is positive then the output value for that pixel is 0. I.e. \n\
- Let OUT denote the returned image. \n\
- for all valid r,c: \n\
- OUT[r][c] == a number >= 0 and larger values indicate the \n\
presence of a keypoint at this pixel location. \n\
- We assume that xx, xy, and yy are the 3 second order gradients of the image \n\
in question. You can obtain these gradients using the image_gradients class. \n\
- The output image will have the same dimensions as the input images.";
/*!
requires
- xx, xy, and yy all have the same dimensions.
ensures
- This routine finds bright "keypoints" in an image. In general, these are
bright/white localized blobs. It does this by computing the determinant of
the image Hessian at each location and storing this value into the returned
image if both eigenvalues of the Hessian are negative. If either eigenvalue
is positive then the output value for that pixel is 0. I.e.
- Let OUT denote the returned image.
- for all valid r,c:
- OUT[r][c] == a number >= 0 and larger values indicate the
presence of a keypoint at this pixel location.
- We assume that xx, xy, and yy are the 3 second order gradients of the image
in question. You can obtain these gradients using the image_gradients class.
- The output image will have the same dimensions as the input images.
!*/
m.def("find_bright_keypoints", &py_find_bright_keypoints, docs, py::arg("xx"), py::arg("xy"), py::arg("yy"));
docs =
"requires \n\
- xx, xy, and yy all have the same dimensions. \n\
ensures \n\
- This routine finds dark \"keypoints\" in an image. In general, these are \n\
dark localized blobs. It does this by computing the determinant of \n\
the image Hessian at each location and storing this value into the returned \n\
image if both eigenvalues of the Hessian are negative. If either eigenvalue \n\
is negative then the output value for that pixel is 0. I.e. \n\
- Let OUT denote the returned image. \n\
- for all valid r,c: \n\
- OUT[r][c] == a number >= 0 and larger values indicate the \n\
presence of a keypoint at this pixel location. \n\
- We assume that xx, xy, and yy are the 3 second order gradients of the image \n\
in question. You can obtain these gradients using the image_gradients class. \n\
- The output image will have the same dimensions as the input images.";
/*!
requires
- xx, xy, and yy all have the same dimensions.
ensures
- This routine finds dark "keypoints" in an image. In general, these are
dark localized blobs. It does this by computing the determinant of
the image Hessian at each location and storing this value into the returned
image if both eigenvalues of the Hessian are negative. If either eigenvalue
is negative then the output value for that pixel is 0. I.e.
- Let OUT denote the returned image.
- for all valid r,c:
- OUT[r][c] == a number >= 0 and larger values indicate the
presence of a keypoint at this pixel location.
- We assume that xx, xy, and yy are the 3 second order gradients of the image
in question. You can obtain these gradients using the image_gradients class.
- The output image will have the same dimensions as the input images.
!*/
m.def("find_dark_keypoints", &py_find_dark_keypoints, docs, py::arg("xx"), py::arg("xy"), py::arg("yy"));
docs =
"requires \n\
- The two input images have the same dimensions. \n\
ensures \n\
- Returns an image, of the same dimensions as the input. Each element in this \n\
image holds the edge strength at that location. Moreover, edge pixels that are not \n\
local maximizers have been set to 0. \n\
- let edge_strength(r,c) == sqrt(pow(horz[r][c],2) + pow(vert[r][c],2)) \n\
(i.e. The Euclidean norm of the gradient) \n\
- let OUT denote the returned image. \n\
- for all valid r and c: \n\
- if (edge_strength(r,c) is at a maximum with respect to its 2 neighboring \n\
pixels along the line indicated by the image gradient vector (horz[r][c],vert[r][c])) then \n\
- OUT[r][c] == edge_strength(r,c) \n\
- else \n\
- OUT[r][c] == 0";
/*!
requires
- The two input images have the same dimensions.
ensures
- Returns an image, of the same dimensions as the input. Each element in this
image holds the edge strength at that location. Moreover, edge pixels that are not
local maximizers have been set to 0.
- let edge_strength(r,c) == sqrt(pow(horz[r][c],2) + pow(vert[r][c],2))
(i.e. The Euclidean norm of the gradient)
- let OUT denote the returned image.
- for all valid r and c:
- if (edge_strength(r,c) is at a maximum with respect to its 2 neighboring
pixels along the line indicated by the image gradient vector (horz[r][c],vert[r][c])) then
- OUT[r][c] == edge_strength(r,c)
- else
- OUT[r][c] == 0
!*/
m.def("suppress_non_maximum_edges", &py_suppress_non_maximum_edges, docs, py::arg("horz"), py::arg("vert"));
m.def("suppress_non_maximum_edges", &py_suppress_non_maximum_edges2,
"Performs: return suppress_non_maximum_edges(horz_and_vert_gradients[0], horz_and_vert_gradients[1])",
py::arg("horz_and_vert_gradients"));
docs =
"requires \n\
- non_max_suppression_radius >= 0 \n\
ensures \n\
- Scans the given image and finds all pixels with values >= thresh that are \n\
also local maximums within their 8-connected neighborhood of the image. Such \n\
pixels are collected, sorted in decreasing order of their pixel values, and \n\
then non-maximum suppression is applied to this list of points using the \n\
given non_max_suppression_radius. The final list of peaks is then returned. \n\
\n\
Therefore, the returned list, V, will have these properties: \n\
- len(V) == the number of peaks found in the image. \n\
- When measured in image coordinates, no elements of V are within \n\
non_max_suppression_radius distance of each other. That is, for all valid i!=j \n\
it is true that length(V[i]-V[j]) > non_max_suppression_radius. \n\
- For each element of V, that element has the maximum pixel value of all \n\
pixels in the ball centered on that pixel with radius \n\
non_max_suppression_radius.";
/*!
requires
- non_max_suppression_radius >= 0
ensures
- Scans the given image and finds all pixels with values >= thresh that are
also local maximums within their 8-connected neighborhood of the image. Such
pixels are collected, sorted in decreasing order of their pixel values, and
then non-maximum suppression is applied to this list of points using the
given non_max_suppression_radius. The final list of peaks is then returned.
Therefore, the returned list, V, will have these properties:
- len(V) == the number of peaks found in the image.
- When measured in image coordinates, no elements of V are within
non_max_suppression_radius distance of each other. That is, for all valid i!=j
it is true that length(V[i]-V[j]) > non_max_suppression_radius.
- For each element of V, that element has the maximum pixel value of all
pixels in the ball centered on that pixel with radius
non_max_suppression_radius.
!*/
m.def("find_peaks", &py_find_peaks<float>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
m.def("find_peaks", &py_find_peaks<double>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
m.def("find_peaks", &py_find_peaks<uint8_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
m.def("find_peaks", &py_find_peaks<uint16_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
m.def("find_peaks", &py_find_peaks<uint32_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
m.def("find_peaks", &py_find_peaks<uint64_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
m.def("find_peaks", &py_find_peaks<int8_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
m.def("find_peaks", &py_find_peaks<int16_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
m.def("find_peaks", &py_find_peaks<int32_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
m.def("find_peaks", &py_find_peaks<int64_t>, py::arg("img"), docs, py::arg("non_max_suppression_radius"), py::arg("thresh"));
m.def("find_peaks", &py_find_peaks2<float>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
m.def("find_peaks", &py_find_peaks2<double>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
m.def("find_peaks", &py_find_peaks2<uint8_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
m.def("find_peaks", &py_find_peaks2<uint16_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
m.def("find_peaks", &py_find_peaks2<uint32_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
m.def("find_peaks", &py_find_peaks2<uint64_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
m.def("find_peaks", &py_find_peaks2<int8_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
m.def("find_peaks", &py_find_peaks2<int16_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
m.def("find_peaks", &py_find_peaks2<int32_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
m.def("find_peaks", &py_find_peaks2<int64_t>, py::arg("img"),
"performs: return find_peaks(img, non_max_suppression_radius, partition_pixels(img))",
py::arg("non_max_suppression_radius")=0);
docs =
"Applies the sobel edge detector to the given input image and returns two gradient \n\
images in a tuple. The first contains the x gradients and the second contains the \n\
y gradients of the image.";
/*!
Applies the sobel edge detector to the given input image and returns two gradient
images in a tuple. The first contains the x gradients and the second contains the
y gradients of the image.
!*/
m.def("sobel_edge_detector", &py_sobel_edge_detector<uint8_t>, py::arg("img"));
m.def("sobel_edge_detector", &py_sobel_edge_detector<uint16_t>, py::arg("img"));
m.def("sobel_edge_detector", &py_sobel_edge_detector<uint32_t>, py::arg("img"));
m.def("sobel_edge_detector", &py_sobel_edge_detector<uint64_t>, py::arg("img"));
m.def("sobel_edge_detector", &py_sobel_edge_detector<int8_t>, py::arg("img"));
m.def("sobel_edge_detector", &py_sobel_edge_detector<int16_t>, py::arg("img"));
m.def("sobel_edge_detector", &py_sobel_edge_detector<int32_t>, py::arg("img"));
m.def("sobel_edge_detector", &py_sobel_edge_detector<int64_t>, py::arg("img"));
m.def("sobel_edge_detector", &py_sobel_edge_detector<float>, py::arg("img"));
m.def("sobel_edge_detector", &py_sobel_edge_detector<double>, docs, py::arg("img"));
docs =
"Applies hysteresis thresholding to img and returns the results. In particular, \n\
pixels in img with values >= upper_thresh have an output value of 255 and all \n\
others have a value of 0 unless they are >= lower_thresh and are connected to a \n\
pixel with a value >= upper_thresh, in which case they have a value of 255. Here \n\
pixels are connected if there is a path between them composed of pixels that would \n\
receive an output of 255.";
/*!
Applies hysteresis thresholding to img and returns the results. In particular,
pixels in img with values >= upper_thresh have an output value of 255 and all
others have a value of 0 unless they are >= lower_thresh and are connected to a
pixel with a value >= upper_thresh, in which case they have a value of 255. Here
pixels are connected if there is a path between them composed of pixels that would
receive an output of 255.
!*/
m.def("hysteresis_threshold", &py_hysteresis_threshold<uint8_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
m.def("hysteresis_threshold", &py_hysteresis_threshold<uint16_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
m.def("hysteresis_threshold", &py_hysteresis_threshold<uint32_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
m.def("hysteresis_threshold", &py_hysteresis_threshold<uint64_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
m.def("hysteresis_threshold", &py_hysteresis_threshold<int8_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
m.def("hysteresis_threshold", &py_hysteresis_threshold<int16_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
m.def("hysteresis_threshold", &py_hysteresis_threshold<int32_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
m.def("hysteresis_threshold", &py_hysteresis_threshold<int64_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
m.def("hysteresis_threshold", &py_hysteresis_threshold<float>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
m.def("hysteresis_threshold", &py_hysteresis_threshold<double>, docs, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
docs =
"performs: return hysteresis_threshold(img, t1, t2) where the thresholds \n\
are first obtained by calling [t1, t2]=partition_pixels(img).";
/*!
performs: return hysteresis_threshold(img, t1, t2) where the thresholds
are first obtained by calling [t1, t2]=partition_pixels(img).
!*/
m.def("hysteresis_threshold", &py_hysteresis_threshold2<uint8_t>, py::arg("img"));
m.def("hysteresis_threshold", &py_hysteresis_threshold2<uint16_t>, py::arg("img"));
m.def("hysteresis_threshold", &py_hysteresis_threshold2<uint32_t>, py::arg("img"));
m.def("hysteresis_threshold", &py_hysteresis_threshold2<uint64_t>, py::arg("img"));
m.def("hysteresis_threshold", &py_hysteresis_threshold2<int8_t>, py::arg("img"));
m.def("hysteresis_threshold", &py_hysteresis_threshold2<int16_t>, py::arg("img"));
m.def("hysteresis_threshold", &py_hysteresis_threshold2<int32_t>, py::arg("img"));
m.def("hysteresis_threshold", &py_hysteresis_threshold2<int64_t>, py::arg("img"));
m.def("hysteresis_threshold", &py_hysteresis_threshold2<float>, py::arg("img"));
m.def("hysteresis_threshold", &py_hysteresis_threshold2<double>, docs, py::arg("img"));
}
|