File size: 43,992 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
// Copyright (C) 2018  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include "dlib/pixel.h"
#include <dlib/image_transforms.h>
#include <dlib/image_processing.h>

using namespace dlib;
using namespace std;

namespace py = pybind11;

// ----------------------------------------------------------------------------------------

template <typename T>
py::array convert_image_scaled (
    const numpy_image<T>& img,
    const string& dtype,
    const double thresh = 4
)
{
    if (dtype == "uint8")    {numpy_image<uint8_t>   out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "uint16")   {numpy_image<uint16_t>  out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "uint32")   {numpy_image<uint32_t>  out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "uint64")   {numpy_image<uint64_t>  out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "int8")     {numpy_image<int8_t>    out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "int16")    {numpy_image<int16_t>   out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "int32")    {numpy_image<int32_t>   out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "int64")    {numpy_image<int64_t>   out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "float32")  {numpy_image<float>     out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "float64")  {numpy_image<double>    out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "float")    {numpy_image<float>     out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "double")   {numpy_image<double>    out; assign_image_scaled(out, img, thresh); return out;}
    if (dtype == "rgb_pixel"){numpy_image<rgb_pixel> out; assign_image_scaled(out, img, thresh); return out;}


    throw dlib::error("convert_image_scaled() called with invalid dtype, must be one of these strings: \n"
        "uint8, int8, uint16, int16, uint32, int32, uint64, int64, float32, float, float64, double, or rgb_pixel");
}

// ----------------------------------------------------------------------------------------

struct py_pyramid_down
{

    void dostuff(point) {}

    py_pyramid_down(
    ) = default;

    py_pyramid_down (
        unsigned int N_
    ) : N(N_) 
    {
        DLIB_CASSERT( 1 <= N && N <= 20, "pyramid downsampling rate must be between 1 and 20.");
    }

    unsigned int pyramid_downsampling_rate (
    ) const { return N; }

    template <typename T>
    dlib::vector<double,2> point_down (
        const dlib::vector<T,2>& pp
    ) const
    {
        dpoint p = pp;
        switch(N)
        {
            case 1: return pyr1.point_down(p);
            case 2: return pyr2.point_down(p);
            case 3: return pyr3.point_down(p);
            case 4: return pyr4.point_down(p);
            case 5: return pyr5.point_down(p);
            case 6: return pyr6.point_down(p);
            case 7: return pyr7.point_down(p);
            case 8: return pyr8.point_down(p);
            case 9: return pyr9.point_down(p);
            case 10: return pyr10.point_down(p);
            case 11: return pyr11.point_down(p);
            case 12: return pyr12.point_down(p);
            case 13: return pyr13.point_down(p);
            case 14: return pyr14.point_down(p);
            case 15: return pyr15.point_down(p);
            case 16: return pyr16.point_down(p);
            case 17: return pyr17.point_down(p);
            case 18: return pyr18.point_down(p);
            case 19: return pyr19.point_down(p);
            case 20: return pyr20.point_down(p);
        }

        DLIB_CASSERT(false, "This should never happen");
    }

    template <typename T>
    dlib::vector<double,2> point_up (
        const dlib::vector<T,2>& pp
    ) const
    {
        dpoint p = pp;
        switch(N)
        {
            case 1: return pyr1.point_up(p);
            case 2: return pyr2.point_up(p);
            case 3: return pyr3.point_up(p);
            case 4: return pyr4.point_up(p);
            case 5: return pyr5.point_up(p);
            case 6: return pyr6.point_up(p);
            case 7: return pyr7.point_up(p);
            case 8: return pyr8.point_up(p);
            case 9: return pyr9.point_up(p);
            case 10: return pyr10.point_up(p);
            case 11: return pyr11.point_up(p);
            case 12: return pyr12.point_up(p);
            case 13: return pyr13.point_up(p);
            case 14: return pyr14.point_up(p);
            case 15: return pyr15.point_up(p);
            case 16: return pyr16.point_up(p);
            case 17: return pyr17.point_up(p);
            case 18: return pyr18.point_up(p);
            case 19: return pyr19.point_up(p);
            case 20: return pyr20.point_up(p);
        }
        DLIB_CASSERT(false, "This should never happen");
    }

// -----------------------------

    template <typename T>
    dlib::vector<double,2> point_down2 (
        const dlib::vector<T,2>& p,
        unsigned int levels
    ) const
    {
        dlib::vector<double,2> temp = p;
        for (unsigned int i = 0; i < levels; ++i)
            temp = point_down(temp);
        return temp;
    }

    template <typename T>
    dlib::vector<double,2> point_up2 (
        const dlib::vector<T,2>& p,
        unsigned int levels
    ) const
    {
        dlib::vector<double,2> temp = p;
        for (unsigned int i = 0; i < levels; ++i)
            temp = point_up(temp);
        return temp;
    }

// -----------------------------

    template <typename rect_type>
    rect_type rect_up (
        const rect_type& rect
    ) const
    {
        return rect_type(point_up(rect.tl_corner()), point_up(rect.br_corner()));
    }

    template <typename rect_type>
    rect_type rect_up2 (
        const rect_type& rect,
        unsigned int levels
    ) const
    {
        return rect_type(point_up2(rect.tl_corner(),levels), point_up2(rect.br_corner(),levels));
    }

// -----------------------------

    template <typename rect_type>
    rect_type rect_down (
        const rect_type& rect
    ) const
    {
        return rect_type(point_down(rect.tl_corner()), point_down(rect.br_corner()));
    }

    template <typename rect_type>
    rect_type rect_down2 (
        const rect_type& rect,
        unsigned int levels
    ) const
    {
        return rect_type(point_down2(rect.tl_corner(),levels), point_down2(rect.br_corner(),levels));
    }

    template <
        typename T
        >
    numpy_image<T> down (
        const numpy_image<T>& img
    ) const
    {

        numpy_image<T> down;
        switch(N)
        {
            case 1: pyr1(img,down); break;
            case 2: pyr2(img,down); break;
            case 3: pyr3(img,down); break;
            case 4: pyr4(img,down); break;
            case 5: pyr5(img,down); break;
            case 6: pyr6(img,down); break;
            case 7: pyr7(img,down); break;
            case 8: pyr8(img,down); break;
            case 9: pyr9(img,down); break;
            case 10: pyr10(img,down); break;
            case 11: pyr11(img,down); break;
            case 12: pyr12(img,down); break;
            case 13: pyr13(img,down); break;
            case 14: pyr14(img,down); break;
            case 15: pyr15(img,down); break;
            case 16: pyr16(img,down); break;
            case 17: pyr17(img,down); break;
            case 18: pyr18(img,down); break;
            case 19: pyr19(img,down); break;
            case 20: pyr20(img,down); break;
        }

        return down;
    }

private:
    unsigned int N = 2;

    pyramid_down<1> pyr1;
    pyramid_down<2> pyr2;
    pyramid_down<3> pyr3;
    pyramid_down<4> pyr4;
    pyramid_down<5> pyr5;
    pyramid_down<6> pyr6;
    pyramid_down<7> pyr7;
    pyramid_down<8> pyr8;
    pyramid_down<9> pyr9;
    pyramid_down<10> pyr10;
    pyramid_down<11> pyr11;
    pyramid_down<12> pyr12;
    pyramid_down<13> pyr13;
    pyramid_down<14> pyr14;
    pyramid_down<15> pyr15;
    pyramid_down<16> pyr16;
    pyramid_down<17> pyr17;
    pyramid_down<18> pyr18;
    pyramid_down<19> pyr19;
    pyramid_down<20> pyr20;

};

// ----------------------------------------------------------------------------------------

py::tuple py_find_bright_lines (
    const numpy_image<float>& xx,
    const numpy_image<float>& xy,
    const numpy_image<float>& yy
)
{
    numpy_image<float> horz, vert;
    find_bright_lines(xx,xy,yy,horz,vert);
    return py::make_tuple(horz,vert);
}

py::tuple py_find_dark_lines (
    const numpy_image<float>& xx,
    const numpy_image<float>& xy,
    const numpy_image<float>& yy
)
{
    numpy_image<float> horz, vert;
    find_dark_lines(xx,xy,yy,horz,vert);
    return py::make_tuple(horz,vert);
}

numpy_image<float> py_find_bright_keypoints (
    const numpy_image<float>& xx,
    const numpy_image<float>& xy,
    const numpy_image<float>& yy
)
{
    numpy_image<float> sal;
    find_bright_keypoints(xx,xy,yy,sal);
    return sal;
}

numpy_image<float> py_find_dark_keypoints (
    const numpy_image<float>& xx,
    const numpy_image<float>& xy,
    const numpy_image<float>& yy
)
{
    numpy_image<float> sal;
    find_dark_keypoints(xx,xy,yy,sal);
    return sal;
}

template <typename T>
py::tuple py_sobel_edge_detector (
    const numpy_image<T>& img
)
{
    numpy_image<float> horz, vert;
    sobel_edge_detector(img, horz, vert);
    return py::make_tuple(horz,vert);
}

numpy_image<float> py_suppress_non_maximum_edges (
    const numpy_image<float>& horz,
    const numpy_image<float>& vert
)
{
    numpy_image<float> out;
    suppress_non_maximum_edges(horz,vert,out);
    return out;
}

numpy_image<float> py_suppress_non_maximum_edges2 (
    const py::tuple& horz_and_vert_gradients 
)
{
    numpy_image<float> out, horz, vert;
    horz = horz_and_vert_gradients[0];
    vert = horz_and_vert_gradients[1];
    suppress_non_maximum_edges(horz,vert,out);
    return out;
}

template <typename T> 
std::vector<point> py_find_peaks (
    const numpy_image<T>& img,
    const double non_max_suppression_radius,
    const T& thresh
)
{
    return find_peaks(img, non_max_suppression_radius, thresh);
}

template <typename T> 
std::vector<point> py_find_peaks2 (
    const numpy_image<T>& img,
    const double non_max_suppression_radius
)
{
    return find_peaks(img, non_max_suppression_radius, partition_pixels(img));
}


// ----------------------------------------------------------------------------------------

template <typename T>
numpy_image<unsigned char> py_hysteresis_threshold (
    const numpy_image<T>& img,
    T lower_thresh,
    T upper_thresh
)
{
    numpy_image<unsigned char> out;
    hysteresis_threshold(img, out, lower_thresh, upper_thresh);
    return out;
}

template <typename T>
numpy_image<unsigned char> py_hysteresis_threshold2 (
    const numpy_image<T>& img
)
{
    numpy_image<unsigned char> out;
    hysteresis_threshold(img, out);
    return out;
}

// ----------------------------------------------------------------------------------------

void bind_image_classes3(py::module& m)
{
    const char* docs;

    docs = 
"requires \n\
    - thresh > 0 \n\
ensures \n\
    - Converts an image to a target pixel type.  dtype must be a string containing one of the following: \n\
      uint8, int8, uint16, int16, uint32, int32, uint64, int64, float32, float, float64, double, or rgb_pixel \n\
 \n\
      The contents of img will be scaled to fit the dynamic range of the target \n\
      pixel type.  The thresh parameter is used to filter source pixel values which \n\
      are outliers.  These outliers will saturate at the edge of the destination \n\
      image's dynamic range. \n\
    - Specifically, for all valid r and c: \n\
        - We scale img[r][c] into the dynamic range of the target pixel type.  This \n\
          is done using the mean and standard deviation of img. Call the mean M and \n\
          the standard deviation D.  Then the scaling from source to destination is \n\
          performed using the following mapping: \n\
            let SRC_UPPER  = min(M + thresh*D, max(img)) \n\
            let SRC_LOWER  = max(M - thresh*D, min(img)) \n\
            let DEST_UPPER = max value possible for the selected dtype.  \n\
            let DEST_LOWER = min value possible for the selected dtype. \n\
 \n\
            MAPPING: [SRC_LOWER, SRC_UPPER] -> [DEST_LOWER, DEST_UPPER] \n\
 \n\
          Where this mapping is a linear mapping of values from the left range \n\
          into the right range of values.  Source pixel values outside the left \n\
          range are modified to be at the appropriate end of the range.";
    /*!
        requires
            - thresh > 0
        ensures
            - Converts an image to a target pixel type.  dtype must be a string containing one of the following:
              uint8, int8, uint16, int16, uint32, int32, uint64, int64, float32, float, float64, double, or rgb_pixel

              The contents of img will be scaled to fit the dynamic range of the target
              pixel type.  The thresh parameter is used to filter source pixel values which
              are outliers.  These outliers will saturate at the edge of the destination
              image's dynamic range.
            - Specifically, for all valid r and c:
                - We scale img[r][c] into the dynamic range of the target pixel type.  This
                  is done using the mean and standard deviation of img. Call the mean M and
                  the standard deviation D.  Then the scaling from source to destination is
                  performed using the following mapping:
                    let SRC_UPPER  = min(M + thresh*D, max(img))
                    let SRC_LOWER  = max(M - thresh*D, min(img))
                    let DEST_UPPER = max value possible for the selected dtype. 
                    let DEST_LOWER = min value possible for the selected dtype.

                    MAPPING: [SRC_LOWER, SRC_UPPER] -> [DEST_LOWER, DEST_UPPER]

                  Where this mapping is a linear mapping of values from the left range
                  into the right range of values.  Source pixel values outside the left
                  range are modified to be at the appropriate end of the range.
    !*/
    m.def("convert_image_scaled", convert_image_scaled<uint8_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
    m.def("convert_image_scaled", convert_image_scaled<uint16_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
    m.def("convert_image_scaled", convert_image_scaled<uint32_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
    m.def("convert_image_scaled", convert_image_scaled<uint64_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
    m.def("convert_image_scaled", convert_image_scaled<int8_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
    m.def("convert_image_scaled", convert_image_scaled<int16_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
    m.def("convert_image_scaled", convert_image_scaled<int32_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
    m.def("convert_image_scaled", convert_image_scaled<int64_t>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
    m.def("convert_image_scaled", convert_image_scaled<float>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
    m.def("convert_image_scaled", convert_image_scaled<double>, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);
    m.def("convert_image_scaled", convert_image_scaled<rgb_pixel>, docs, py::arg("img"), py::arg("dtype"), py::arg("thresh")=4);



    const char* class_docs;


    class_docs =
"This is a simple object to help create image pyramids.  In particular, it \n\
downsamples images at a ratio of N to N-1. \n\
 \n\
Note that setting N to 1 means that this object functions like \n\
pyramid_disable (defined at the bottom of this file).   \n\
 \n\
WARNING, when mapping rectangles from one layer of a pyramid \n\
to another you might end up with rectangles which extend slightly  \n\
outside your images.  This is because points on the border of an  \n\
image at a higher pyramid layer might correspond to points outside  \n\
images at lower layers.  So just keep this in mind.  Note also \n\
that it's easy to deal with.  Just say something like this: \n\
    rect = rect.intersect(get_rect(my_image)); # keep rect inside my_image ";
        /*!
                This is a simple object to help create image pyramids.  In particular, it
                downsamples images at a ratio of N to N-1.

                Note that setting N to 1 means that this object functions like
                pyramid_disable (defined at the bottom of this file).  

                WARNING, when mapping rectangles from one layer of a pyramid
                to another you might end up with rectangles which extend slightly 
                outside your images.  This is because points on the border of an 
                image at a higher pyramid layer might correspond to points outside 
                images at lower layers.  So just keep this in mind.  Note also
                that it's easy to deal with.  Just say something like this:
                    rect = rect.intersect(get_rect(my_image)); # keep rect inside my_image 
        !*/

    docs =
"- Downsamples img to make a new image that is roughly (pyramid_downsampling_rate()-1)/pyramid_downsampling_rate()  \n\
  times the size of the original image.   \n\
- The location of a point P in original image will show up at point point_down(P) \n\
  in the downsampled image.   \n\
- Note that some points on the border of the original image might correspond to  \n\
  points outside the downsampled image.";
        /*!
          - Downsamples img to make a new image that is roughly (pyramid_downsampling_rate()-1)/pyramid_downsampling_rate() 
            times the size of the original image.  
          - The location of a point P in original image will show up at point point_down(P)
            in the downsampled image.  
          - Note that some points on the border of the original image might correspond to 
            points outside the downsampled image.  
        !*/
    py::class_<py_pyramid_down>(m, "pyramid_down", class_docs)
        .def(py::init<unsigned int>(), "Creates this class with the provided downsampling rate. i.e. pyramid_downsampling_rate()==N. \nN must be in the range 1 to 20.", py::arg("N"))
        .def(py::init<>(), "Creates this class with pyramid_downsampling_rate()==2")
        .def("pyramid_downsampling_rate", &py_pyramid_down::pyramid_downsampling_rate,
            "Returns a number N that defines the downsampling rate.  In particular, images are downsampled by a factor of N to N-1.")
        .def("point_up", &py_pyramid_down::point_up<long>,   py::arg("p"))
        .def("point_up", &py_pyramid_down::point_up<double>, 
            "Maps from pixels in a downsampled image to pixels in the original image.",  py::arg("p"))
        .def("point_up", &py_pyramid_down::point_up2<long>,   py::arg("p"), py::arg("levels"))
        .def("point_up", &py_pyramid_down::point_up2<double>, 
            "Applies point_up() to p levels times and returns the result.",  py::arg("p"), py::arg("levels"))
        .def("point_down", &py_pyramid_down::point_down<long>,   py::arg("p"))
        .def("point_down", &py_pyramid_down::point_down<double>, 
            "Maps from pixels in a source image to the corresponding pixels in the downsampled image.", py::arg("p"))
        .def("point_down", &py_pyramid_down::point_down2<long>,   py::arg("p"), py::arg("levels"))
        .def("point_down", &py_pyramid_down::point_down2<double>, "Applies point_down() to p levels times and returns the result.",   
            py::arg("p"), py::arg("levels"))
        .def("rect_down", &py_pyramid_down::rect_down<rectangle>,   py::arg("rect"))
        .def("rect_down", &py_pyramid_down::rect_down<drectangle>,
          "returns drectangle(point_down(rect.tl_corner()), point_down(rect.br_corner()));\n (i.e. maps rect into a downsampled)",
          py::arg("rect"))
        .def("rect_down", &py_pyramid_down::rect_down2<rectangle>,   py::arg("rect"), py::arg("levels"))
        .def("rect_down", &py_pyramid_down::rect_down2<drectangle>, "Applies rect_down() to rect levels times and returns the result.",
            py::arg("rect"), py::arg("levels"))
        .def("rect_up", &py_pyramid_down::rect_up<rectangle>,   py::arg("rect"))
        .def("rect_up", &py_pyramid_down::rect_up<drectangle>,   
          "returns drectangle(point_up(rect.tl_corner()), point_up(rect.br_corner()));\n (i.e. maps rect into a parent image)",
            py::arg("rect"))
        .def("rect_up", &py_pyramid_down::rect_up2<rectangle>,   py::arg("rect"), py::arg("levels"))
        .def("rect_up", &py_pyramid_down::rect_up2<drectangle>,  "Applies rect_up() to rect levels times and returns the result.",
            py::arg("p"), py::arg("levels"))
        .def("__call__", &py_pyramid_down::down<uint8_t>,   py::arg("img"))
        .def("__call__", &py_pyramid_down::down<uint16_t>,   py::arg("img"))
        .def("__call__", &py_pyramid_down::down<uint32_t>,   py::arg("img"))
        .def("__call__", &py_pyramid_down::down<uint64_t>,   py::arg("img"))
        .def("__call__", &py_pyramid_down::down<int8_t>,   py::arg("img"))
        .def("__call__", &py_pyramid_down::down<int16_t>,   py::arg("img"))
        .def("__call__", &py_pyramid_down::down<int32_t>,   py::arg("img"))
        .def("__call__", &py_pyramid_down::down<int64_t>,   py::arg("img"))
        .def("__call__", &py_pyramid_down::down<float>,   py::arg("img"))
        .def("__call__", &py_pyramid_down::down<double>,   py::arg("img"))
        .def("__call__", &py_pyramid_down::down<rgb_pixel>, docs,  py::arg("img"));


    docs =
"requires \n\
    - xx, xy, and yy all have the same dimensions. \n\
ensures \n\
    - This routine is similar to sobel_edge_detector(), except instead of finding \n\
      an edge it finds a bright/white line.  For example, the border between a \n\
      black piece of paper and a white table is an edge, but a curve drawn with a \n\
      pencil on a piece of paper makes a line.  Therefore, the output of this \n\
      routine is a vector field encoded in the horz and vert images, which are \n\
      returned in a tuple where the first element is horz and the second is vert. \n\
 \n\
      The vector obtains a large magnitude when centered on a bright line in an image and the \n\
      direction of the vector is perpendicular to the line.  To be very precise, \n\
      each vector points in the direction of greatest change in second derivative \n\
      and the magnitude of the vector encodes the derivative magnitude in that \n\
      direction.  Moreover, if the second derivative is positive then the output \n\
      vector is zero.  This zeroing if positive gradients causes the output to be \n\
      sensitive only to bright lines surrounded by darker pixels. \n\
 \n\
    - We assume that xx, xy, and yy are the 3 second order gradients of the image \n\
      in question.  You can obtain these gradients using the image_gradients class. \n\
    - The output images will have the same dimensions as the input images. ";
    /*!
        requires
            - xx, xy, and yy all have the same dimensions.
        ensures
            - This routine is similar to sobel_edge_detector(), except instead of finding
              an edge it finds a bright/white line.  For example, the border between a
              black piece of paper and a white table is an edge, but a curve drawn with a
              pencil on a piece of paper makes a line.  Therefore, the output of this
              routine is a vector field encoded in the horz and vert images, which are
              returned in a tuple where the first element is horz and the second is vert.

              The vector obtains a large magnitude when centered on a bright line in an image and the
              direction of the vector is perpendicular to the line.  To be very precise,
              each vector points in the direction of greatest change in second derivative
              and the magnitude of the vector encodes the derivative magnitude in that
              direction.  Moreover, if the second derivative is positive then the output
              vector is zero.  This zeroing if positive gradients causes the output to be
              sensitive only to bright lines surrounded by darker pixels.

            - We assume that xx, xy, and yy are the 3 second order gradients of the image
              in question.  You can obtain these gradients using the image_gradients class.
            - The output images will have the same dimensions as the input images. 
    !*/
    m.def("find_bright_lines",     &py_find_bright_lines,     docs, py::arg("xx"), py::arg("xy"), py::arg("yy"));



    docs =
"requires \n\
    - xx, xy, and yy all have the same dimensions. \n\
ensures \n\
    - This routine is similar to sobel_edge_detector(), except instead of finding \n\
      an edge it finds a dark line.  For example, the border between a black piece \n\
      of paper and a white table is an edge, but a curve drawn with a pencil on a \n\
      piece of paper makes a line.  Therefore, the output of this routine is a \n\
      vector field encoded in the horz and vert images, which are returned in a \n\
      tuple where the first element is horz and the second is vert. \n\
 \n\
      The vector obtains a large magnitude when centered on a dark line in an image \n\
      and the direction of the vector is perpendicular to the line.  To be very \n\
      precise, each vector points in the direction of greatest change in second \n\
      derivative and the magnitude of the vector encodes the derivative magnitude \n\
      in that direction.  Moreover, if the second derivative is negative then the \n\
      output vector is zero.  This zeroing if negative gradients causes the output \n\
      to be sensitive only to dark lines surrounded by darker pixels. \n\
 \n\
    - We assume that xx, xy, and yy are the 3 second order gradients of the image \n\
      in question.  You can obtain these gradients using the image_gradients class. \n\
    - The output images will have the same dimensions as the input images. ";
    /*!
        requires
            - xx, xy, and yy all have the same dimensions.
        ensures
            - This routine is similar to sobel_edge_detector(), except instead of finding
              an edge it finds a dark line.  For example, the border between a black piece
              of paper and a white table is an edge, but a curve drawn with a pencil on a
              piece of paper makes a line.  Therefore, the output of this routine is a
              vector field encoded in the horz and vert images, which are returned in a
              tuple where the first element is horz and the second is vert.

              The vector obtains a large magnitude when centered on a dark line in an image
              and the direction of the vector is perpendicular to the line.  To be very
              precise, each vector points in the direction of greatest change in second
              derivative and the magnitude of the vector encodes the derivative magnitude
              in that direction.  Moreover, if the second derivative is negative then the
              output vector is zero.  This zeroing if negative gradients causes the output
              to be sensitive only to dark lines surrounded by darker pixels.

            - We assume that xx, xy, and yy are the 3 second order gradients of the image
              in question.  You can obtain these gradients using the image_gradients class.
            - The output images will have the same dimensions as the input images. 
    !*/
    m.def("find_dark_lines",       &py_find_dark_lines,       docs, py::arg("xx"), py::arg("xy"), py::arg("yy"));



    docs =
"requires \n\
    - xx, xy, and yy all have the same dimensions. \n\
ensures \n\
    - This routine finds bright \"keypoints\" in an image.  In general, these are \n\
      bright/white localized blobs.  It does this by computing the determinant of \n\
      the image Hessian at each location and storing this value into the returned \n\
      image if both eigenvalues of the Hessian are negative.  If either eigenvalue \n\
      is positive then the output value for that pixel is 0.  I.e. \n\
        - Let OUT denote the returned image. \n\
        - for all valid r,c: \n\
            - OUT[r][c] == a number >= 0 and larger values indicate the \n\
              presence of a keypoint at this pixel location. \n\
    - We assume that xx, xy, and yy are the 3 second order gradients of the image \n\
      in question.  You can obtain these gradients using the image_gradients class. \n\
    - The output image will have the same dimensions as the input images.";
    /*!
        requires
            - xx, xy, and yy all have the same dimensions.
        ensures
            - This routine finds bright "keypoints" in an image.  In general, these are
              bright/white localized blobs.  It does this by computing the determinant of
              the image Hessian at each location and storing this value into the returned
              image if both eigenvalues of the Hessian are negative.  If either eigenvalue
              is positive then the output value for that pixel is 0.  I.e.
                - Let OUT denote the returned image.
                - for all valid r,c:
                    - OUT[r][c] == a number >= 0 and larger values indicate the
                      presence of a keypoint at this pixel location.
            - We assume that xx, xy, and yy are the 3 second order gradients of the image
              in question.  You can obtain these gradients using the image_gradients class.
            - The output image will have the same dimensions as the input images.
    !*/
    m.def("find_bright_keypoints", &py_find_bright_keypoints, docs, py::arg("xx"), py::arg("xy"), py::arg("yy"));



    docs =
"requires \n\
    - xx, xy, and yy all have the same dimensions. \n\
ensures \n\
    - This routine finds dark \"keypoints\" in an image.  In general, these are \n\
      dark localized blobs.  It does this by computing the determinant of \n\
      the image Hessian at each location and storing this value into the returned \n\
      image if both eigenvalues of the Hessian are negative.  If either eigenvalue \n\
      is negative then the output value for that pixel is 0.  I.e. \n\
        - Let OUT denote the returned image. \n\
        - for all valid r,c: \n\
            - OUT[r][c] == a number >= 0 and larger values indicate the \n\
              presence of a keypoint at this pixel location. \n\
    - We assume that xx, xy, and yy are the 3 second order gradients of the image \n\
      in question.  You can obtain these gradients using the image_gradients class. \n\
    - The output image will have the same dimensions as the input images.";
    /*!
        requires
            - xx, xy, and yy all have the same dimensions.
        ensures
            - This routine finds dark "keypoints" in an image.  In general, these are
              dark localized blobs.  It does this by computing the determinant of
              the image Hessian at each location and storing this value into the returned
              image if both eigenvalues of the Hessian are negative.  If either eigenvalue
              is negative then the output value for that pixel is 0.  I.e.
                - Let OUT denote the returned image.
                - for all valid r,c:
                    - OUT[r][c] == a number >= 0 and larger values indicate the
                      presence of a keypoint at this pixel location.
            - We assume that xx, xy, and yy are the 3 second order gradients of the image
              in question.  You can obtain these gradients using the image_gradients class.
            - The output image will have the same dimensions as the input images.
    !*/
    m.def("find_dark_keypoints",   &py_find_dark_keypoints,   docs, py::arg("xx"), py::arg("xy"), py::arg("yy"));



    docs = 
"requires \n\
    - The two input images have the same dimensions. \n\
ensures \n\
    - Returns an image, of the same dimensions as the input.  Each element in this \n\
      image holds the edge strength at that location.  Moreover, edge pixels that are not  \n\
      local maximizers have been set to 0. \n\
    - let edge_strength(r,c) == sqrt(pow(horz[r][c],2) + pow(vert[r][c],2)) \n\
      (i.e. The Euclidean norm of the gradient) \n\
    - let OUT denote the returned image. \n\
    - for all valid r and c: \n\
        - if (edge_strength(r,c) is at a maximum with respect to its 2 neighboring \n\
          pixels along the line indicated by the image gradient vector (horz[r][c],vert[r][c])) then \n\
            - OUT[r][c] == edge_strength(r,c) \n\
        - else \n\
            - OUT[r][c] == 0";
    /*!
        requires
            - The two input images have the same dimensions.
        ensures
            - Returns an image, of the same dimensions as the input.  Each element in this
              image holds the edge strength at that location.  Moreover, edge pixels that are not 
              local maximizers have been set to 0.
            - let edge_strength(r,c) == sqrt(pow(horz[r][c],2) + pow(vert[r][c],2))
              (i.e. The Euclidean norm of the gradient)
            - let OUT denote the returned image.
            - for all valid r and c:
                - if (edge_strength(r,c) is at a maximum with respect to its 2 neighboring
                  pixels along the line indicated by the image gradient vector (horz[r][c],vert[r][c])) then
                    - OUT[r][c] == edge_strength(r,c)
                - else
                    - OUT[r][c] == 0
    !*/
    m.def("suppress_non_maximum_edges", &py_suppress_non_maximum_edges, docs, py::arg("horz"), py::arg("vert"));
    m.def("suppress_non_maximum_edges", &py_suppress_non_maximum_edges2,
        "Performs: return suppress_non_maximum_edges(horz_and_vert_gradients[0], horz_and_vert_gradients[1])",
        py::arg("horz_and_vert_gradients"));



    docs =
"requires \n\
    - non_max_suppression_radius >= 0 \n\
ensures \n\
    - Scans the given image and finds all pixels with values >= thresh that are \n\
      also local maximums within their 8-connected neighborhood of the image.  Such \n\
      pixels are collected, sorted in decreasing order of their pixel values, and \n\
      then non-maximum suppression is applied to this list of points using the \n\
      given non_max_suppression_radius.  The final list of peaks is then returned. \n\
 \n\
      Therefore, the returned list, V, will have these properties: \n\
        - len(V) == the number of peaks found in the image. \n\
        - When measured in image coordinates, no elements of V are within \n\
          non_max_suppression_radius distance of each other.  That is, for all valid i!=j \n\
          it is true that length(V[i]-V[j]) > non_max_suppression_radius. \n\
        - For each element of V, that element has the maximum pixel value of all \n\
          pixels in the ball centered on that pixel with radius \n\
          non_max_suppression_radius.";
    /*!
        requires
            - non_max_suppression_radius >= 0
        ensures
            - Scans the given image and finds all pixels with values >= thresh that are
              also local maximums within their 8-connected neighborhood of the image.  Such
              pixels are collected, sorted in decreasing order of their pixel values, and
              then non-maximum suppression is applied to this list of points using the
              given non_max_suppression_radius.  The final list of peaks is then returned.

              Therefore, the returned list, V, will have these properties:
                - len(V) == the number of peaks found in the image.
                - When measured in image coordinates, no elements of V are within
                  non_max_suppression_radius distance of each other.  That is, for all valid i!=j
                  it is true that length(V[i]-V[j]) > non_max_suppression_radius.
                - For each element of V, that element has the maximum pixel value of all
                  pixels in the ball centered on that pixel with radius
                  non_max_suppression_radius.
    !*/
    m.def("find_peaks", &py_find_peaks<float>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
    m.def("find_peaks", &py_find_peaks<double>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
    m.def("find_peaks", &py_find_peaks<uint8_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
    m.def("find_peaks", &py_find_peaks<uint16_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
    m.def("find_peaks", &py_find_peaks<uint32_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
    m.def("find_peaks", &py_find_peaks<uint64_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
    m.def("find_peaks", &py_find_peaks<int8_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
    m.def("find_peaks", &py_find_peaks<int16_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
    m.def("find_peaks", &py_find_peaks<int32_t>, py::arg("img"), py::arg("non_max_suppression_radius"), py::arg("thresh"));
    m.def("find_peaks", &py_find_peaks<int64_t>, py::arg("img"), docs, py::arg("non_max_suppression_radius"), py::arg("thresh"));

    m.def("find_peaks", &py_find_peaks2<float>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
    m.def("find_peaks", &py_find_peaks2<double>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
    m.def("find_peaks", &py_find_peaks2<uint8_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
    m.def("find_peaks", &py_find_peaks2<uint16_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
    m.def("find_peaks", &py_find_peaks2<uint32_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
    m.def("find_peaks", &py_find_peaks2<uint64_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
    m.def("find_peaks", &py_find_peaks2<int8_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
    m.def("find_peaks", &py_find_peaks2<int16_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
    m.def("find_peaks", &py_find_peaks2<int32_t>, py::arg("img"), py::arg("non_max_suppression_radius")=0);
    m.def("find_peaks", &py_find_peaks2<int64_t>, py::arg("img"),
        "performs: return find_peaks(img, non_max_suppression_radius, partition_pixels(img))",
        py::arg("non_max_suppression_radius")=0);



    docs =
"Applies the sobel edge detector to the given input image and returns two gradient \n\
images in a tuple.  The first contains the x gradients and the second contains the \n\
y gradients of the image.";
    /*!
         Applies the sobel edge detector to the given input image and returns two gradient
         images in a tuple.  The first contains the x gradients and the second contains the
         y gradients of the image.
    !*/
    m.def("sobel_edge_detector", &py_sobel_edge_detector<uint8_t>, py::arg("img"));
    m.def("sobel_edge_detector", &py_sobel_edge_detector<uint16_t>, py::arg("img"));
    m.def("sobel_edge_detector", &py_sobel_edge_detector<uint32_t>, py::arg("img"));
    m.def("sobel_edge_detector", &py_sobel_edge_detector<uint64_t>, py::arg("img"));
    m.def("sobel_edge_detector", &py_sobel_edge_detector<int8_t>, py::arg("img"));
    m.def("sobel_edge_detector", &py_sobel_edge_detector<int16_t>, py::arg("img"));
    m.def("sobel_edge_detector", &py_sobel_edge_detector<int32_t>, py::arg("img"));
    m.def("sobel_edge_detector", &py_sobel_edge_detector<int64_t>, py::arg("img"));
    m.def("sobel_edge_detector", &py_sobel_edge_detector<float>, py::arg("img"));
    m.def("sobel_edge_detector", &py_sobel_edge_detector<double>, docs, py::arg("img"));


    docs =
"Applies hysteresis thresholding to img and returns the results.  In particular, \n\
pixels in img with values >= upper_thresh have an output value of 255 and all \n\
others have a value of 0 unless they are >= lower_thresh and are connected to a \n\
pixel with a value >= upper_thresh, in which case they have a value of 255.  Here \n\
pixels are connected if there is a path between them composed of pixels that would \n\
receive an output of 255.";
    /*!
        Applies hysteresis thresholding to img and returns the results.  In particular,
        pixels in img with values >= upper_thresh have an output value of 255 and all
        others have a value of 0 unless they are >= lower_thresh and are connected to a
        pixel with a value >= upper_thresh, in which case they have a value of 255.  Here
        pixels are connected if there is a path between them composed of pixels that would
        receive an output of 255.
    !*/
    m.def("hysteresis_threshold", &py_hysteresis_threshold<uint8_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold<uint16_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold<uint32_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold<uint64_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold<int8_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold<int16_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold<int32_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold<int64_t>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold<float>, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold<double>, docs, py::arg("img"), py::arg("lower_thresh"), py::arg("upper_thresh"));

    docs =
"performs: return hysteresis_threshold(img, t1, t2) where the thresholds \n\
are first obtained by calling [t1, t2]=partition_pixels(img).";
    /*!
        performs: return hysteresis_threshold(img, t1, t2) where the thresholds
        are first obtained by calling [t1, t2]=partition_pixels(img).
    !*/
    m.def("hysteresis_threshold", &py_hysteresis_threshold2<uint8_t>, py::arg("img"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold2<uint16_t>, py::arg("img"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold2<uint32_t>, py::arg("img"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold2<uint64_t>, py::arg("img"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold2<int8_t>, py::arg("img"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold2<int16_t>, py::arg("img"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold2<int32_t>, py::arg("img"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold2<int64_t>, py::arg("img"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold2<float>, py::arg("img"));
    m.def("hysteresis_threshold", &py_hysteresis_threshold2<double>, docs, py::arg("img"));
}