File size: 4,947 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
/*
This is the program that created the http://dlib.net/files/shape_predictor_5_face_landmarks.dat.bz2 model file.
*/
#include <dlib/image_processing/frontal_face_detector.h>
#include <dlib/image_processing.h>
#include <dlib/console_progress_indicator.h>
#include <dlib/data_io.h>
#include <dlib/statistics.h>
#include <iostream>
using namespace dlib;
using namespace std;
// ----------------------------------------------------------------------------------------
std::vector<std::vector<double> > get_interocular_distances (
const std::vector<std::vector<full_object_detection> >& objects
);
/*!
ensures
- returns an object D such that:
- D[i][j] == the distance, in pixels, between the eyes for the face represented
by objects[i][j].
!*/
// ----------------------------------------------------------------------------------------
template <
typename image_array_type,
typename T
>
void add_image_left_right_flips_5points (
image_array_type& images,
std::vector<std::vector<T> >& objects
)
{
// make sure requires clause is not broken
DLIB_ASSERT( images.size() == objects.size(),
"\t void add_image_left_right_flips()"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t images.size(): " << images.size()
<< "\n\t objects.size(): " << objects.size()
);
typename image_array_type::value_type temp;
std::vector<T> rects;
const unsigned long num = images.size();
for (unsigned long j = 0; j < num; ++j)
{
const point_transform_affine tran = flip_image_left_right(images[j], temp);
rects.clear();
for (unsigned long i = 0; i < objects[j].size(); ++i)
{
rects.push_back(impl::tform_object(tran, objects[j][i]));
DLIB_CASSERT(rects.back().num_parts() == 5);
swap(rects.back().part(0), rects.back().part(2));
swap(rects.back().part(1), rects.back().part(3));
}
images.push_back(temp);
objects.push_back(rects);
}
}
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv)
{
try
{
if (argc != 2)
{
cout << "give the path to the training data folder" << endl;
return 0;
}
const std::string faces_directory = argv[1];
dlib::array<array2d<unsigned char> > images_train, images_test;
std::vector<std::vector<full_object_detection> > faces_train, faces_test;
std::vector<std::string> parts_list;
load_image_dataset(images_train, faces_train, faces_directory+"/train_cleaned.xml", parts_list);
load_image_dataset(images_test, faces_test, faces_directory+"/test_cleaned.xml");
add_image_left_right_flips_5points(images_train, faces_train);
add_image_left_right_flips_5points(images_test, faces_test);
add_image_rotations(linspace(-20,20,3)*pi/180.0,images_train, faces_train);
cout << "num training images: "<< images_train.size() << endl;
for (auto& part : parts_list)
cout << part << endl;
shape_predictor_trainer trainer;
trainer.set_oversampling_amount(40);
trainer.set_num_test_splits(150);
trainer.set_feature_pool_size(800);
trainer.set_num_threads(4);
trainer.set_cascade_depth(15);
trainer.be_verbose();
// Now finally generate the shape model
shape_predictor sp = trainer.train(images_train, faces_train);
serialize("shape_predictor_5_face_landmarks.dat") << sp;
cout << "mean training error: "<<
test_shape_predictor(sp, images_train, faces_train, get_interocular_distances(faces_train)) << endl;
cout << "mean testing error: "<<
test_shape_predictor(sp, images_test, faces_test, get_interocular_distances(faces_test)) << endl;
}
catch (exception& e)
{
cout << "\nexception thrown!" << endl;
cout << e.what() << endl;
}
}
// ----------------------------------------------------------------------------------------
double interocular_distance (
const full_object_detection& det
)
{
dlib::vector<double,2> l, r;
// left eye
l = (det.part(0) + det.part(1))/2;
// right eye
r = (det.part(2) + det.part(3))/2;
return length(l-r);
}
std::vector<std::vector<double> > get_interocular_distances (
const std::vector<std::vector<full_object_detection> >& objects
)
{
std::vector<std::vector<double> > temp(objects.size());
for (unsigned long i = 0; i < objects.size(); ++i)
{
for (unsigned long j = 0; j < objects[i].size(); ++j)
{
temp[i].push_back(interocular_distance(objects[i][j]));
}
}
return temp;
}
// ----------------------------------------------------------------------------------------
|