File size: 7,506 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
/*
This example shows how to do instance segmentation on an image using net pretrained
on the PASCAL VOC2012 dataset. For an introduction to what instance segmentation is,
see the accompanying header file dnn_instance_segmentation_ex.h.
Instructions how to run the example:
1. Download the PASCAL VOC2012 data, and untar it somewhere.
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
2. Build the dnn_instance_segmentation_train_ex example program.
3. Run:
./dnn_instance_segmentation_train_ex /path/to/VOC2012
4. Wait while the network is being trained.
5. Build the dnn_instance_segmentation_ex example program.
6. Run:
./dnn_instance_segmentation_ex /path/to/VOC2012-or-other-images
An alternative to steps 2-4 above is to download a pre-trained network
from here: http://dlib.net/files/instance_segmentation_voc2012net_v2.dnn
It would be a good idea to become familiar with dlib's DNN tooling before reading this
example. So you should read dnn_introduction_ex.cpp and dnn_introduction2_ex.cpp
before reading this example program.
*/
#include "dnn_instance_segmentation_ex.h"
#include "pascal_voc_2012.h"
#include <iostream>
#include <dlib/data_io.h>
#include <dlib/gui_widgets.h>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv) try
{
if (argc != 2)
{
cout << "You call this program like this: " << endl;
cout << "./dnn_instance_segmentation_train_ex /path/to/images" << endl;
cout << endl;
cout << "You will also need a trained '" << instance_segmentation_net_filename << "' file." << endl;
cout << "You can either train it yourself (see example program" << endl;
cout << "dnn_instance_segmentation_train_ex), or download a" << endl;
cout << "copy from here: http://dlib.net/files/" << instance_segmentation_net_filename << endl;
return 1;
}
// Read the file containing the trained networks from the working directory.
det_anet_type det_net;
std::map<std::string, seg_bnet_type> seg_nets_by_class;
deserialize(instance_segmentation_net_filename) >> det_net >> seg_nets_by_class;
// Show inference results in a window.
image_window win;
matrix<rgb_pixel> input_image;
// Find supported image files.
const std::vector<file> files = dlib::get_files_in_directory_tree(argv[1],
dlib::match_endings(".jpeg .jpg .png"));
dlib::rand rnd;
cout << "Found " << files.size() << " images, processing..." << endl;
for (const file& file : files)
{
// Load the input image.
load_image(input_image, file.full_name());
// Find instances in the input image
const auto instances = det_net(input_image);
matrix<rgb_pixel> rgb_label_image;
matrix<float> label_image_confidence;
matrix<rgb_pixel> input_chip;
rgb_label_image.set_size(input_image.nr(), input_image.nc());
rgb_label_image = rgb_pixel(0, 0, 0);
label_image_confidence.set_size(input_image.nr(), input_image.nc());
label_image_confidence = 0.0;
bool found_something = false;
for (const auto& instance : instances)
{
if (!found_something)
{
cout << "Found ";
found_something = true;
}
else
{
cout << ", ";
}
cout << instance.label;
const auto cropping_rect = get_cropping_rect(instance.rect);
const chip_details chip_details(cropping_rect, chip_dims(seg_dim, seg_dim));
extract_image_chip(input_image, chip_details, input_chip, interpolate_bilinear());
const auto i = seg_nets_by_class.find(instance.label);
if (i == seg_nets_by_class.end())
{
// per-class segmentation net not found, so we must be using the same net for all classes
// (see bool separate_seg_net_for_each_class in dnn_instance_segmentation_train_ex.cpp)
DLIB_CASSERT(seg_nets_by_class.size() == 1);
DLIB_CASSERT(seg_nets_by_class.begin()->first == "");
}
auto& seg_net = i != seg_nets_by_class.end()
? i->second // use the segmentation net trained for this class
: seg_nets_by_class.begin()->second; // use the same segmentation net for all classes
const auto mask = seg_net(input_chip);
const rgb_pixel random_color(
rnd.get_random_8bit_number(),
rnd.get_random_8bit_number(),
rnd.get_random_8bit_number()
);
dlib::matrix<float> resized_mask(
static_cast<int>(chip_details.rect.height()),
static_cast<int>(chip_details.rect.width())
);
dlib::resize_image(mask, resized_mask);
for (int r = 0; r < resized_mask.nr(); ++r)
{
for (int c = 0; c < resized_mask.nc(); ++c)
{
const auto new_confidence = resized_mask(r, c);
if (new_confidence > 0)
{
const auto y = chip_details.rect.top() + r;
const auto x = chip_details.rect.left() + c;
if (y >= 0 && y < rgb_label_image.nr() && x >= 0 && x < rgb_label_image.nc())
{
auto& current_confidence = label_image_confidence(y, x);
if (new_confidence > current_confidence)
{
auto rgb_label = random_color;
const auto baseline_confidence = 5;
if (new_confidence < baseline_confidence)
{
// Scale label intensity if confidence isn't high
rgb_label.red *= new_confidence / baseline_confidence;
rgb_label.green *= new_confidence / baseline_confidence;
rgb_label.blue *= new_confidence / baseline_confidence;
}
rgb_label_image(y, x) = rgb_label;
current_confidence = new_confidence;
}
}
}
}
}
const Voc2012class& voc2012_class = find_voc2012_class(
[&instance](const Voc2012class& candidate) {
return candidate.classlabel == instance.label;
}
);
dlib::draw_rectangle(rgb_label_image, instance.rect, voc2012_class.rgb_label, 1);
}
// Show the input image on the left, and the predicted RGB labels on the right.
win.set_image(join_rows(input_image, rgb_label_image));
if (!instances.empty())
{
cout << " in " << file.name() << " - hit enter to process the next image";
cin.get();
}
}
}
catch(std::exception& e)
{
cout << e.what() << endl;
}
|