File size: 33,438 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
#include <dlib/xml_parser.h>
#include <dlib/matrix.h>
#include <fstream>
#include <vector>
#include <stack>
#include <set>
#include <dlib/string.h>
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------------------
// Only these computational layers have parameters
const std::set<string> comp_tags_with_params = {"fc", "fc_no_bias", "con", "affine_con", "affine_fc", "affine", "prelu"};
struct layer
{
string type; // comp, loss, or input
int idx;
matrix<long,4,1> output_tensor_shape; // (N,K,NR,NC)
string detail_name; // The name of the tag inside the layer tag. e.g. fc, con, max_pool, input_rgb_image.
std::map<string,double> attributes;
matrix<float> params;
long tag_id = -1; // If this isn't -1 then it means this layer was tagged, e.g. wrapped with tag2<> giving tag_id==2
long skip_id = -1; // If this isn't -1 then it means this layer draws its inputs from
// the most recent layer with tag_id==skip_id rather than its immediate predecessor.
double attribute (const string& key) const
{
auto i = attributes.find(key);
if (i != attributes.end())
return i->second;
else
throw dlib::error("Layer doesn't have the requested attribute '" + key + "'.");
}
string caffe_layer_name() const
{
if (type == "input")
return "data";
else
return detail_name+to_string(idx);
}
};
// ----------------------------------------------------------------------------------------
std::vector<layer> parse_dlib_xml(
const matrix<long,4,1>& input_tensor_shape,
const string& xml_filename
);
// ----------------------------------------------------------------------------------------
template <typename iterator>
const layer& find_layer (
iterator i,
long tag_id
)
/*!
requires
- i is a reverse iterator pointing to a layer in the list of layers produced by parse_dlib_xml().
- i is not an input layer.
ensures
- if (tag_id == -1) then
- returns the previous layer (i.e. closer to the input) to layer i.
- else
- returns the previous layer (i.e. closer to the input) to layer i with the
given tag_id.
!*/
{
if (tag_id == -1)
{
return *(i-1);
}
else
{
while(true)
{
i--;
// if we hit the end of the network before we found what we were looking for
if (i->tag_id == tag_id)
return *i;
if (i->type == "input")
throw dlib::error("Network definition is bad, a layer wanted to skip back to a non-existing layer.");
}
}
}
template <typename iterator>
const layer& find_input_layer (iterator i) { return find_layer(i, i->skip_id); }
template <typename iterator>
string find_layer_caffe_name (
iterator i,
long tag_id
)
{
return find_layer(i,tag_id).caffe_layer_name();
}
template <typename iterator>
string find_input_layer_caffe_name (iterator i) { return find_input_layer(i).caffe_layer_name(); }
// ----------------------------------------------------------------------------------------
template <typename iterator>
void compute_caffe_padding_size_for_pooling_layer(
const iterator& i,
long& pad_x,
long& pad_y
)
/*!
requires
- i is a reverse iterator pointing to a layer in the list of layers produced by parse_dlib_xml().
- i is not an input layer.
ensures
- Caffe is funny about how it computes the output sizes from pooling layers.
Rather than using the normal formula for output row/column sizes used by all the
other layers (and what dlib uses everywhere),
floor((bottom_size + 2*pad - kernel_size) / stride) + 1
it instead uses:
ceil((bottom_size + 2*pad - kernel_size) / stride) + 1
These are the same except when the stride!=1. In that case we need to figure out
how to change the padding value so that the output size of the caffe padding
layer will match the output size of the dlib padding layer. That is what this
function does.
!*/
{
const long dlib_output_nr = i->output_tensor_shape(2);
const long dlib_output_nc = i->output_tensor_shape(3);
const long bottom_nr = find_input_layer(i).output_tensor_shape(2);
const long bottom_nc = find_input_layer(i).output_tensor_shape(3);
const long padding_x = (long)i->attribute("padding_x");
const long padding_y = (long)i->attribute("padding_y");
const long stride_x = (long)i->attribute("stride_x");
const long stride_y = (long)i->attribute("stride_y");
long kernel_w = i->attribute("nc");
long kernel_h = i->attribute("nr");
if (kernel_w == 0)
kernel_w = bottom_nc;
if (kernel_h == 0)
kernel_h = bottom_nr;
// The correct padding for caffe could be anything in the range [0,padding_x]. So
// check what gives the correct output size and use that.
for (pad_x = 0; pad_x <= padding_x; ++pad_x)
{
long caffe_out_size = ceil((bottom_nc + 2.0*pad_x - kernel_w)/(double)stride_x) + 1;
if (caffe_out_size == dlib_output_nc)
break;
}
if (pad_x == padding_x+1)
{
std::ostringstream sout;
sout << "No conversion between dlib pooling layer parameters and caffe pooling layer parameters found for layer " << to_string(i->idx) << endl;
sout << "dlib_output_nc: " << dlib_output_nc << endl;
sout << "bottom_nc: " << bottom_nc << endl;
sout << "padding_x: " << padding_x << endl;
sout << "stride_x: " << stride_x << endl;
sout << "kernel_w: " << kernel_w << endl;
sout << "pad_x: " << pad_x << endl;
throw dlib::error(sout.str());
}
for (pad_y = 0; pad_y <= padding_y; ++pad_y)
{
long caffe_out_size = ceil((bottom_nr + 2.0*pad_y - kernel_h)/(double)stride_y) + 1;
if (caffe_out_size == dlib_output_nr)
break;
}
if (pad_y == padding_y+1)
{
std::ostringstream sout;
sout << "No conversion between dlib pooling layer parameters and caffe pooling layer parameters found for layer " << to_string(i->idx) << endl;
sout << "dlib_output_nr: " << dlib_output_nr << endl;
sout << "bottom_nr: " << bottom_nr << endl;
sout << "padding_y: " << padding_y << endl;
sout << "stride_y: " << stride_y << endl;
sout << "kernel_h: " << kernel_h << endl;
sout << "pad_y: " << pad_y << endl;
throw dlib::error(sout.str());
}
}
// ----------------------------------------------------------------------------------------
void convert_dlib_xml_to_caffe_python_code(
const string& xml_filename,
const long N,
const long K,
const long NR,
const long NC
)
{
const string out_filename = left_substr(xml_filename,".") + "_dlib_to_caffe_model.py";
const string out_weights_filename = left_substr(xml_filename,".") + "_dlib_to_caffe_model.weights";
cout << "Writing python part of model to " << out_filename << endl;
cout << "Writing weights part of model to " << out_weights_filename << endl;
ofstream fout(out_filename);
fout.precision(9);
const auto layers = parse_dlib_xml({N,K,NR,NC}, xml_filename);
fout << "#\n";
fout << "# !!! This file was automatically generated by dlib's tools/convert_dlib_nets_to_caffe utility. !!!\n";
fout << "# !!! It contains all the information from a dlib DNN network and lets you save it as a cafe model. !!!\n";
fout << "#\n";
fout << "import caffe " << endl;
fout << "from caffe import layers as L, params as P" << endl;
fout << "import numpy as np" << endl;
// dlib nets don't commit to a batch size, so just use 1 as the default
fout << "\n# Input tensor dimensions" << endl;
fout << "input_batch_size = " << N << ";" << endl;
if (layers.back().detail_name == "input_rgb_image")
{
fout << "input_num_channels = 3;" << endl;
fout << "input_num_rows = "<<NR<<";" << endl;
fout << "input_num_cols = "<<NC<<";" << endl;
if (K != 3)
throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==3, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
}
else if (layers.back().detail_name == "input_rgb_image_sized")
{
fout << "input_num_channels = 3;" << endl;
fout << "input_num_rows = " << layers.back().attribute("nr") << ";" << endl;
fout << "input_num_cols = " << layers.back().attribute("nc") << ";" << endl;
if (NR != layers.back().attribute("nr"))
throw dlib::error("The dlib model requires input tensors with NUM_ROWS=="+to_string((long)layers.back().attribute("nr"))+", but the dtoc command line specified NUM_ROWS=="+to_string(NR));
if (NC != layers.back().attribute("nc"))
throw dlib::error("The dlib model requires input tensors with NUM_COLUMNS=="+to_string((long)layers.back().attribute("nc"))+", but the dtoc command line specified NUM_COLUMNS=="+to_string(NC));
if (K != 3)
throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==3, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
}
else if (layers.back().detail_name == "input")
{
fout << "input_num_channels = 1;" << endl;
fout << "input_num_rows = "<<NR<<";" << endl;
fout << "input_num_cols = "<<NC<<";" << endl;
if (K != 1)
throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==1, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
}
else
{
throw dlib::error("No known transformation from dlib's " + layers.back().detail_name + " layer to caffe.");
}
fout << endl;
fout << "# Call this function to write the dlib DNN model out to file as a pair of caffe\n";
fout << "# definition and weight files. You can then use the network by loading it with\n";
fout << "# this statement: \n";
fout << "# net = caffe.Net(def_file, weights_file, caffe.TEST);\n";
fout << "#\n";
fout << "def save_as_caffe_model(def_file, weights_file):\n";
fout << " with open(def_file, 'w') as f: f.write(str(make_netspec()));\n";
fout << " net = caffe.Net(def_file, caffe.TEST);\n";
fout << " set_network_weights(net);\n";
fout << " net.save(weights_file);\n\n";
fout << "###############################################################################\n";
fout << "# EVERYTHING BELOW HERE DEFINES THE DLIB MODEL PARAMETERS #\n";
fout << "###############################################################################\n\n\n";
// -----------------------------------------------------------------------------------
// The next block of code outputs python code that defines the network architecture.
// -----------------------------------------------------------------------------------
fout << "def make_netspec():" << endl;
fout << " # For reference, the only \"documentation\" about caffe layer parameters seems to be this page:\n";
fout << " # https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto\n" << endl;
fout << " n = caffe.NetSpec(); " << endl;
fout << " n.data,n.label = L.MemoryData(batch_size=input_batch_size, channels=input_num_channels, height=input_num_rows, width=input_num_cols, ntop=2)" << endl;
// iterate the layers starting with the input layer
for (auto i = layers.rbegin(); i != layers.rend(); ++i)
{
// skip input and loss layers
if (i->type == "loss" || i->type == "input")
continue;
if (i->detail_name == "con")
{
fout << " n." << i->caffe_layer_name() << " = L.Convolution(n." << find_input_layer_caffe_name(i);
fout << ", num_output=" << i->attribute("num_filters");
fout << ", kernel_w=" << i->attribute("nc");
fout << ", kernel_h=" << i->attribute("nr");
fout << ", stride_w=" << i->attribute("stride_x");
fout << ", stride_h=" << i->attribute("stride_y");
fout << ", pad_w=" << i->attribute("padding_x");
fout << ", pad_h=" << i->attribute("padding_y");
fout << ");\n";
}
else if (i->detail_name == "relu")
{
fout << " n." << i->caffe_layer_name() << " = L.ReLU(n." << find_input_layer_caffe_name(i);
fout << ");\n";
}
else if (i->detail_name == "sig")
{
fout << " n." << i->caffe_layer_name() << " = L.Sigmoid(n." << find_input_layer_caffe_name(i);
fout << ");\n";
}
else if (i->detail_name == "prelu")
{
fout << " n." << i->caffe_layer_name() << " = L.PReLU(n." << find_input_layer_caffe_name(i);
fout << ", channel_shared=True";
fout << ");\n";
}
else if (i->detail_name == "max_pool")
{
fout << " n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
fout << ", pool=P.Pooling.MAX";
if (i->attribute("nc")==0)
{
fout << ", global_pooling=True";
}
else
{
fout << ", kernel_w=" << i->attribute("nc");
fout << ", kernel_h=" << i->attribute("nr");
}
fout << ", stride_w=" << i->attribute("stride_x");
fout << ", stride_h=" << i->attribute("stride_y");
long pad_x, pad_y;
compute_caffe_padding_size_for_pooling_layer(i, pad_x, pad_y);
fout << ", pad_w=" << pad_x;
fout << ", pad_h=" << pad_y;
fout << ");\n";
}
else if (i->detail_name == "avg_pool")
{
fout << " n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
fout << ", pool=P.Pooling.AVE";
if (i->attribute("nc")==0)
{
fout << ", global_pooling=True";
}
else
{
fout << ", kernel_w=" << i->attribute("nc");
fout << ", kernel_h=" << i->attribute("nr");
}
if (i->attribute("padding_x") != 0 || i->attribute("padding_y") != 0)
{
throw dlib::error("dlib and caffe implement pooling with non-zero padding differently, so you can't convert a "
"network with such pooling layers.");
}
fout << ", stride_w=" << i->attribute("stride_x");
fout << ", stride_h=" << i->attribute("stride_y");
long pad_x, pad_y;
compute_caffe_padding_size_for_pooling_layer(i, pad_x, pad_y);
fout << ", pad_w=" << pad_x;
fout << ", pad_h=" << pad_y;
fout << ");\n";
}
else if (i->detail_name == "fc")
{
fout << " n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
fout << ", num_output=" << i->attribute("num_outputs");
fout << ", bias_term=True";
fout << ");\n";
}
else if (i->detail_name == "fc_no_bias")
{
fout << " n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
fout << ", num_output=" << i->attribute("num_outputs");
fout << ", bias_term=False";
fout << ");\n";
}
else if (i->detail_name == "bn_con" || i->detail_name == "bn_fc")
{
throw dlib::error("Conversion from dlib's batch norm layers to caffe's isn't supported. Instead, "
"you should put your dlib network into 'test mode' by switching batch norm layers to affine layers. "
"Then you can convert that 'test mode' network to caffe.");
}
else if (i->detail_name == "affine_con")
{
fout << " n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
fout << ", bias_term=True";
fout << ");\n";
}
else if (i->detail_name == "affine_fc")
{
fout << " n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
fout << ", bias_term=True";
fout << ");\n";
}
else if (i->detail_name == "add_prev")
{
auto in_shape1 = find_input_layer(i).output_tensor_shape;
auto in_shape2 = find_layer(i,i->attribute("tag")).output_tensor_shape;
if (in_shape1 != in_shape2)
{
// if only the number of channels differs then we will use a dummy layer to
// pad with zeros. But otherwise we will throw an error.
if (in_shape1(0) == in_shape2(0) &&
in_shape1(2) == in_shape2(2) &&
in_shape1(3) == in_shape2(3))
{
fout << " n." << i->caffe_layer_name() << "_zeropad = L.DummyData(num=" << in_shape1(0);
fout << ", channels="<<std::abs(in_shape1(1)-in_shape2(1));
fout << ", height="<<in_shape1(2);
fout << ", width="<<in_shape1(3);
fout << ");\n";
string smaller_layer = find_input_layer_caffe_name(i);
string bigger_layer = find_layer_caffe_name(i, i->attribute("tag"));
if (in_shape1(1) > in_shape2(1))
swap(smaller_layer, bigger_layer);
fout << " n." << i->caffe_layer_name() << "_concat = L.Concat(n." << smaller_layer;
fout << ", n." << i->caffe_layer_name() << "_zeropad";
fout << ");\n";
fout << " n." << i->caffe_layer_name() << " = L.Eltwise(n." << i->caffe_layer_name() << "_concat";
fout << ", n." << bigger_layer;
fout << ", operation=P.Eltwise.SUM";
fout << ");\n";
}
else
{
std::ostringstream sout;
sout << "The dlib network contained an add_prev layer (layer idx " << i->idx << ") that adds two previous ";
sout << "layers with different output tensor dimensions. Caffe's equivalent layer, Eltwise, doesn't support ";
sout << "adding layers together with different dimensions. In the special case where the only difference is ";
sout << "in the number of channels, this converter program will add a dummy layer that outputs a tensor full of zeros ";
sout << "and concat it appropriately so this will work. However, this network you are converting has tensor dimensions ";
sout << "different in values other than the number of channels. In particular, here are the two tensor shapes (batch size, channels, rows, cols): ";
std::ostringstream sout2;
sout2 << wrap_string(sout.str()) << endl;
sout2 << trans(in_shape1);
sout2 << trans(in_shape2);
throw dlib::error(sout2.str());
}
}
else
{
fout << " n." << i->caffe_layer_name() << " = L.Eltwise(n." << find_input_layer_caffe_name(i);
fout << ", n." << find_layer_caffe_name(i, i->attribute("tag"));
fout << ", operation=P.Eltwise.SUM";
fout << ");\n";
}
}
else
{
throw dlib::error("No known transformation from dlib's " + i->detail_name + " layer to caffe.");
}
}
fout << " return n.to_proto();\n\n" << endl;
// -----------------------------------------------------------------------------------
// The next block of code outputs python code that populates all the filter weights.
// -----------------------------------------------------------------------------------
ofstream fweights(out_weights_filename, ios::binary);
fout << "def set_network_weights(net):\n";
fout << " # populate network parameters\n";
fout << " f = open('"<<out_weights_filename<<"', 'rb');\n";
// iterate the layers starting with the input layer
for (auto i = layers.rbegin(); i != layers.rend(); ++i)
{
// skip input and loss layers
if (i->type == "loss" || i->type == "input")
continue;
if (i->detail_name == "con")
{
const long num_filters = i->attribute("num_filters");
matrix<float> weights = trans(rowm(i->params,range(0,i->params.size()-num_filters-1)));
matrix<float> biases = trans(rowm(i->params,range(i->params.size()-num_filters, i->params.size()-1)));
fweights.write((char*)&weights(0,0), weights.size()*sizeof(float));
fweights.write((char*)&biases(0,0), biases.size()*sizeof(float));
// main filter weights
fout << " p = np.fromfile(f, dtype='float32', count="<<weights.size()<<");\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
// biases
fout << " p = np.fromfile(f, dtype='float32', count="<<biases.size()<<");\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
}
else if (i->detail_name == "fc")
{
matrix<float> weights = trans(rowm(i->params, range(0,i->params.nr()-2)));
matrix<float> biases = rowm(i->params, i->params.nr()-1);
fweights.write((char*)&weights(0,0), weights.size()*sizeof(float));
fweights.write((char*)&biases(0,0), biases.size()*sizeof(float));
// main filter weights
fout << " p = np.fromfile(f, dtype='float32', count="<<weights.size()<<");\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
// biases
fout << " p = np.fromfile(f, dtype='float32', count="<<biases.size()<<");\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
}
else if (i->detail_name == "fc_no_bias")
{
matrix<float> weights = trans(i->params);
fweights.write((char*)&weights(0,0), weights.size()*sizeof(float));
// main filter weights
fout << " p = np.fromfile(f, dtype='float32', count="<<weights.size()<<");\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
}
else if (i->detail_name == "affine_con" || i->detail_name == "affine_fc")
{
const long dims = i->params.size()/2;
matrix<float> gamma = trans(rowm(i->params,range(0,dims-1)));
matrix<float> beta = trans(rowm(i->params,range(dims, 2*dims-1)));
fweights.write((char*)&gamma(0,0), gamma.size()*sizeof(float));
fweights.write((char*)&beta(0,0), beta.size()*sizeof(float));
// set gamma weights
fout << " p = np.fromfile(f, dtype='float32', count="<<gamma.size()<<");\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
// set beta weights
fout << " p = np.fromfile(f, dtype='float32', count="<<beta.size()<<");\n";
fout << " p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
fout << " net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
}
else if (i->detail_name == "prelu")
{
const double param = i->params(0);
// main filter weights
fout << " tmp = net.params['"<<i->caffe_layer_name()<<"'][0].data.view();\n";
fout << " tmp.shape = 1;\n";
fout << " tmp[0] = "<<param<<";\n";
}
}
}
// ----------------------------------------------------------------------------------------
int main(int argc, char** argv) try
{
if (argc != 6)
{
cout << "To use this program, give it an xml file generated by dlib::net_to_xml() " << endl;
cout << "and then 4 numbers that indicate the input tensor size. It will convert " << endl;
cout << "the xml file into a python file that outputs a caffe model containing the dlib model." << endl;
cout << "For example, you might run this program like this: " << endl;
cout << " ./dtoc lenet.xml 1 1 28 28" << endl;
cout << "would convert the lenet.xml model into a caffe model with an input tensor of shape(1,1,28,28)" << endl;
cout << "where the shape values are (num samples in batch, num channels, num rows, num columns)." << endl;
return 0;
}
const long N = sa = argv[2];
const long K = sa = argv[3];
const long NR = sa = argv[4];
const long NC = sa = argv[5];
convert_dlib_xml_to_caffe_python_code(argv[1], N, K, NR, NC);
return 0;
}
catch(std::exception& e)
{
cout << "\n\n*************** ERROR CONVERTING TO CAFFE ***************\n" << e.what() << endl;
return 1;
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
class doc_handler : public document_handler
{
public:
std::vector<layer> layers;
bool seen_first_tag = false;
layer next_layer;
std::stack<string> current_tag;
long tag_id = -1;
virtual void start_document (
)
{
layers.clear();
seen_first_tag = false;
tag_id = -1;
}
virtual void end_document (
) { }
virtual void start_element (
const unsigned long /*line_number*/,
const std::string& name,
const dlib::attribute_list& atts
)
{
if (!seen_first_tag)
{
if (name != "net")
throw dlib::error("The top level XML tag must be a 'net' tag.");
seen_first_tag = true;
}
if (name == "layer")
{
next_layer = layer();
if (atts["type"] == "skip")
{
// Don't make a new layer, just apply the tag id to the previous layer
if (layers.size() == 0)
throw dlib::error("A skip layer was found as the first layer, but the first layer should be an input layer.");
layers.back().skip_id = sa = atts["id"];
// We intentionally leave next_layer empty so the end_element() callback
// don't add it as another layer when called.
}
else if (atts["type"] == "tag")
{
// Don't make a new layer, just remember the tag id so we can apply it on
// the next layer.
tag_id = sa = atts["id"];
// We intentionally leave next_layer empty so the end_element() callback
// don't add it as another layer when called.
}
else
{
next_layer.idx = sa = atts["idx"];
next_layer.type = atts["type"];
if (tag_id != -1)
{
next_layer.tag_id = tag_id;
tag_id = -1;
}
}
}
else if (current_tag.size() != 0 && current_tag.top() == "layer")
{
next_layer.detail_name = name;
// copy all the XML tag's attributes into the layer struct
atts.reset();
while (atts.move_next())
next_layer.attributes[atts.element().key()] = sa = atts.element().value();
}
current_tag.push(name);
}
virtual void end_element (
const unsigned long /*line_number*/,
const std::string& name
)
{
current_tag.pop();
if (name == "layer" && next_layer.type.size() != 0)
layers.push_back(next_layer);
}
virtual void characters (
const std::string& data
)
{
if (current_tag.size() == 0)
return;
if (comp_tags_with_params.count(current_tag.top()) != 0)
{
istringstream sin(data);
sin >> next_layer.params;
}
}
virtual void processing_instruction (
const unsigned long /*line_number*/,
const std::string& /*target*/,
const std::string& /*data*/
)
{
}
};
// ----------------------------------------------------------------------------------------
void compute_output_tensor_shapes(const matrix<long,4,1>& input_tensor_shape, std::vector<layer>& layers)
{
DLIB_CASSERT(layers.back().type == "input");
layers.back().output_tensor_shape = input_tensor_shape;
for (auto i = ++layers.rbegin(); i != layers.rend(); ++i)
{
const auto input_shape = find_input_layer(i).output_tensor_shape;
if (i->type == "comp")
{
if (i->detail_name == "fc" || i->detail_name == "fc_no_bias")
{
long num_outputs = i->attribute("num_outputs");
i->output_tensor_shape = {input_shape(0), num_outputs, 1, 1};
}
else if (i->detail_name == "con")
{
long num_filters = i->attribute("num_filters");
long filter_nc = i->attribute("nc");
long filter_nr = i->attribute("nr");
long stride_x = i->attribute("stride_x");
long stride_y = i->attribute("stride_y");
long padding_x = i->attribute("padding_x");
long padding_y = i->attribute("padding_y");
long nr = 1+(input_shape(2) + 2*padding_y - filter_nr)/stride_y;
long nc = 1+(input_shape(3) + 2*padding_x - filter_nc)/stride_x;
i->output_tensor_shape = {input_shape(0), num_filters, nr, nc};
}
else if (i->detail_name == "max_pool" || i->detail_name == "avg_pool")
{
long filter_nc = i->attribute("nc");
long filter_nr = i->attribute("nr");
long stride_x = i->attribute("stride_x");
long stride_y = i->attribute("stride_y");
long padding_x = i->attribute("padding_x");
long padding_y = i->attribute("padding_y");
if (filter_nc != 0)
{
long nr = 1+(input_shape(2) + 2*padding_y - filter_nr)/stride_y;
long nc = 1+(input_shape(3) + 2*padding_x - filter_nc)/stride_x;
i->output_tensor_shape = {input_shape(0), input_shape(1), nr, nc};
}
else // if we are filtering the whole input down to one thing
{
i->output_tensor_shape = {input_shape(0), input_shape(1), 1, 1};
}
}
else if (i->detail_name == "add_prev")
{
auto aux_shape = find_layer(i, i->attribute("tag")).output_tensor_shape;
for (long j = 0; j < input_shape.size(); ++j)
i->output_tensor_shape(j) = std::max(input_shape(j), aux_shape(j));
}
else
{
i->output_tensor_shape = input_shape;
}
}
else
{
i->output_tensor_shape = input_shape;
}
}
}
// ----------------------------------------------------------------------------------------
std::vector<layer> parse_dlib_xml(
const matrix<long,4,1>& input_tensor_shape,
const string& xml_filename
)
{
doc_handler dh;
parse_xml(xml_filename, dh);
if (dh.layers.size() == 0)
throw dlib::error("No layers found in XML file!");
if (dh.layers.back().type != "input")
throw dlib::error("The network in the XML file is missing an input layer!");
compute_output_tensor_shapes(input_tensor_shape, dh.layers);
return dh.layers;
}
// ----------------------------------------------------------------------------------------
|