File size: 33,438 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793

#include <dlib/xml_parser.h>
#include <dlib/matrix.h>
#include <fstream>
#include <vector>
#include <stack>
#include <set>
#include <dlib/string.h>

using namespace std;
using namespace dlib;


// ----------------------------------------------------------------------------------------

// Only these computational layers have parameters
const std::set<string> comp_tags_with_params = {"fc", "fc_no_bias", "con", "affine_con", "affine_fc", "affine", "prelu"};

struct layer
{
    string type; // comp, loss, or input
    int idx;

    matrix<long,4,1> output_tensor_shape; // (N,K,NR,NC)

    string detail_name; // The name of the tag inside the layer tag. e.g. fc, con, max_pool, input_rgb_image.
    std::map<string,double> attributes;
    matrix<float> params;
    long tag_id = -1;   // If this isn't -1 then it means this layer was tagged, e.g. wrapped with tag2<> giving tag_id==2
    long skip_id = -1;  // If this isn't -1 then it means this layer draws its inputs from
                        // the most recent layer with tag_id==skip_id rather than its immediate predecessor. 

    double attribute (const string& key) const
    {
        auto i = attributes.find(key);
        if (i != attributes.end())
            return i->second;
        else
            throw dlib::error("Layer doesn't have the requested attribute '" + key + "'.");
    }

    string caffe_layer_name() const 
    { 
        if (type == "input")
            return "data";
        else
            return detail_name+to_string(idx);
    }
};

// ----------------------------------------------------------------------------------------

std::vector<layer> parse_dlib_xml(
    const matrix<long,4,1>& input_tensor_shape, 
    const string& xml_filename
);

// ----------------------------------------------------------------------------------------

template <typename iterator>
const layer& find_layer (
    iterator i,
    long tag_id
)
/*!
    requires
        - i is a reverse iterator pointing to a layer in the list of layers produced by parse_dlib_xml().
        - i is not an input layer.
    ensures
        - if (tag_id == -1) then
            - returns the previous layer (i.e. closer to the input) to layer i.
        - else
            - returns the previous layer (i.e. closer to the input) to layer i with the
              given tag_id.
!*/
{
    if (tag_id == -1)
    {
        return *(i-1);
    }
    else
    {
        while(true)
        {
            i--;
            // if we hit the end of the network before we found what we were looking for
            if (i->tag_id == tag_id)
                return *i;
            if (i->type == "input")
                throw dlib::error("Network definition is bad, a layer wanted to skip back to a non-existing layer.");
        }
    }
}

template <typename iterator>
const layer& find_input_layer (iterator i) { return find_layer(i, i->skip_id); }

template <typename iterator>
string find_layer_caffe_name (
    iterator i,
    long tag_id
)
{
    return find_layer(i,tag_id).caffe_layer_name();
}

template <typename iterator>
string find_input_layer_caffe_name (iterator i) { return find_input_layer(i).caffe_layer_name(); }

// ----------------------------------------------------------------------------------------

template <typename iterator>
void compute_caffe_padding_size_for_pooling_layer(
    const iterator& i,
    long& pad_x,
    long& pad_y
)
/*!
    requires
        - i is a reverse iterator pointing to a layer in the list of layers produced by parse_dlib_xml().
        - i is not an input layer.
    ensures
        - Caffe is funny about how it computes the output sizes from pooling layers.
          Rather than using the normal formula for output row/column sizes used by all the
          other layers (and what dlib uses everywhere), 
            floor((bottom_size + 2*pad - kernel_size) / stride) + 1
          it instead uses:
            ceil((bottom_size + 2*pad - kernel_size) / stride) + 1

          These are the same except when the stride!=1.  In that case we need to figure out
          how to change the padding value so that the output size of the caffe padding
          layer will match the output size of the dlib padding layer.   That is what this
          function does.
!*/
{
    const long dlib_output_nr = i->output_tensor_shape(2);
    const long dlib_output_nc = i->output_tensor_shape(3);
    const long bottom_nr = find_input_layer(i).output_tensor_shape(2);
    const long bottom_nc = find_input_layer(i).output_tensor_shape(3);
    const long padding_x = (long)i->attribute("padding_x");
    const long padding_y = (long)i->attribute("padding_y");
    const long stride_x = (long)i->attribute("stride_x");
    const long stride_y = (long)i->attribute("stride_y");
    long kernel_w = i->attribute("nc");
    long kernel_h = i->attribute("nr");

    if (kernel_w == 0)
        kernel_w = bottom_nc;
    if (kernel_h == 0)
        kernel_h = bottom_nr;

    
    // The correct padding for caffe could be anything in the range [0,padding_x].  So
    // check what gives the correct output size and use that.
    for (pad_x = 0; pad_x <= padding_x; ++pad_x)
    {
        long caffe_out_size = ceil((bottom_nc + 2.0*pad_x - kernel_w)/(double)stride_x) + 1;
        if (caffe_out_size == dlib_output_nc)
            break;
    }
    if (pad_x == padding_x+1)
    {
        std::ostringstream sout;
        sout << "No conversion between dlib pooling layer parameters and caffe pooling layer parameters found for layer " << to_string(i->idx) << endl;
        sout << "dlib_output_nc: " << dlib_output_nc << endl;
        sout << "bottom_nc:      " << bottom_nc << endl;
        sout << "padding_x:      " << padding_x << endl;
        sout << "stride_x:       " << stride_x << endl;
        sout << "kernel_w:       " << kernel_w << endl;
        sout << "pad_x:          " << pad_x << endl;
        throw dlib::error(sout.str());
    }

    for (pad_y = 0; pad_y <= padding_y; ++pad_y)
    {
        long caffe_out_size = ceil((bottom_nr + 2.0*pad_y - kernel_h)/(double)stride_y) + 1;
        if (caffe_out_size == dlib_output_nr)
            break;
    }
    if (pad_y == padding_y+1)
    {
        std::ostringstream sout;
        sout << "No conversion between dlib pooling layer parameters and caffe pooling layer parameters found for layer " << to_string(i->idx) << endl;
        sout << "dlib_output_nr: " << dlib_output_nr << endl;
        sout << "bottom_nr:      " << bottom_nr << endl;
        sout << "padding_y:      " << padding_y << endl;
        sout << "stride_y:       " << stride_y << endl;
        sout << "kernel_h:       " << kernel_h << endl;
        sout << "pad_y:          " << pad_y << endl;
        throw dlib::error(sout.str());
    }
}

// ----------------------------------------------------------------------------------------

void convert_dlib_xml_to_caffe_python_code(
    const string& xml_filename,
    const long N,
    const long K,
    const long NR,
    const long NC
)
{
    const string out_filename = left_substr(xml_filename,".") + "_dlib_to_caffe_model.py";
    const string out_weights_filename = left_substr(xml_filename,".") + "_dlib_to_caffe_model.weights";
    cout << "Writing python part of model to " << out_filename << endl;
    cout << "Writing weights part of model to " << out_weights_filename << endl;
    ofstream fout(out_filename);
    fout.precision(9);
    const auto layers = parse_dlib_xml({N,K,NR,NC}, xml_filename);


    fout << "#\n";
    fout << "# !!! This file was automatically generated by dlib's tools/convert_dlib_nets_to_caffe utility.     !!!\n";
    fout << "# !!! It contains all the information from a dlib DNN network and lets you save it as a cafe model. !!!\n";
    fout << "#\n";
    fout << "import caffe " << endl;
    fout << "from caffe import layers as L, params as P" << endl;
    fout << "import numpy as np" << endl;

    // dlib nets don't commit to a batch size, so just use 1 as the default
    fout << "\n# Input tensor dimensions" << endl;
    fout << "input_batch_size = " << N << ";" << endl;
    if (layers.back().detail_name == "input_rgb_image")
    {
        fout << "input_num_channels = 3;" << endl;
        fout << "input_num_rows = "<<NR<<";" << endl;
        fout << "input_num_cols = "<<NC<<";" << endl;
        if (K != 3)
            throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==3, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
    }
    else if (layers.back().detail_name == "input_rgb_image_sized")
    {
        fout << "input_num_channels = 3;" << endl;
        fout << "input_num_rows = " << layers.back().attribute("nr") << ";" << endl;
        fout << "input_num_cols = " << layers.back().attribute("nc") << ";" << endl;
        if (NR != layers.back().attribute("nr"))
            throw dlib::error("The dlib model requires input tensors with NUM_ROWS=="+to_string((long)layers.back().attribute("nr"))+", but the dtoc command line specified NUM_ROWS=="+to_string(NR));
        if (NC != layers.back().attribute("nc"))
            throw dlib::error("The dlib model requires input tensors with NUM_COLUMNS=="+to_string((long)layers.back().attribute("nc"))+", but the dtoc command line specified NUM_COLUMNS=="+to_string(NC));
        if (K != 3)
            throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==3, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
    }
    else if (layers.back().detail_name == "input")
    {
        fout << "input_num_channels = 1;" << endl;
        fout << "input_num_rows = "<<NR<<";" << endl;
        fout << "input_num_cols = "<<NC<<";" << endl;
        if (K != 1)
            throw dlib::error("The dlib model requires input tensors with NUM_CHANNELS==1, but the dtoc command line specified NUM_CHANNELS=="+to_string(K));
    }
    else
    {
        throw dlib::error("No known transformation from dlib's " + layers.back().detail_name + " layer to caffe.");
    }
    fout << endl;
    fout << "# Call this function to write the dlib DNN model out to file as a pair of caffe\n";
    fout << "# definition and weight files.  You can then use the network by loading it with\n";
    fout << "# this statement: \n";
    fout << "#    net = caffe.Net(def_file, weights_file, caffe.TEST);\n";
    fout << "#\n";
    fout << "def save_as_caffe_model(def_file, weights_file):\n";
    fout << "    with open(def_file, 'w') as f: f.write(str(make_netspec()));\n";
    fout << "    net = caffe.Net(def_file, caffe.TEST);\n";
    fout << "    set_network_weights(net);\n";
    fout << "    net.save(weights_file);\n\n";
    fout << "###############################################################################\n";
    fout << "#         EVERYTHING BELOW HERE DEFINES THE DLIB MODEL PARAMETERS             #\n";
    fout << "###############################################################################\n\n\n";


    // -----------------------------------------------------------------------------------
    //  The next block of code outputs python code that defines the network architecture. 
    // -----------------------------------------------------------------------------------

    fout << "def make_netspec():" << endl;
    fout << "    # For reference, the only \"documentation\" about caffe layer parameters seems to be this page:\n";
    fout << "    # https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto\n" << endl;
    fout << "    n = caffe.NetSpec(); " << endl;
    fout << "    n.data,n.label = L.MemoryData(batch_size=input_batch_size, channels=input_num_channels, height=input_num_rows, width=input_num_cols, ntop=2)" << endl;
    // iterate the layers starting with the input layer
    for (auto i = layers.rbegin(); i != layers.rend(); ++i)
    {
        // skip input and loss layers
        if (i->type == "loss" || i->type == "input")
            continue;


        if (i->detail_name == "con")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.Convolution(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_filters");
            fout << ", kernel_w=" << i->attribute("nc");
            fout << ", kernel_h=" << i->attribute("nr");
            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            fout << ", pad_w=" << i->attribute("padding_x");
            fout << ", pad_h=" << i->attribute("padding_y");
            fout << ");\n";
        }
        else if (i->detail_name == "relu")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.ReLU(n." << find_input_layer_caffe_name(i);
            fout << ");\n";
        }
        else if (i->detail_name == "sig")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.Sigmoid(n." << find_input_layer_caffe_name(i);
            fout << ");\n";
        }
        else if (i->detail_name == "prelu")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.PReLU(n." << find_input_layer_caffe_name(i);
            fout << ", channel_shared=True"; 
            fout << ");\n";
        }
        else if (i->detail_name == "max_pool")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
            fout << ", pool=P.Pooling.MAX"; 
            if (i->attribute("nc")==0)
            {
                fout << ", global_pooling=True";
            }
            else
            {
                fout << ", kernel_w=" << i->attribute("nc");
                fout << ", kernel_h=" << i->attribute("nr");
            }

            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            long pad_x, pad_y;
            compute_caffe_padding_size_for_pooling_layer(i, pad_x, pad_y);
            fout << ", pad_w=" << pad_x;
            fout << ", pad_h=" << pad_y;
            fout << ");\n";
        }
        else if (i->detail_name == "avg_pool")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.Pooling(n." << find_input_layer_caffe_name(i);
            fout << ", pool=P.Pooling.AVE"; 
            if (i->attribute("nc")==0)
            {
                fout << ", global_pooling=True";
            }
            else
            {
                fout << ", kernel_w=" << i->attribute("nc");
                fout << ", kernel_h=" << i->attribute("nr");
            }
            if (i->attribute("padding_x") != 0 || i->attribute("padding_y") != 0)
            {
                throw dlib::error("dlib and caffe implement pooling with non-zero padding differently, so you can't convert a "
                    "network with such pooling layers.");
            }

            fout << ", stride_w=" << i->attribute("stride_x");
            fout << ", stride_h=" << i->attribute("stride_y");
            long pad_x, pad_y;
            compute_caffe_padding_size_for_pooling_layer(i, pad_x, pad_y);
            fout << ", pad_w=" << pad_x;
            fout << ", pad_h=" << pad_y;
            fout << ");\n";
        }
        else if (i->detail_name == "fc")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_outputs");
            fout << ", bias_term=True";
            fout << ");\n";
        }
        else if (i->detail_name == "fc_no_bias")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.InnerProduct(n." << find_input_layer_caffe_name(i);
            fout << ", num_output=" << i->attribute("num_outputs");
            fout << ", bias_term=False";
            fout << ");\n";
        }
        else if (i->detail_name == "bn_con" || i->detail_name == "bn_fc")
        {
            throw dlib::error("Conversion from dlib's batch norm layers to caffe's isn't supported.  Instead, "
                "you should put your dlib network into 'test mode' by switching batch norm layers to affine layers. "
                "Then you can convert that 'test mode' network to caffe.");
        }
        else if (i->detail_name == "affine_con")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
            fout << ", bias_term=True";
            fout << ");\n";
        }
        else if (i->detail_name == "affine_fc")
        {
            fout << "    n." << i->caffe_layer_name() << " = L.Scale(n." << find_input_layer_caffe_name(i);
            fout << ", bias_term=True";
            fout << ");\n";
        }
        else if (i->detail_name == "add_prev")
        {
            auto in_shape1 = find_input_layer(i).output_tensor_shape;
            auto in_shape2 = find_layer(i,i->attribute("tag")).output_tensor_shape;
            if (in_shape1 != in_shape2)
            {
                // if only the number of channels differs then we will use a dummy layer to
                // pad with zeros.  But otherwise we will throw an error.
                if (in_shape1(0) == in_shape2(0) && 
                    in_shape1(2) == in_shape2(2) && 
                    in_shape1(3) == in_shape2(3))
                {
                    fout << "    n." << i->caffe_layer_name() << "_zeropad = L.DummyData(num=" << in_shape1(0);
                    fout << ", channels="<<std::abs(in_shape1(1)-in_shape2(1));
                    fout << ", height="<<in_shape1(2);
                    fout << ", width="<<in_shape1(3);
                    fout << ");\n";

                    string smaller_layer = find_input_layer_caffe_name(i);
                    string bigger_layer = find_layer_caffe_name(i, i->attribute("tag"));
                    if (in_shape1(1) > in_shape2(1))
                        swap(smaller_layer, bigger_layer);

                    fout << "    n." << i->caffe_layer_name() << "_concat = L.Concat(n." << smaller_layer;
                    fout << ", n." << i->caffe_layer_name() << "_zeropad";
                    fout << ");\n";

                    fout << "    n." << i->caffe_layer_name() << " = L.Eltwise(n." << i->caffe_layer_name() << "_concat";
                    fout << ", n." << bigger_layer;
                    fout << ", operation=P.Eltwise.SUM";
                    fout << ");\n";
                }
                else
                {
                    std::ostringstream sout;
                    sout << "The dlib network contained an add_prev layer (layer idx " << i->idx << ") that adds two previous ";
                    sout << "layers with different output tensor dimensions.  Caffe's equivalent layer, Eltwise, doesn't support ";
                    sout << "adding layers together with different dimensions.  In the special case where the only difference is "; 
                    sout << "in the number of channels, this converter program will add a dummy layer that outputs a tensor full of zeros ";
                    sout << "and concat it appropriately so this will work.  However, this network you are converting has tensor dimensions ";
                    sout << "different in values other than the number of channels.  In particular, here are the two tensor shapes (batch size, channels, rows, cols): ";
                    std::ostringstream sout2;
                    sout2 << wrap_string(sout.str()) << endl;
                    sout2 << trans(in_shape1);
                    sout2 << trans(in_shape2);
                    throw dlib::error(sout2.str());
                }
            }
            else
            {
                fout << "    n." << i->caffe_layer_name() << " = L.Eltwise(n." << find_input_layer_caffe_name(i);
                fout << ", n." << find_layer_caffe_name(i, i->attribute("tag"));
                fout << ", operation=P.Eltwise.SUM";
                fout << ");\n";
            }
        }
        else
        {
            throw dlib::error("No known transformation from dlib's " + i->detail_name + " layer to caffe.");
        }
    }
    fout << "    return n.to_proto();\n\n" << endl;


    // -----------------------------------------------------------------------------------
    //  The next block of code outputs python code that populates all the filter weights.
    // -----------------------------------------------------------------------------------

    ofstream fweights(out_weights_filename, ios::binary);
    fout << "def set_network_weights(net):\n";
    fout << "    # populate network parameters\n";
    fout << "    f = open('"<<out_weights_filename<<"', 'rb');\n";
    // iterate the layers starting with the input layer
    for (auto i = layers.rbegin(); i != layers.rend(); ++i)
    {
        // skip input and loss layers
        if (i->type == "loss" || i->type == "input")
            continue;


        if (i->detail_name == "con")
        {
            const long num_filters = i->attribute("num_filters");
            matrix<float> weights = trans(rowm(i->params,range(0,i->params.size()-num_filters-1)));
            matrix<float> biases  = trans(rowm(i->params,range(i->params.size()-num_filters, i->params.size()-1)));
            fweights.write((char*)&weights(0,0), weights.size()*sizeof(float));
            fweights.write((char*)&biases(0,0), biases.size()*sizeof(float));

            // main filter weights
            fout << "    p = np.fromfile(f, dtype='float32', count="<<weights.size()<<");\n"; 
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";

            // biases
            fout << "    p = np.fromfile(f, dtype='float32', count="<<biases.size()<<");\n"; 
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
        }
        else if (i->detail_name == "fc")
        {
            matrix<float> weights = trans(rowm(i->params, range(0,i->params.nr()-2))); 
            matrix<float> biases  = rowm(i->params, i->params.nr()-1); 
            fweights.write((char*)&weights(0,0), weights.size()*sizeof(float));
            fweights.write((char*)&biases(0,0), biases.size()*sizeof(float));

            // main filter weights
            fout << "    p = np.fromfile(f, dtype='float32', count="<<weights.size()<<");\n"; 
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";

            // biases
            fout << "    p = np.fromfile(f, dtype='float32', count="<<biases.size()<<");\n"; 
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
        }
        else if (i->detail_name == "fc_no_bias")
        {
            matrix<float> weights = trans(i->params); 
            fweights.write((char*)&weights(0,0), weights.size()*sizeof(float));

            // main filter weights
            fout << "    p = np.fromfile(f, dtype='float32', count="<<weights.size()<<");\n"; 
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";
        }
        else if (i->detail_name == "affine_con" || i->detail_name == "affine_fc")
        {
            const long dims = i->params.size()/2;
            matrix<float> gamma = trans(rowm(i->params,range(0,dims-1)));
            matrix<float> beta  = trans(rowm(i->params,range(dims, 2*dims-1)));
            fweights.write((char*)&gamma(0,0), gamma.size()*sizeof(float));
            fweights.write((char*)&beta(0,0), beta.size()*sizeof(float));

            // set gamma weights
            fout << "    p = np.fromfile(f, dtype='float32', count="<<gamma.size()<<");\n"; 
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][0].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][0].data[:] = p;\n";

            // set beta weights 
            fout << "    p = np.fromfile(f, dtype='float32', count="<<beta.size()<<");\n"; 
            fout << "    p.shape = net.params['"<<i->caffe_layer_name()<<"'][1].data.shape;\n";
            fout << "    net.params['"<<i->caffe_layer_name()<<"'][1].data[:] = p;\n";
        }
        else if (i->detail_name == "prelu")
        {
            const double param = i->params(0);

            // main filter weights
            fout << "    tmp = net.params['"<<i->caffe_layer_name()<<"'][0].data.view();\n";
            fout << "    tmp.shape = 1;\n";
            fout << "    tmp[0] = "<<param<<";\n";
        }
    }

}

// ----------------------------------------------------------------------------------------

int main(int argc, char** argv) try
{
    if (argc != 6)
    {
        cout << "To use this program, give it an xml file generated by dlib::net_to_xml() " << endl;
        cout << "and then 4 numbers that indicate the input tensor size.  It will convert " << endl;
        cout << "the xml file into a python file that outputs a caffe model containing the dlib model." << endl;
        cout << "For example, you might run this program like this: " << endl;
        cout << "   ./dtoc lenet.xml 1 1 28 28" << endl;
        cout << "would convert the lenet.xml model into a caffe model with an input tensor of shape(1,1,28,28)" << endl;
        cout << "where the shape values are (num samples in batch, num channels, num rows, num columns)." << endl;
        return 0;
    }

    const long N = sa = argv[2];
    const long K = sa = argv[3];
    const long NR = sa = argv[4];
    const long NC = sa = argv[5];

    convert_dlib_xml_to_caffe_python_code(argv[1], N, K, NR, NC);

    return 0;
}
catch(std::exception& e)
{
    cout << "\n\n*************** ERROR CONVERTING TO CAFFE ***************\n" << e.what() << endl;
    return 1;
}

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

class doc_handler : public document_handler
{
public:
    std::vector<layer> layers;
    bool seen_first_tag = false;

    layer next_layer;
    std::stack<string> current_tag;
    long tag_id = -1;


    virtual void start_document (
    ) 
    { 
        layers.clear(); 
        seen_first_tag = false;
        tag_id = -1;
    }

    virtual void end_document (
    ) { }

    virtual void start_element ( 
        const unsigned long /*line_number*/,
        const std::string& name,
        const dlib::attribute_list& atts
    )
    {
        if (!seen_first_tag)
        {
            if (name != "net")
                throw dlib::error("The top level XML tag must be a 'net' tag.");
            seen_first_tag = true;
        }

        if (name == "layer")
        {
            next_layer = layer();
            if (atts["type"] == "skip")
            {
                // Don't make a new layer, just apply the tag id to the previous layer
                if (layers.size() == 0)
                    throw dlib::error("A skip layer was found as the first layer, but the first layer should be an input layer.");
                layers.back().skip_id = sa = atts["id"];
                
                // We intentionally leave next_layer empty so the end_element() callback
                // don't add it as another layer when called.
            }
            else if (atts["type"] == "tag")
            {
                // Don't make a new layer, just remember the tag id so we can apply it on
                // the next layer.
                tag_id = sa = atts["id"];
                
                // We intentionally leave next_layer empty so the end_element() callback
                // don't add it as another layer when called.
            }
            else
            {
                next_layer.idx = sa = atts["idx"];
                next_layer.type = atts["type"];
                if (tag_id != -1)
                {
                    next_layer.tag_id = tag_id;
                    tag_id = -1;
                }
            }
        }
        else if (current_tag.size() != 0 && current_tag.top() == "layer")
        {
            next_layer.detail_name = name;
            // copy all the XML tag's attributes into the layer struct
            atts.reset();
            while (atts.move_next())
                next_layer.attributes[atts.element().key()] = sa = atts.element().value();
        }

        current_tag.push(name);
    }

    virtual void end_element ( 
        const unsigned long /*line_number*/,
        const std::string& name
    )
    {
        current_tag.pop();
        if (name == "layer" && next_layer.type.size() != 0)
            layers.push_back(next_layer);
    }

    virtual void characters ( 
        const std::string& data
    )
    {
        if (current_tag.size() == 0)
            return;

        if (comp_tags_with_params.count(current_tag.top()) != 0)
        {
            istringstream sin(data);
            sin >> next_layer.params;
        }

    }

    virtual void processing_instruction (
        const unsigned long /*line_number*/,
        const std::string& /*target*/,
        const std::string& /*data*/
    )
    {
    }
};

// ----------------------------------------------------------------------------------------

void compute_output_tensor_shapes(const matrix<long,4,1>& input_tensor_shape, std::vector<layer>& layers)
{
    DLIB_CASSERT(layers.back().type == "input");
    layers.back().output_tensor_shape = input_tensor_shape;
    for (auto i = ++layers.rbegin(); i != layers.rend(); ++i)
    {
        const auto input_shape = find_input_layer(i).output_tensor_shape;
        if (i->type == "comp")
        {
            if (i->detail_name == "fc" || i->detail_name == "fc_no_bias")
            {
                long num_outputs = i->attribute("num_outputs");
                i->output_tensor_shape = {input_shape(0), num_outputs, 1, 1};
            }
            else if (i->detail_name == "con")
            {
                long num_filters = i->attribute("num_filters");
                long filter_nc = i->attribute("nc");
                long filter_nr = i->attribute("nr");
                long stride_x = i->attribute("stride_x");
                long stride_y = i->attribute("stride_y");
                long padding_x = i->attribute("padding_x");
                long padding_y = i->attribute("padding_y");
                long nr = 1+(input_shape(2) + 2*padding_y - filter_nr)/stride_y;
                long nc = 1+(input_shape(3) + 2*padding_x - filter_nc)/stride_x;
                i->output_tensor_shape = {input_shape(0), num_filters, nr, nc};
            }
            else if (i->detail_name == "max_pool" || i->detail_name == "avg_pool")
            {
                long filter_nc = i->attribute("nc");
                long filter_nr = i->attribute("nr");
                long stride_x = i->attribute("stride_x");
                long stride_y = i->attribute("stride_y");
                long padding_x = i->attribute("padding_x");
                long padding_y = i->attribute("padding_y");
                if (filter_nc != 0)
                {
                    long nr = 1+(input_shape(2) + 2*padding_y - filter_nr)/stride_y;
                    long nc = 1+(input_shape(3) + 2*padding_x - filter_nc)/stride_x;
                    i->output_tensor_shape = {input_shape(0), input_shape(1), nr, nc};
                }
                else // if we are filtering the whole input down to one thing
                {
                    i->output_tensor_shape = {input_shape(0), input_shape(1), 1, 1};
                }
            }
            else if (i->detail_name == "add_prev")
            {
                auto aux_shape = find_layer(i, i->attribute("tag")).output_tensor_shape;
                for (long j = 0; j < input_shape.size(); ++j)
                    i->output_tensor_shape(j) = std::max(input_shape(j), aux_shape(j));
            }
            else
            {
                i->output_tensor_shape = input_shape;
            }
        }
        else
        {
            i->output_tensor_shape = input_shape;
        }

    }
}

// ----------------------------------------------------------------------------------------

std::vector<layer> parse_dlib_xml(
    const matrix<long,4,1>& input_tensor_shape, 
    const string& xml_filename
)
{
    doc_handler dh;
    parse_xml(xml_filename, dh);
    if (dh.layers.size() == 0)
        throw dlib::error("No layers found in XML file!");

    if (dh.layers.back().type != "input")
        throw dlib::error("The network in the XML file is missing an input layer!");

    compute_output_tensor_shapes(input_tensor_shape, dh.layers);

    return dh.layers;
}

// ----------------------------------------------------------------------------------------