File size: 55,717 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 |
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNn_TRAINER_H_
#define DLIB_DNn_TRAINER_H_
#include "trainer_abstract.h"
#include "core.h"
#include "solvers.h"
#include "../statistics.h"
#include <chrono>
#include <fstream>
#include <sstream>
#include "../serialize.h"
#include "../pipe.h"
#include "../threads.h"
#include "../cuda/cuda_dlib.h"
#include "../statistics/running_gradient.h"
#include <atomic>
#include <cstdio>
#include <set>
#include <future>
#include <exception>
#include <mutex>
#include "../dir_nav.h"
#include "../md5.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
namespace impl
{
template <typename training_label_type>
struct dnn_job_t
{
dnn_job_t() = default;
dnn_job_t(const dnn_job_t&) = delete;
dnn_job_t& operator=(const dnn_job_t&) = delete;
std::vector<std::vector<training_label_type>> labels;
std::vector<resizable_tensor> t;
std::vector<int> have_data; // have_data[i] is true if there is data in labels[i] and t[i].
bool test_only = false;
};
template <typename training_label_type>
void swap(dnn_job_t<training_label_type>& a, dnn_job_t<training_label_type>& b)
{
a.labels.swap(b.labels);
a.t.swap(b.t);
a.have_data.swap(b.have_data);
std::swap(a.test_only,b.test_only);
}
}
enum class force_flush_to_disk {
no = 0,
yes = 1
};
template <
typename net_type,
typename solver_type = sgd
>
class dnn_trainer : private threaded_object
{
public:
static_assert(is_loss_layer_type<net_type>::value,
"The last layer in a network must be a loss layer.");
typedef typename net_type::training_label_type training_label_type;
typedef typename net_type::input_type input_type;
const static size_t num_computational_layers = net_type::num_computational_layers;
const static size_t num_layers = net_type::num_layers;
using threads = std::vector<std::shared_ptr<thread_pool>>;
private:
typedef impl::dnn_job_t<training_label_type> job_t;
public:
dnn_trainer() = delete;
dnn_trainer(const dnn_trainer&) = delete;
dnn_trainer& operator=(const dnn_trainer&) = delete;
explicit dnn_trainer(net_type& net_) : job_pipe(0), net(net_)
{
solver_type default_solver;
devices.push_back(std::make_shared<device_data>(dlib::cuda::get_device(), net, default_solver));
init();
}
dnn_trainer(
net_type& net_,
const solver_type& solver_
) : job_pipe(0), net(net_)
{
devices.push_back(std::make_shared<device_data>(dlib::cuda::get_device(), net, solver_));
init();
}
dnn_trainer(
net_type& net_,
const solver_type& solver_,
const std::vector<int>& cuda_extra_devices,
std::shared_ptr<threads> thread_pools_ = std::shared_ptr<threads>()
) : job_pipe(0), thread_pools(thread_pools_), net(net_)
{
devices.push_back(std::make_shared<device_data>(dlib::cuda::get_device(), net, solver_));
const int total_devices = dlib::cuda::get_num_devices();
// Make device contexts for the extra device ids but be careful to avoid any
// duplicate ids.
std::set<int> temp(cuda_extra_devices.begin(), cuda_extra_devices.end());
temp.erase(devices[0]->device_id);
for (auto id : temp)
{
DLIB_CASSERT(0 <= id && id < total_devices, "Invalid CUDA device id given to dnn_trainer.");
// Switch to this device so that any tensor objects that get allocated when
// we create the device context happen on this device.
dlib::cuda::set_device(id);
devices.push_back(std::make_shared<device_data>(id, net, solver_, clone_net()));
}
// Set the current device back to what it was before this constructor was
// called.
dlib::cuda::set_device(devices[0]->device_id);
init();
}
~dnn_trainer(
)
{
job_pipe.disable();
stop();
wait();
}
net_type& get_net (
force_flush_to_disk force_flush = force_flush_to_disk::yes
)
{
wait_for_thread_to_pause();
sync_to_disk(force_flush == force_flush_to_disk::yes);
propagate_exception();
return net;
}
unsigned long get_mini_batch_size (
) const { return mini_batch_size; }
void set_mini_batch_size (
unsigned long batch_size
)
{
DLIB_CASSERT(batch_size > 0);
mini_batch_size = batch_size;
}
unsigned long get_max_num_epochs (
) const { return max_num_epochs; }
void set_max_num_epochs (
unsigned long num
)
{
DLIB_CASSERT(num > 0);
max_num_epochs = num;
}
void be_verbose (
)
{
verbose = true;
}
void be_quiet (
)
{
verbose = false;
}
const std::vector<solver_type>& get_solvers (
) const
{
wait_for_thread_to_pause();
propagate_exception();
return devices[0]->solvers;
}
void train_one_step (
const std::vector<input_type>& data,
const std::vector<training_label_type>& labels
)
{
DLIB_CASSERT(data.size() == labels.size());
train_one_step(data.begin(), data.end(), labels.begin());
}
template <
typename data_iterator,
typename label_iterator
>
void train_one_step (
data_iterator dbegin,
data_iterator dend,
label_iterator lbegin
)
{
DLIB_CASSERT(std::distance(dbegin, dend) > 0);
print_periodic_verbose_status();
sync_to_disk();
send_job(false, dbegin, dend, lbegin);
++train_one_step_calls;
}
void train_one_step (
const std::vector<input_type>& data
)
{
train_one_step(data.begin(), data.end());
}
template <
typename data_iterator
>
void train_one_step (
data_iterator dbegin,
data_iterator dend
)
{
DLIB_CASSERT(std::distance(dbegin, dend) > 0);
print_periodic_verbose_status();
sync_to_disk();
send_job(false, dbegin, dend);
++train_one_step_calls;
}
void test_one_step (
const std::vector<input_type>& data,
const std::vector<training_label_type>& labels
)
{
DLIB_CASSERT(data.size() == labels.size());
test_one_step(data.begin(), data.end(), labels.begin());
}
template <
typename data_iterator,
typename label_iterator
>
void test_one_step (
data_iterator dbegin,
data_iterator dend,
label_iterator lbegin
)
{
DLIB_CASSERT(std::distance(dbegin, dend) > 0);
print_periodic_verbose_status();
sync_to_disk();
send_job(true, dbegin, dend, lbegin);
++test_one_step_calls;
}
void test_one_step (
const std::vector<input_type>& data
)
{
test_one_step(data.begin(), data.end());
}
template <
typename data_iterator
>
void test_one_step (
data_iterator dbegin,
data_iterator dend
)
{
DLIB_CASSERT(std::distance(dbegin, dend) > 0);
print_periodic_verbose_status();
sync_to_disk();
send_job(true, dbegin, dend);
++test_one_step_calls;
}
void train (
const std::vector<input_type>& data,
const std::vector<training_label_type>& labels
)
{
DLIB_CASSERT(data.size() == labels.size() && data.size() > 0);
// The reason these two loops don't initialize their counter variables but
// instead use class members is so we can include the state of the loops in the
// stuff written by sync_to_disk()
for (;
epoch_iteration < max_num_epochs && learning_rate >= min_learning_rate;
++epoch_iteration)
{
using namespace std::chrono;
last_time = system_clock::now();
clear_average_loss();
for (; epoch_pos < data.size() && learning_rate >= min_learning_rate; epoch_pos += mini_batch_size)
{
if (verbose)
{
auto now_time = system_clock::now();
if (now_time-last_time > seconds(20))
{
last_time = now_time;
auto iter = epoch_iteration + epoch_pos/(double)data.size();
std::cout << "epoch: " << rpad(cast_to_string(iter),epoch_string_pad) << " "
<< "learning rate: " << rpad(cast_to_string(learning_rate),lr_string_pad) << " "
<< "average loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
print_progress();
}
}
sync_to_disk();
send_job(false, data.begin()+epoch_pos,
data.begin()+std::min(epoch_pos+mini_batch_size,data.size()),
labels.begin()+epoch_pos);
}
epoch_pos = 0;
if (verbose)
{
// Capitalize the E in Epoch so it's easy to grep out the lines that
// are for full epoch status statements.
std::cout << "Epoch: " << rpad(cast_to_string(epoch_iteration+1),epoch_string_pad) << " "
<< "learning rate: " << rpad(cast_to_string(learning_rate),lr_string_pad) << " "
<< "average loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
print_progress();
}
}
wait_for_thread_to_pause();
// if we modified the network at all then be sure to sync the final result.
sync_to_disk(true);
}
void train (
const std::vector<input_type>& data
)
{
DLIB_CASSERT(data.size() > 0);
const bool has_unsupervised_loss = std::is_same<no_label_type, training_label_type>::value;
static_assert(has_unsupervised_loss,
"You can only call this version of train() when using an unsupervised loss.");
// The reason these two loops don't initialize their counter variables but
// instead use class members is so we can include the state of the loops in the
// stuff written by sync_to_disk()
for (;
epoch_iteration < max_num_epochs && learning_rate >= min_learning_rate;
++epoch_iteration)
{
using namespace std::chrono;
last_time = system_clock::now();
clear_average_loss();
for (; epoch_pos < data.size() && learning_rate >= min_learning_rate; epoch_pos += mini_batch_size)
{
if (verbose)
{
auto now_time = system_clock::now();
if (now_time-last_time > seconds(20))
{
last_time = now_time;
auto iter = epoch_iteration + epoch_pos/(double)data.size();
std::cout << "epoch: " << rpad(cast_to_string(iter),epoch_string_pad) << " "
<< "learning rate: " << rpad(cast_to_string(learning_rate),lr_string_pad) << " "
<< "average loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
print_progress();
}
}
sync_to_disk();
send_job(false, data.begin()+epoch_pos,
data.begin()+std::min(epoch_pos+mini_batch_size,data.size()));
}
epoch_pos = 0;
if (verbose)
{
// Capitalize the E in Epoch so it's easy to grep out the lines that
// are for full epoch status statements.
std::cout << "Epoch: " << rpad(cast_to_string(epoch_iteration+1),epoch_string_pad) << " "
<< "learning rate: " << rpad(cast_to_string(learning_rate),lr_string_pad) << " "
<< "average loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
print_progress();
}
}
wait_for_thread_to_pause();
// if we modified the network at all then be sure to sync the final result.
sync_to_disk(true);
}
void set_synchronization_file (
const std::string& filename,
std::chrono::seconds time_between_syncs_ = std::chrono::minutes(15)
)
{
last_sync_time = std::chrono::system_clock::now();
sync_filename = filename;
time_between_syncs = time_between_syncs_;
// check if the sync file already exists, if it does we should load it.
std::ifstream fin(newest_syncfile(), std::ios::binary);
if (fin)
deserialize(*this, fin);
}
const std::string& get_synchronization_file (
)
{
return sync_filename;
}
double get_average_loss (
) const
{
wait_for_thread_to_pause();
return rs.mean();
}
double get_average_test_loss (
) const
{
wait_for_thread_to_pause();
return rs_test.mean();
}
void clear_average_loss (
)
{
wait_for_thread_to_pause();
rs.clear();
}
void set_learning_rate (
double lr
)
{
DLIB_CASSERT(lr > 0);
wait_for_thread_to_pause();
if (learning_rate != lr)
{
steps_without_progress = 0;
test_steps_without_progress = 0;
previous_loss_values.clear();
test_previous_loss_values.clear();
previous_loss_values_to_keep_until_disk_sync.clear();
}
learning_rate = lr;
lr_schedule.set_size(0);
}
double get_learning_rate(
) const
{
return learning_rate;
}
void set_min_learning_rate (
double lr
)
{
DLIB_CASSERT(lr > 0);
wait_for_thread_to_pause();
lr_schedule.set_size(0);
min_learning_rate = lr;
}
double get_min_learning_rate (
) const
{
return min_learning_rate;
}
template <typename EXP>
void set_learning_rate_schedule (
const matrix_exp<EXP>& schedule
)
{
DLIB_CASSERT(schedule.size() > 0);
DLIB_CASSERT(min(schedule) > 0);
set_learning_rate(schedule(0,0));
set_min_learning_rate(min(schedule));
set_learning_rate_shrink_factor(1);
lr_schedule = matrix_cast<double>(reshape_to_column_vector(schedule));
lr_schedule_pos = 0;
}
const matrix<double,0,1>& get_learning_rate_schedule (
) const
{
return lr_schedule;
}
void set_iterations_without_progress_threshold (
unsigned long thresh
)
{
wait_for_thread_to_pause();
lr_schedule.set_size(0);
iter_without_progress_thresh = thresh;
}
unsigned long get_iterations_without_progress_threshold (
) const
{
return iter_without_progress_thresh;
}
unsigned long get_steps_without_progress (
) const
{
return steps_without_progress;
}
void set_test_iterations_without_progress_threshold (
unsigned long thresh
)
{
wait_for_thread_to_pause();
lr_schedule.set_size(0);
test_iter_without_progress_thresh = thresh;
}
unsigned long get_test_iterations_without_progress_threshold (
) const
{
return test_iter_without_progress_thresh;
}
unsigned long get_test_steps_without_progress (
) const
{
return test_steps_without_progress;
}
void set_learning_rate_shrink_factor (
double shrink
)
{
DLIB_CASSERT(0 < shrink && shrink <= 1);
wait_for_thread_to_pause();
lr_schedule.set_size(0);
learning_rate_shrink = shrink;
steps_without_progress = 0;
test_steps_without_progress = 0;
}
double get_learning_rate_shrink_factor (
) const
{
return learning_rate_shrink;
}
unsigned long long get_train_one_step_calls (
) const
{
return train_one_step_calls;
}
unsigned long long get_test_one_step_calls (
) const
{
return test_one_step_calls;
}
private:
void record_test_loss(double loss)
{
test_previous_loss_values.push_back(loss);
if (is_finite(loss))
rs_test.add(loss);
// discard really old loss values.
while (test_previous_loss_values.size() > test_iter_without_progress_thresh)
test_previous_loss_values.pop_front();
}
void record_loss(double loss)
{
// This kind of budgeting causes our gradient checking to use a fixed amount of
// computational resources, regardless of the size of iter_without_progress_thresh.
gradient_check_budget += 200;
rs.add(loss);
previous_loss_values.push_back(loss);
// discard really old loss values.
while (previous_loss_values.size() > iter_without_progress_thresh)
previous_loss_values.pop_front();
// separately keep another loss history until disk sync
// (but only if disk sync is enabled)
if (!sync_filename.empty())
previous_loss_values_to_keep_until_disk_sync.push_back(loss);
}
template <typename T>
double compute_parameter_gradients(size_t device, job_t& next_job, const T&)
{
if (next_job.have_data[device])
{
auto&& dev = *devices[device];
dlib::cuda::set_device(dev.device_id);
if (next_job.test_only)
return dev.net.compute_loss(next_job.t[device], next_job.labels[device].begin());
else
return dev.net.compute_parameter_gradients(next_job.t[device], next_job.labels[device].begin());
}
else
{
return 0;
}
}
double compute_parameter_gradients(size_t device, job_t& next_job, const no_label_type&)
{
if (next_job.have_data[device])
{
auto&& dev = *devices[device];
dlib::cuda::set_device(dev.device_id);
no_label_type pick_which_run_update;
if (next_job.test_only)
return dev.net.compute_loss(next_job.t[device]);
else
return dev.net.compute_parameter_gradients(next_job.t[device]);
}
else
{
return 0;
}
}
void update_parameters(size_t device)
{
auto&& dev = *devices[device];
dlib::cuda::set_device(dev.device_id);
dev.net.update_parameters(make_sstack(dev.solvers), learning_rate);
}
void thread() try
{
training_label_type pick_which_run_update;
job_t next_job;
std::vector<dlib::future<double>> losses(devices.size());
std::vector<tt::multi_device_tensor_averager> averagers;
// An array of all the parameter tensors in the first network. We will
// periodically copy these tensors to all the other devices to make sure the
// different GPUs don't go out of sync.
std::vector<tensor*> reference_params;
visit_layer_parameters(devices[0]->net, [&](tensor& t) { reference_params.push_back(&t); });
// If no external thread pools vector was passed, then create one that will
// be automatically destructed as soon as the dnn_trainer object goes out of
// scope.
if (!thread_pools)
thread_pools = std::make_shared<threads>();
auto& tp = *thread_pools;
// We make separate thread pools with just one thread in them because we want
// to make sure each device is always executed on the same thread. We care
// about this because there are thread_local context variables for some cuda
// components and they get allocated for each combination of thread and device.
// So if we make sure the same device always uses the same thread this will
// reduce the number of contexts we allocate from num_devices*num_devices to
// just num_devices.
while (tp.size() < devices.size())
tp.push_back(std::make_shared<thread_pool>(1));
main_iteration_counter = 0;
while(job_pipe.dequeue(next_job))
{
if (next_job.test_only)
{
// compute the testing loss
for (size_t i = 0; i < devices.size(); ++i)
tp[i]->add_task_by_value([&,i](double& loss){ loss = compute_parameter_gradients(i, next_job, pick_which_run_update); }, losses[i]);
// aggregate loss values from all the network computations.
double theloss = 0;
for (auto&& loss : losses)
theloss += loss.get();
record_test_loss(theloss/losses.size());
// Check if we should shrink the learning rate based on how the test
// error has been doing lately.
if (learning_rate_shrink != 1)
{
test_steps_without_progress = count_steps_without_decrease(test_previous_loss_values);
if (test_steps_without_progress >= test_iter_without_progress_thresh)
{
test_steps_without_progress = count_steps_without_decrease_robust(test_previous_loss_values);
if (test_steps_without_progress >= test_iter_without_progress_thresh)
{
// optimization has flattened out, so drop the learning rate.
learning_rate = learning_rate_shrink*learning_rate;
test_steps_without_progress = 0;
// Empty out some of the previous loss values so that test_steps_without_progress
// will decrease below test_iter_without_progress_thresh.
drop_some_test_previous_loss_values();
}
}
}
continue;
}
updated_net_since_last_sync = true;
++main_iteration_counter;
// Call compute_parameter_gradients() and update_parameters() but pick the
// right version for unsupervised or supervised training based on the type
// of training_label_type.
for (size_t i = 0; i < devices.size(); ++i)
tp[i]->add_task_by_value([&,i](double& loss){ loss = compute_parameter_gradients(i, next_job, pick_which_run_update); }, losses[i]);
// aggregate loss values from all the network computations.
double theloss = 0;
for (auto&& loss : losses)
theloss += loss.get();
record_loss(theloss/losses.size());
// Now, if there is more than one active device we need to synchronize the
// gradient updates between devices. So we do that now.
if (devices.size() > 1)
{
// if this is the first iteration then we need to setup the averagers.
// We can't do this outside the loop because the tensors that get
// averaged need to be allocated to their devices before we call set()
// so that the averagers can determine how best to average them.
if (averagers.size() == 0 || sync_file_reloaded)
{
averagers = std::vector<tt::multi_device_tensor_averager>(net_type::num_computational_layers);
// setup the averagers to point to the tensors in the networks.
std::vector<std::vector<tensor*>> all_tensors(devices.size());
for (size_t i = 0; i < all_tensors.size(); ++i)
{
all_tensors[i].resize(net_type::num_computational_layers);
visit_layer_parameter_gradients(devices[i]->net, [&](size_t j, tensor& t){
all_tensors[i][j] = &t;
});
}
// Now set each averager to average the tensors at the same layer in each
// network.
for (size_t i = 0; i < net_type::num_computational_layers; ++i)
{
std::vector<tensor*> temp(all_tensors.size());
for (size_t j = 0; j < all_tensors.size(); ++j)
{
temp[j] = all_tensors[j][i];
DLIB_CASSERT(temp[0]->size() == temp[j]->size(),
"Make sure you don't modify the network structure "
"or number of parameters after constructing the trainer.");
}
// ignore layers that don't have parameters
if (temp[0]->size() != 0)
averagers[i].set(temp);
}
sync_file_reloaded = false;
}
for (auto&& d : devices)
cuda::device_synchronize(d->device_id);
for (auto&& avg : averagers)
avg.average();
}
// Now apply all the updates to each device.
for (size_t i = 0; i < devices.size(); ++i)
tp[i]->add_task_by_value([&,i](){ if (next_job.have_data[i]) update_parameters(i); });
// and wait for the updates to all happen.
for (size_t i = 0; i < devices.size(); ++i)
tp[i]->wait_for_all_tasks();
// Every now and then force all the parameters to be the same just to make
// sure they aren't drifting apart due to any non-deterministic behavior on
// the GPU. It's also important to do this on the first iteration because
// the different networks may be initialized differently when tensor data
// is first passed through them. So this code block deals with these
// issues.
if (devices.size() > 1 && main_iteration_counter%2000 == 1)
{
for (size_t i = 1; i < devices.size(); ++i)
{
visit_layer_parameters(devices[i]->net, [&](size_t j, tensor& t)
{
memcpy(t, *reference_params[j]);
});
}
}
// If we have been running for a while then check if the loss is still
// dropping. If it isn't then we will reduce the learning rate. Note that we
// have a "budget" that prevents us from calling
// count_steps_without_decrease() every iteration. We do this because
// it can be expensive to compute when previous_loss_values is large.
if (gradient_check_budget > iter_without_progress_thresh && learning_rate_shrink != 1)
{
gradient_check_budget = 0;
steps_without_progress = count_steps_without_decrease(previous_loss_values);
if (steps_without_progress >= iter_without_progress_thresh)
{
// Double check that we aren't seeing decrease. This second check
// discards the top 10% largest values and checks again. We do
// this because sometimes a mini-batch might be bad and cause the
// loss to suddenly jump up, making count_steps_without_decrease()
// return a large number. But if we discard the top 10% of the
// values in previous_loss_values then we are robust to that kind
// of noise. Another way of looking at it, if the reason
// count_steps_without_decrease() returns a large value is only
// because the most recent loss values have suddenly been large,
// then we shouldn't stop or lower the learning rate. We should
// keep going until whatever disturbance we hit is damped down.
steps_without_progress = count_steps_without_decrease_robust(previous_loss_values);
if (steps_without_progress >= iter_without_progress_thresh)
{
// optimization has flattened out, so drop the learning rate.
learning_rate = learning_rate_shrink*learning_rate;
steps_without_progress = 0;
// Empty out some of the previous loss values so that steps_without_progress
// will decrease below iter_without_progress_thresh.
drop_some_previous_loss_values();
}
}
}
else if (lr_schedule.size() != 0) // or use the learning rate schedule if we have one.
{
if (lr_schedule_pos < lr_schedule.size())
learning_rate = lr_schedule(lr_schedule_pos++);
else
learning_rate = lr_schedule(lr_schedule.size()-1)*0.99;
}
}
}
catch(...)
{
// If an exception happens then permanently disable the trainer object.
job_pipe.disable();
std::lock_guard<std::mutex> lock(eptr_mutex);
eptr = std::current_exception();
}
void wait_for_thread_to_pause() const
{
job_pipe.wait_for_num_blocked_dequeues(1);
}
const static long string_pad = 11;
const static long epoch_string_pad = 4;
const static long lr_string_pad = 4;
void init()
{
max_num_epochs = 10000;
mini_batch_size = 128;
verbose = false;
learning_rate = 1e-2;
min_learning_rate = 1e-5;
iter_without_progress_thresh = 2000;
steps_without_progress = 0;
test_iter_without_progress_thresh = 500;
test_steps_without_progress = 0;
learning_rate_shrink = 0.1;
epoch_iteration = 0;
epoch_pos = 0;
train_one_step_calls = 0;
test_one_step_calls = 0;
gradient_check_budget = 0;
lr_schedule_pos = 0;
main_iteration_counter = 0;
main_iteration_counter_at_last_disk_sync = 0;
prob_loss_increasing_thresh_default_value = 0.99;
prob_loss_increasing_thresh_max_value = 0.99999;
prob_loss_increasing_thresh = prob_loss_increasing_thresh_default_value;
updated_net_since_last_sync = false;
sync_file_reloaded = false;
previous_loss_values_dump_amount = 400;
test_previous_loss_values_dump_amount = 100;
rs_test = running_stats_decayed<double>(200);
start();
}
// serialize and deserialize are private because we hold net by reference so
// allowing someone to serialize this training object is weird and will likely
// result in user errors. However, we use these functions as part of the automatic
// sync code in this object.
friend void serialize(const dnn_trainer& item, std::ostream& out)
{
item.wait_for_thread_to_pause();
int version = 13;
serialize(version, out);
size_t nl = dnn_trainer::num_layers;
serialize(nl, out);
serialize(item.rs, out);
serialize(item.rs_test, out);
serialize(item.previous_loss_values, out);
serialize(item.max_num_epochs, out);
serialize(item.mini_batch_size, out);
serialize(item.verbose, out);
serialize(item.net, out);
serialize(item.devices[0]->solvers, out);
serialize(item.learning_rate.load(), out);
serialize(item.min_learning_rate, out);
serialize(item.iter_without_progress_thresh.load(), out);
serialize(item.steps_without_progress.load(), out);
serialize(item.learning_rate_shrink.load(), out);
serialize(item.epoch_iteration, out);
serialize(item.epoch_pos, out);
serialize(item.train_one_step_calls, out);
serialize(item.test_one_step_calls, out);
serialize(item.lr_schedule, out);
serialize(item.lr_schedule_pos, out);
serialize(item.test_iter_without_progress_thresh.load(), out);
serialize(item.test_steps_without_progress.load(), out);
serialize(item.test_previous_loss_values, out);
serialize(item.previous_loss_values_dump_amount, out);
serialize(item.test_previous_loss_values_dump_amount, out);
serialize(item.previous_loss_values_to_keep_until_disk_sync, out);
}
friend void deserialize(dnn_trainer& item, std::istream& in)
{
item.wait_for_thread_to_pause();
int version = 0;
deserialize(version, in);
if (version != 13)
throw serialization_error("Unexpected version found while deserializing dlib::dnn_trainer.");
size_t num_layers = 0;
deserialize(num_layers, in);
if (num_layers != dnn_trainer::num_layers)
{
std::ostringstream sout;
sout << "Error deserializing dlib::dnn_trainer. The saved sync file is for a network with " << std::endl;
sout << "a different number of layers. We expected the number of layers to be " << dnn_trainer::num_layers << " but" << std::endl;
sout << "instead the file contains " << num_layers << " layers." << std::endl;
throw serialization_error(sout.str());
}
double dtemp; long ltemp;
deserialize(item.rs, in);
deserialize(item.rs_test, in);
deserialize(item.previous_loss_values, in);
deserialize(item.max_num_epochs, in);
deserialize(item.mini_batch_size, in);
deserialize(item.verbose, in);
deserialize(item.net, in);
deserialize(item.devices[0]->solvers, in);
deserialize(dtemp, in); item.learning_rate = dtemp;
deserialize(item.min_learning_rate, in);
deserialize(ltemp, in); item.iter_without_progress_thresh = ltemp;
deserialize(ltemp, in); item.steps_without_progress = ltemp;
deserialize(dtemp, in); item.learning_rate_shrink = dtemp;
deserialize(item.epoch_iteration, in);
deserialize(item.epoch_pos, in);
deserialize(item.train_one_step_calls, in);
deserialize(item.test_one_step_calls, in);
deserialize(item.lr_schedule, in);
deserialize(item.lr_schedule_pos, in);
deserialize(ltemp, in); item.test_iter_without_progress_thresh = ltemp;
deserialize(ltemp, in); item.test_steps_without_progress = ltemp;
deserialize(item.test_previous_loss_values, in);
deserialize(item.previous_loss_values_dump_amount, in);
deserialize(item.test_previous_loss_values_dump_amount, in);
deserialize(item.previous_loss_values_to_keep_until_disk_sync, in);
if (item.devices.size() > 1)
{
const auto prev_dev = dlib::cuda::get_device();
// initialize all the other device networks and solver objects
for (size_t i = 1; i < item.devices.size(); ++i)
{
// Switch to this device so that any tensor objects that get allocated when
// we copy this stuff happen on this device.
dlib::cuda::set_device(item.devices[i]->device_id);
item.devices[i]->solvers = item.devices[0]->solvers;
item.devices[i]->net = item.devices[0]->net;
}
dlib::cuda::set_device(prev_dev);
}
}
// Empty out some of the previous loss values so that steps_without_progress will decrease below iter_without_progress_thresh.
void drop_some_previous_loss_values()
{
for (unsigned long cnt = 0; cnt < previous_loss_values_dump_amount + iter_without_progress_thresh / 10 && previous_loss_values.size() > 0; ++cnt)
previous_loss_values.pop_front();
}
// Empty out some of the previous test loss values so that test_steps_without_progress will decrease below test_iter_without_progress_thresh.
void drop_some_test_previous_loss_values()
{
for (unsigned long cnt = 0; cnt < test_previous_loss_values_dump_amount + test_iter_without_progress_thresh / 10 && test_previous_loss_values.size() > 0; ++cnt)
test_previous_loss_values.pop_front();
}
void sync_to_disk (
bool do_it_now = false
)
{
// don't sync anything if we haven't updated the network since the last sync
if (!updated_net_since_last_sync)
return;
// If the sync file isn't set then don't do anything.
if (sync_filename.size() == 0)
return;
// Only sync if it has been long enough since the last sync or we are being
// explicitly forced to do it.
if (std::chrono::system_clock::now() - last_sync_time > time_between_syncs ||
do_it_now)
{
wait_for_thread_to_pause();
// compact network before saving to disk.
this->net.clean();
// if the loss has actually been going up since the last time we saved our
// state to disk then something has probably gone wrong in the
// optimization. So in this case we do the opposite and recall the
// previously saved state in the hopes that the problem won't reoccur.
if (loss_increased_since_last_disk_sync())
{
std::ifstream fin(newest_syncfile(), std::ios::binary);
deserialize(*this, fin);
sync_file_reloaded = true;
if (verbose)
std::cout << "Loss has been increasing, reloading saved state from " << newest_syncfile() << std::endl;
// Are we repeatedly hitting our head against the wall? If so, then we
// might be better off giving up at this learning rate, and trying a
// lower one instead.
if (prob_loss_increasing_thresh >= prob_loss_increasing_thresh_max_value)
{
if (verbose)
std::cout << "(and while at it, also shrinking the learning rate)" << std::endl;
learning_rate = learning_rate_shrink * learning_rate;
steps_without_progress = 0;
test_steps_without_progress = 0;
drop_some_previous_loss_values();
drop_some_test_previous_loss_values();
}
}
else
{
const std::string filename = oldest_syncfile();
serialize(filename) << *this;
if (verbose)
std::cout << "Saved state to " << filename << std::endl;
}
last_sync_time = std::chrono::system_clock::now();
main_iteration_counter_at_last_disk_sync = main_iteration_counter;
updated_net_since_last_sync = false;
}
}
std::string newest_syncfile (
)
{
return select_newest_file(sync_filename, sync_filename + "_");
}
std::string oldest_syncfile (
)
{
return select_oldest_file(sync_filename, sync_filename + "_");
}
bool loss_increased_since_last_disk_sync()
{
size_t gradient_updates_since_last_sync = main_iteration_counter - main_iteration_counter_at_last_disk_sync;
// if we haven't synced anything to disk yet then return false.
if (!std::ifstream(newest_syncfile(), std::ios::binary))
return false;
// Now look at the data since a little before the last disk sync. We will
// check if the loss is getting better or worse.
while (previous_loss_values_to_keep_until_disk_sync.size() > 2 * gradient_updates_since_last_sync)
previous_loss_values_to_keep_until_disk_sync.pop_front();
// Always retry if there are any nan or inf values
for (auto x : previous_loss_values_to_keep_until_disk_sync)
{
if (std::isnan(x) || std::isinf(x))
return true;
}
// if we haven't seen much data yet then just say false.
if (gradient_updates_since_last_sync < 30)
return false;
// if the loss is very likely to be increasing then return true
const double prob1 = probability_values_are_increasing(previous_loss_values_to_keep_until_disk_sync);
const double prob2 = probability_values_are_increasing_robust(previous_loss_values_to_keep_until_disk_sync);
if (std::max(prob1, prob2) > prob_loss_increasing_thresh)
{
// Exponentially decay the threshold towards 1 so that if we keep finding
// the loss to be increasing over and over we will make the test
// progressively harder and harder until it fails, therefore ensuring we
// can't get stuck reloading from a previous state over and over.
prob_loss_increasing_thresh = std::min(
0.1*prob_loss_increasing_thresh + 0.9*1,
prob_loss_increasing_thresh_max_value
);
return true;
}
else
{
// decay back to the default threshold
prob_loss_increasing_thresh = std::pow(prob_loss_increasing_thresh, 10.0);
// but don't decay below the default value
prob_loss_increasing_thresh = std::max(prob_loss_increasing_thresh, prob_loss_increasing_thresh_default_value);
return false;
}
}
struct clone_net{};
// per device state. All the containers have the same number of objects in them.
struct device_data
{
device_data(
int device_id_,
net_type& net_,
const solver_type& solver_
) : device_id(device_id_), net(net_), solvers(num_computational_layers, solver_) {}
device_data(
int device_id_,
net_type& net_,
const solver_type& solver_,
clone_net
) : device_id(device_id_), net_copy(std::make_shared<net_type>(net_)), net(*net_copy), solvers(num_computational_layers, solver_) {}
int device_id;
std::shared_ptr<net_type> net_copy;
net_type& net;
std::vector<solver_type> solvers;
};
template <
typename data_iterator,
typename label_iterator
>
void send_job (
bool test_only,
data_iterator dbegin,
data_iterator dend,
label_iterator lbegin
)
{
propagate_exception();
size_t num = std::distance(dbegin, dend);
size_t devs = devices.size();
job.t.resize(devs);
job.labels.resize(devs);
job.have_data.resize(devs);
job.test_only = test_only;
// chop the data into devs blocks, each of about block_size elements.
const double block_size = num / static_cast<double>(devs);
const auto prev_dev = dlib::cuda::get_device();
double j = 0;
for (size_t i = 0; i < devs; ++i)
{
dlib::cuda::set_device(devices[i]->device_id);
const size_t start = static_cast<size_t>(std::round(j));
const size_t stop = static_cast<size_t>(std::round(j + block_size));
if (start < stop)
{
devices[i]->net.to_tensor(dbegin+start, dbegin+stop, job.t[i]);
job.labels[i].assign(lbegin+start, lbegin+stop);
job.have_data[i] = true;
}
else
{
job.have_data[i] = false;
}
j += block_size;
}
DLIB_ASSERT(std::fabs(j - num) < 1e-10);
dlib::cuda::set_device(prev_dev);
job_pipe.enqueue(job);
}
template <
typename data_iterator
>
void send_job (
bool test_only,
data_iterator dbegin,
data_iterator dend
)
{
typename std::vector<training_label_type>::iterator nothing;
send_job(test_only, dbegin, dend, nothing);
}
void print_progress()
{
if (lr_schedule.size() == 0)
{
if (test_previous_loss_values.size() == 0)
std::cout << "steps without apparent progress: " << steps_without_progress;
else
std::cout << "steps without apparent progress: train=" << steps_without_progress << ", test=" << test_steps_without_progress;
}
else
{
std::ostringstream sout;
sout << "percent complete: " << std::fixed << std::setprecision(2) << 100.0*lr_schedule_pos/(double)lr_schedule.size() << "%";
std::cout << sout.str();
}
std::cout << std::endl;
}
void print_periodic_verbose_status()
{
if (verbose)
{
using namespace std::chrono;
auto now_time = system_clock::now();
if (now_time-last_time > seconds(40))
{
last_time = now_time;
std::cout << "step#: " << rpad(cast_to_string(train_one_step_calls),epoch_string_pad) << " "
<< "learning rate: " << rpad(cast_to_string(learning_rate),lr_string_pad) << " ";
if (test_previous_loss_values.size() == 0)
{
std::cout << "average loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
}
else
{
std::cout << "train loss: " << rpad(cast_to_string(get_average_loss()),string_pad) << " ";
std::cout << "test loss: " << rpad(cast_to_string(get_average_test_loss()),string_pad) << " ";
}
print_progress();
clear_average_loss();
}
}
}
std::vector<std::shared_ptr<device_data>> devices;
dlib::pipe<job_t> job_pipe;
std::shared_ptr<threads> thread_pools;
job_t job;
running_stats<double> rs;
running_stats_decayed<double> rs_test;
std::deque<double> previous_loss_values;
unsigned long max_num_epochs;
size_t mini_batch_size;
bool verbose;
net_type& net;
std::atomic<double> learning_rate;
double min_learning_rate;
std::atomic<unsigned long> iter_without_progress_thresh;
std::atomic<unsigned long> steps_without_progress;
std::atomic<unsigned long> test_iter_without_progress_thresh;
std::atomic<unsigned long> test_steps_without_progress;
std::deque<double> test_previous_loss_values;
std::deque<double> previous_loss_values_to_keep_until_disk_sync;
std::atomic<double> learning_rate_shrink;
std::chrono::time_point<std::chrono::system_clock> last_sync_time;
std::string sync_filename;
std::chrono::seconds time_between_syncs;
unsigned long epoch_iteration;
size_t epoch_pos;
std::chrono::time_point<std::chrono::system_clock> last_time;
unsigned long long train_one_step_calls;
unsigned long long test_one_step_calls;
matrix<double,0,1> lr_schedule;
long lr_schedule_pos;
unsigned long gradient_check_budget;
std::exception_ptr eptr = nullptr;
mutable std::mutex eptr_mutex;
void propagate_exception() const
{
std::lock_guard<std::mutex> lock(eptr_mutex);
if (eptr)
std::rethrow_exception(eptr);
}
// These 5 variables are not serialized
size_t main_iteration_counter;
size_t main_iteration_counter_at_last_disk_sync;
double prob_loss_increasing_thresh_default_value;
double prob_loss_increasing_thresh_max_value;
double prob_loss_increasing_thresh;
std::atomic<bool> updated_net_since_last_sync;
bool sync_file_reloaded;
unsigned long previous_loss_values_dump_amount;
unsigned long test_previous_loss_values_dump_amount;
};
// ----------------------------------------------------------------------------------------
template <
typename net_type,
typename solver_type
>
std::ostream& operator<< (
std::ostream& out,
dnn_trainer<net_type,solver_type>& trainer
)
{
using std::endl;
out << "dnn_trainer details: \n";
out << " net_type::num_layers: " << net_type::num_layers << endl;
// figure out how big the net is in MB.
std::ostringstream sout;
net_type temp = trainer.get_net(); // make a copy so that we can clean it without mutating the trainer's net.
temp.clean();
serialize(temp, sout);
out << " net size: " << sout.str().size()/1024.0/1024.0 << " MiB" << endl;
// Don't include the loss params in the hash since we print them on the next line.
// They also aren't really part of the "architecture" of the network.
out << " net architecture hash: " << md5(cast_to_string(trainer.get_net().subnet())) << endl;
out << " loss: " << trainer.get_net().loss_details() << endl;
out << " get_train_one_step_calls(): " << trainer.get_train_one_step_calls() << endl;
out << " synchronization file: " << trainer.get_synchronization_file() << endl;
out << " trainer.get_solvers()[0]: " << trainer.get_solvers()[0] << endl;
out << " mini batch size: " << trainer.get_mini_batch_size() << endl;
auto sched = trainer.get_learning_rate_schedule();
if (sched.size() != 0)
{
out << " using explicit user-supplied learning rate schedule" << endl;
}
else
{
out << " learning rate: "<< trainer.get_learning_rate() << endl;
out << " learning rate shrink factor: "<< trainer.get_learning_rate_shrink_factor() << endl;
out << " min learning rate: "<< trainer.get_min_learning_rate() << endl;
out << " iterations without progress threshold: "<< trainer.get_iterations_without_progress_threshold() << endl;
out << " test iterations without progress threshold: "<< trainer.get_test_iterations_without_progress_threshold() << endl;
}
return out;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_DNn_TRAINER_H_
|