File size: 9,719 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
// Copyright (C) 2017  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_UPPER_bOUND_FUNCTION_Hh_
#define DLIB_UPPER_bOUND_FUNCTION_Hh_

#include "upper_bound_function_abstract.h"
#include "../svm/svm_c_linear_dcd_trainer.h"
#include "../statistics.h"
#include <limits>
#include <utility>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    struct function_evaluation
    {
        function_evaluation() = default;
        function_evaluation(const matrix<double,0,1>& x, double y) :x(x), y(y) {}

        matrix<double,0,1> x;
        double y = std::numeric_limits<double>::quiet_NaN();
    };

// ----------------------------------------------------------------------------------------

    class upper_bound_function
    {

    public:

        upper_bound_function(
        ) = default;

        upper_bound_function(
            const double relative_noise_magnitude,
            const double solver_eps 
        ) : relative_noise_magnitude(relative_noise_magnitude), solver_eps(solver_eps)
        {
            DLIB_CASSERT(relative_noise_magnitude >= 0);
            DLIB_CASSERT(solver_eps > 0);
        }

        explicit upper_bound_function(
            const std::vector<function_evaluation>& _points,
            const double relative_noise_magnitude = 0.001,
            const double solver_eps = 0.0001
        ) : relative_noise_magnitude(relative_noise_magnitude), solver_eps(solver_eps), points(_points)
        {
            DLIB_CASSERT(relative_noise_magnitude >= 0);
            DLIB_CASSERT(solver_eps > 0);

            if (points.size() > 1)
            {
                DLIB_CASSERT(points[0].x.size() > 0, "The vectors can't be empty.");

                const long dims = points[0].x.size();
                for (auto& p : points)
                    DLIB_CASSERT(p.x.size() == dims, "All the vectors given to upper_bound_function must have the same dimensionality.");

                learn_params();
            }

        }

        void add (
            const function_evaluation& point
        )
        {
            DLIB_CASSERT(point.x.size() != 0, "The vectors can't be empty.");
            if (points.size() == 0)
            {
                points.push_back(point);
                return;
            }

            DLIB_CASSERT(point.x.size() == dimensionality(), "All the vectors given to upper_bound_function must have the same dimensionality.");

            if (points.size() < 4)
            {
                points.push_back(point);
                *this = upper_bound_function(points, relative_noise_magnitude, solver_eps);
                return;
            }

            points.push_back(point);
            // add constraints between the new point and the old points
            for (size_t i = 0; i < points.size()-1; ++i)
                active_constraints.push_back(std::make_pair(i,points.size()-1));

            learn_params();
        }

        long num_points(
        ) const 
        { 
            return points.size(); 
        }

        long dimensionality(
        ) const
        { 
            if (points.size() == 0)
                return 0;
            else
                return points[0].x.size();
        }

        const std::vector<function_evaluation>& get_points(
        ) const 
        { 
            return points; 
        }

        double operator() (
            const matrix<double,0,1>& x
        ) const
        {
            DLIB_CASSERT(num_points() > 0);
            DLIB_CASSERT(x.size() == dimensionality());



            double upper_bound = std::numeric_limits<double>::infinity();

            for (size_t i = 0; i < points.size(); ++i)
            {
                const double local_bound = points[i].y + std::sqrt(offsets[i] + dot(slopes, squared(x-points[i].x)));
                upper_bound = std::min(upper_bound, local_bound);
            }

            return upper_bound;
        }

    private:

        void learn_params (
        )
        {
            const long dims = points[0].x.size();

            using sample_type = std::vector<std::pair<size_t,double>>;
            using kernel_type = sparse_linear_kernel<sample_type>;
            std::vector<sample_type> x;
            std::vector<double> y;

            // We are going to normalize the data so the values aren't extreme.  First, we
            // collect statistics on our data.
            std::vector<running_stats<double>> x_rs(dims);
            running_stats<double> y_rs;
            for (auto& v : points)
            {
                for (long i = 0; i < v.x.size(); ++i)
                    x_rs[i].add(v.x(i));
                y_rs.add(v.y);
            }


            // compute normalization vectors for the data.  The only reason we do this is
            // to make the optimization well conditioned.  In particular, scaling the y
            // values will prevent numerical errors in the 1-diff*diff computation below that
            // would otherwise result when diff is really big.  Also, scaling the xvalues
            // to be about 1 will similarly make the optimization more stable and it also
            // has the added benefit of keeping the relative_noise_magnitude's scale
            // constant regardless of the size of x values.
            const double yscale = 1.0/y_rs.stddev();
            std::vector<double> xscale(dims);
            for (size_t i = 0; i < xscale.size(); ++i)
                xscale[i] = 1.0/(x_rs[i].stddev()*yscale); // make it so that xscale[i]*yscale ==  1/x_rs[i].stddev()

            sample_type samp;
            auto add_constraint = [&](long i, long j) {
                samp.clear();
                for (long k = 0; k < dims; ++k)
                {
                    double temp = (points[i].x(k) - points[j].x(k))*xscale[k]*yscale;
                    samp.push_back(std::make_pair(k, temp*temp));
                }

                if (points[i].y > points[j].y)
                    samp.push_back(std::make_pair(dims + j, relative_noise_magnitude));
                else
                    samp.push_back(std::make_pair(dims + i, relative_noise_magnitude));

                const double diff = (points[i].y - points[j].y)*yscale;
                samp.push_back(std::make_pair(dims + points.size(), 1-diff*diff));

                x.push_back(samp);
                y.push_back(1);
            };

            if (active_constraints.size() == 0)
            {
                x.reserve(points.size()*(points.size()-1)/2);
                y.reserve(points.size()*(points.size()-1)/2);
                for (size_t i = 0; i < points.size(); ++i)
                {
                    for (size_t j = i+1; j < points.size(); ++j)
                    {
                        add_constraint(i,j);
                    }
                }
            }
            else
            {
                for (auto& p : active_constraints)
                    add_constraint(p.first, p.second);
            }




            svm_c_linear_dcd_trainer<kernel_type> trainer;
            trainer.set_c(std::numeric_limits<double>::infinity());
            //trainer.be_verbose();
            trainer.force_last_weight_to_1(true);
            trainer.set_epsilon(solver_eps);

            svm_c_linear_dcd_trainer<kernel_type>::optimizer_state state;
            auto df = trainer.train(x,y, state);

            // save the active constraints for later so we can use them inside add() to add
            // new points efficiently.
            if (active_constraints.size() == 0)
            {
                long k = 0;
                for (size_t i = 0; i < points.size(); ++i)
                {
                    for (size_t j = i+1; j < points.size(); ++j)
                    {
                        if (state.get_alpha()[k++] != 0)
                            active_constraints.push_back(std::make_pair(i,j));
                    }
                }
            }
            else
            {
                DLIB_CASSERT(state.get_alpha().size() == active_constraints.size());
                new_active_constraints.clear();
                for (size_t i = 0; i < state.get_alpha().size(); ++i)
                {
                    if (state.get_alpha()[i] != 0)
                        new_active_constraints.push_back(active_constraints[i]);
                }
                active_constraints.swap(new_active_constraints);
            }

            //std::cout << "points.size(): " << points.size() << std::endl;
            //std::cout << "active_constraints.size(): " << active_constraints.size() << std::endl;


            const auto& bv = df.basis_vectors(0);
            slopes.set_size(dims);
            for (long i = 0; i < dims; ++i)
                slopes(i) = bv[i].second*xscale[i]*xscale[i];

            //std::cout << "slopes:" << trans(slopes);

            offsets.assign(points.size(),0);


            for (size_t i = 0; i < points.size(); ++i)
            {
                offsets[i] += bv[slopes.size()+i].second*relative_noise_magnitude;
            }
        }



        double relative_noise_magnitude = 0.001;
        double solver_eps = 0.0001; 
        std::vector<std::pair<size_t,size_t>> active_constraints, new_active_constraints;

        std::vector<function_evaluation> points;
        std::vector<double> offsets; // offsets.size() == points.size()
        matrix<double,0,1> slopes; // slopes.size() == points[0].first.size()
    };

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_UPPER_bOUND_FUNCTION_Hh_