File size: 10,313 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
// Copyright (C) 2009  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_SURf_H_
#define DLIB_SURf_H_

#include "surf_abstract.h"
#include "hessian_pyramid.h"
#include "../matrix.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------
    
    struct surf_point
    {
        interest_point p;
        matrix<double,64,1> des;
        double angle;
    };

// ----------------------------------------------------------------------------------------

    inline void serialize(
        const surf_point& item,  
        std::ostream& out
    )
    {
        try
        {
            serialize(item.p,out);
            serialize(item.des,out);
            serialize(item.angle,out);
        }
        catch (serialization_error& e)
        { 
            throw serialization_error(e.info + "\n   while serializing object of type surf_point"); 
        }
    }

// ----------------------------------------------------------------------------------------

    inline void deserialize(
        surf_point& item,  
        std::istream& in 
    )
    {
        try
        {
            deserialize(item.p,in);
            deserialize(item.des,in);
            deserialize(item.angle,in);
        }
        catch (serialization_error& e)
        { 
            throw serialization_error(e.info + "\n   while deserializing object of type surf_point"); 
        }
    }

// ----------------------------------------------------------------------------------------

    inline double gaussian (double x, double y, double sig)
    {
        DLIB_ASSERT(sig > 0,
            "\tdouble gaussian()"
            << "\n\t sig must be bigger than 0"
            << "\n\t sig: " << sig 
        );
        const double sqrt_2_pi = 2.5066282746310002416123552393401041626930;
        return 1.0/(sig*sqrt_2_pi) * std::exp( -(x*x + y*y)/(2*sig*sig));
    }

// ----------------------------------------------------------------------------------------

    template <typename integral_image_type, typename T>
    double compute_dominant_angle (
        const integral_image_type& img,
        const dlib::vector<T,2>& center,
        const double& scale
    )
    {
        DLIB_ASSERT(get_rect(img).contains(centered_rect(center, (unsigned long)(17*scale),(unsigned long)(17*scale))) == true &&
                    scale > 0,
            "\tdouble compute_dominant_angle(img, center, scale)"
            << "\n\tAll arguments to this function must be > 0"
            << "\n\t get_rect(img): " << get_rect(img) 
            << "\n\t center:        " << center 
            << "\n\t scale:         " << scale 
        );


        std::vector<double> ang;
        std::vector<dlib::vector<double,2> > samples;

        const long sc = static_cast<long>(scale+0.5);

        // accumulate a bunch of angle and vector samples
        dlib::vector<double,2> vect;
        for (long r = -6; r <= 6; ++r)
        {
            for (long c = -6; c <= 6; ++c)
            {
                if (r*r + c*c < 36)
                {
                    // compute a Gaussian weighted gradient and the gradient's angle.
                    const double gauss = gaussian(c,r, 2.5);
                    vect.x() = gauss*haar_x(img, sc*point(c,r)+center, 4*sc);
                    vect.y() = gauss*haar_y(img, sc*point(c,r)+center, 4*sc);
                    samples.push_back(vect);
                    ang.push_back(atan2(vect.y(), vect.x()));
                }
            }
        }


        // now find the dominant direction
        double max_length = 0;
        double best_ang = 0;
        // look at a bunch of pie shaped slices of a circle 
        const long slices = 45;
        const double ang_step = (2*pi)/slices;
        for (long ang_i = 0; ang_i < slices; ++ang_i)
        {
            // compute the bounding angles
            double ang1 = ang_step*ang_i - pi;
            double ang2 = ang1 + pi/3;


            // compute sum of all vectors that are within the above two angles
            vect.x() = 0;
            vect.y() = 0;
            for (unsigned long i = 0; i < ang.size(); ++i)
            {
                if (ang1 <= ang[i] && ang[i] <= ang2)
                {
                    vect += samples[i];
                }
                else if (ang2 > pi && (ang[i] >= ang1 || ang[i] <= (-2*pi+ang2)))
                {
                    vect += samples[i];
                }
            }


            // record the angle of the best vectors
            if (length_squared(vect) > max_length)
            {
                max_length = length_squared(vect);
                best_ang = atan2(vect.y(), vect.x());
            }
        }

        return best_ang;
    }

// ----------------------------------------------------------------------------------------

    template <typename integral_image_type, typename T, typename MM, typename L>
    void compute_surf_descriptor (
        const integral_image_type& img,
        const dlib::vector<T,2>& center,
        const double scale,
        const double angle,
        matrix<double,64,1,MM,L>& des
    )
    {
        DLIB_ASSERT(get_rect(img).contains(centered_rect(center, (unsigned long)(32*scale),(unsigned long)(32*scale))) == true &&
                    scale > 0,
            "\tvoid compute_surf_descriptor(img, center, scale, angle)"
            << "\n\tAll arguments to this function must be > 0"
            << "\n\t get_rect(img): " << get_rect(img) 
            << "\n\t center:        " << center 
            << "\n\t scale:         " << scale 
        );

        point_rotator rot(angle);
        point_rotator inv_rot(-angle);

        const long sc = static_cast<long>(scale+0.5);
        long count = 0;

        // loop over the 4x4 grid of histogram buckets 
        for (long r = -10; r < 10; r += 5)
        {
            for (long c = -10; c < 10; c += 5)
            {
                dlib::vector<double,2> vect, abs_vect, temp;

                // now loop over 25 points in this bucket and sum their features.  Note
                // that we include 1 pixels worth of padding around the outside of each 5x5
                // cell.  This is to help neighboring cells interpolate their counts into
                // each other a little bit.
                for (long y = r-1; y < r+5+1; ++y)
                {
                    if (y < -10 || y >= 10)
                        continue;
                    for (long x = c-1; x < c+5+1; ++x)
                    {
                        if (x < -10 || x >= 10)
                            continue;

                        // get the rotated point for this extraction point
                        point p(rot(point(x,y)*scale) + center); 

                        // Give points farther from the center of the bucket a lower weight.  
                        const long center_r = r+2;
                        const long center_c = c+2;
                        const double weight = 1.0/(4+std::abs(center_r-y) + std::abs(center_c-x));

                        temp.x() = weight*haar_x(img, p, 2*sc);
                        temp.y() = weight*haar_y(img, p, 2*sc);

                        // rotate this vector into alignment with the surf descriptor box 
                        temp = inv_rot(temp);

                        vect += temp;
                        abs_vect += abs(temp);
                    }
                }

                des(count++) = vect.x();
                des(count++) = vect.y();
                des(count++) = abs_vect.x();
                des(count++) = abs_vect.y();
            }
        }

        // Return the length normalized descriptor.  Add a small number
        // to guard against division by zero.
        const double len = length(des) + 1e-7;
        des = des/len;
    }

// ----------------------------------------------------------------------------------------

    template <typename image_type>
    const std::vector<surf_point> get_surf_points (
        const image_type& img,
        long max_points = 10000,
        double detection_threshold = 30.0
    )
    {
        DLIB_ASSERT(max_points > 0 && detection_threshold >= 0,
            "\t std::vector<surf_point> get_surf_points()"
            << "\n\t Invalid arguments were given to this function."
            << "\n\t max_points:          " << max_points 
            << "\n\t detection_threshold: " << detection_threshold 
        );

        // Figure out the proper scalar type we should use to work with these pixels.  
        typedef typename pixel_traits<typename image_traits<image_type>::pixel_type>::basic_pixel_type bp_type;
        typedef typename promote<bp_type>::type working_pixel_type;

        // make an integral image first
        integral_image_generic<working_pixel_type> int_img;
        int_img.load(img);

        // now make a hessian pyramid
        hessian_pyramid pyr;
        pyr.build_pyramid(int_img, 4, 6, 2);

        // now get all the interest points from the hessian pyramid
        std::vector<interest_point> points; 
        get_interest_points(pyr, detection_threshold, points);
        std::vector<surf_point> spoints;

        // sort all the points by how strong their detect is
        std::sort(points.rbegin(), points.rend());

        // now extract SURF descriptors for the points
        surf_point sp;
        for (unsigned long i = 0; i < std::min((size_t)max_points,points.size()); ++i)
        {
            // ignore points that are close to the edge of the image
            const double border = 32;
            const unsigned long border_size = static_cast<unsigned long>(border*points[i].scale);
            if (get_rect(int_img).contains(centered_rect(points[i].center, border_size, border_size)))
            {
                sp.angle = compute_dominant_angle(int_img, points[i].center, points[i].scale);
                compute_surf_descriptor(int_img, points[i].center, points[i].scale, sp.angle, sp.des);
                sp.p = points[i];

                spoints.push_back(sp);
            }
        }

        return spoints;
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_SURf_H_