File size: 10,313 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
// Copyright (C) 2009 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_SURf_H_
#define DLIB_SURf_H_
#include "surf_abstract.h"
#include "hessian_pyramid.h"
#include "../matrix.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
struct surf_point
{
interest_point p;
matrix<double,64,1> des;
double angle;
};
// ----------------------------------------------------------------------------------------
inline void serialize(
const surf_point& item,
std::ostream& out
)
{
try
{
serialize(item.p,out);
serialize(item.des,out);
serialize(item.angle,out);
}
catch (serialization_error& e)
{
throw serialization_error(e.info + "\n while serializing object of type surf_point");
}
}
// ----------------------------------------------------------------------------------------
inline void deserialize(
surf_point& item,
std::istream& in
)
{
try
{
deserialize(item.p,in);
deserialize(item.des,in);
deserialize(item.angle,in);
}
catch (serialization_error& e)
{
throw serialization_error(e.info + "\n while deserializing object of type surf_point");
}
}
// ----------------------------------------------------------------------------------------
inline double gaussian (double x, double y, double sig)
{
DLIB_ASSERT(sig > 0,
"\tdouble gaussian()"
<< "\n\t sig must be bigger than 0"
<< "\n\t sig: " << sig
);
const double sqrt_2_pi = 2.5066282746310002416123552393401041626930;
return 1.0/(sig*sqrt_2_pi) * std::exp( -(x*x + y*y)/(2*sig*sig));
}
// ----------------------------------------------------------------------------------------
template <typename integral_image_type, typename T>
double compute_dominant_angle (
const integral_image_type& img,
const dlib::vector<T,2>& center,
const double& scale
)
{
DLIB_ASSERT(get_rect(img).contains(centered_rect(center, (unsigned long)(17*scale),(unsigned long)(17*scale))) == true &&
scale > 0,
"\tdouble compute_dominant_angle(img, center, scale)"
<< "\n\tAll arguments to this function must be > 0"
<< "\n\t get_rect(img): " << get_rect(img)
<< "\n\t center: " << center
<< "\n\t scale: " << scale
);
std::vector<double> ang;
std::vector<dlib::vector<double,2> > samples;
const long sc = static_cast<long>(scale+0.5);
// accumulate a bunch of angle and vector samples
dlib::vector<double,2> vect;
for (long r = -6; r <= 6; ++r)
{
for (long c = -6; c <= 6; ++c)
{
if (r*r + c*c < 36)
{
// compute a Gaussian weighted gradient and the gradient's angle.
const double gauss = gaussian(c,r, 2.5);
vect.x() = gauss*haar_x(img, sc*point(c,r)+center, 4*sc);
vect.y() = gauss*haar_y(img, sc*point(c,r)+center, 4*sc);
samples.push_back(vect);
ang.push_back(atan2(vect.y(), vect.x()));
}
}
}
// now find the dominant direction
double max_length = 0;
double best_ang = 0;
// look at a bunch of pie shaped slices of a circle
const long slices = 45;
const double ang_step = (2*pi)/slices;
for (long ang_i = 0; ang_i < slices; ++ang_i)
{
// compute the bounding angles
double ang1 = ang_step*ang_i - pi;
double ang2 = ang1 + pi/3;
// compute sum of all vectors that are within the above two angles
vect.x() = 0;
vect.y() = 0;
for (unsigned long i = 0; i < ang.size(); ++i)
{
if (ang1 <= ang[i] && ang[i] <= ang2)
{
vect += samples[i];
}
else if (ang2 > pi && (ang[i] >= ang1 || ang[i] <= (-2*pi+ang2)))
{
vect += samples[i];
}
}
// record the angle of the best vectors
if (length_squared(vect) > max_length)
{
max_length = length_squared(vect);
best_ang = atan2(vect.y(), vect.x());
}
}
return best_ang;
}
// ----------------------------------------------------------------------------------------
template <typename integral_image_type, typename T, typename MM, typename L>
void compute_surf_descriptor (
const integral_image_type& img,
const dlib::vector<T,2>& center,
const double scale,
const double angle,
matrix<double,64,1,MM,L>& des
)
{
DLIB_ASSERT(get_rect(img).contains(centered_rect(center, (unsigned long)(32*scale),(unsigned long)(32*scale))) == true &&
scale > 0,
"\tvoid compute_surf_descriptor(img, center, scale, angle)"
<< "\n\tAll arguments to this function must be > 0"
<< "\n\t get_rect(img): " << get_rect(img)
<< "\n\t center: " << center
<< "\n\t scale: " << scale
);
point_rotator rot(angle);
point_rotator inv_rot(-angle);
const long sc = static_cast<long>(scale+0.5);
long count = 0;
// loop over the 4x4 grid of histogram buckets
for (long r = -10; r < 10; r += 5)
{
for (long c = -10; c < 10; c += 5)
{
dlib::vector<double,2> vect, abs_vect, temp;
// now loop over 25 points in this bucket and sum their features. Note
// that we include 1 pixels worth of padding around the outside of each 5x5
// cell. This is to help neighboring cells interpolate their counts into
// each other a little bit.
for (long y = r-1; y < r+5+1; ++y)
{
if (y < -10 || y >= 10)
continue;
for (long x = c-1; x < c+5+1; ++x)
{
if (x < -10 || x >= 10)
continue;
// get the rotated point for this extraction point
point p(rot(point(x,y)*scale) + center);
// Give points farther from the center of the bucket a lower weight.
const long center_r = r+2;
const long center_c = c+2;
const double weight = 1.0/(4+std::abs(center_r-y) + std::abs(center_c-x));
temp.x() = weight*haar_x(img, p, 2*sc);
temp.y() = weight*haar_y(img, p, 2*sc);
// rotate this vector into alignment with the surf descriptor box
temp = inv_rot(temp);
vect += temp;
abs_vect += abs(temp);
}
}
des(count++) = vect.x();
des(count++) = vect.y();
des(count++) = abs_vect.x();
des(count++) = abs_vect.y();
}
}
// Return the length normalized descriptor. Add a small number
// to guard against division by zero.
const double len = length(des) + 1e-7;
des = des/len;
}
// ----------------------------------------------------------------------------------------
template <typename image_type>
const std::vector<surf_point> get_surf_points (
const image_type& img,
long max_points = 10000,
double detection_threshold = 30.0
)
{
DLIB_ASSERT(max_points > 0 && detection_threshold >= 0,
"\t std::vector<surf_point> get_surf_points()"
<< "\n\t Invalid arguments were given to this function."
<< "\n\t max_points: " << max_points
<< "\n\t detection_threshold: " << detection_threshold
);
// Figure out the proper scalar type we should use to work with these pixels.
typedef typename pixel_traits<typename image_traits<image_type>::pixel_type>::basic_pixel_type bp_type;
typedef typename promote<bp_type>::type working_pixel_type;
// make an integral image first
integral_image_generic<working_pixel_type> int_img;
int_img.load(img);
// now make a hessian pyramid
hessian_pyramid pyr;
pyr.build_pyramid(int_img, 4, 6, 2);
// now get all the interest points from the hessian pyramid
std::vector<interest_point> points;
get_interest_points(pyr, detection_threshold, points);
std::vector<surf_point> spoints;
// sort all the points by how strong their detect is
std::sort(points.rbegin(), points.rend());
// now extract SURF descriptors for the points
surf_point sp;
for (unsigned long i = 0; i < std::min((size_t)max_points,points.size()); ++i)
{
// ignore points that are close to the edge of the image
const double border = 32;
const unsigned long border_size = static_cast<unsigned long>(border*points[i].scale);
if (get_rect(int_img).contains(centered_rect(points[i].center, border_size, border_size)))
{
sp.angle = compute_dominant_angle(int_img, points[i].center, points[i].scale);
compute_surf_descriptor(int_img, points[i].center, points[i].scale, sp.angle, sp.des);
sp.p = points[i];
spoints.push_back(sp);
}
}
return spoints;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_SURf_H_
|