File size: 8,930 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
// Copyright (C) 2015  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_BOTTOM_uP_CLUSTER_Hh_
#define DLIB_BOTTOM_uP_CLUSTER_Hh_

#include <queue>
#include <map>

#include "bottom_up_cluster_abstract.h"
#include "../algs.h"
#include "../matrix.h"
#include "../disjoint_subsets.h"
#include "../graph_utils.h"


namespace dlib
{

// ----------------------------------------------------------------------------------------

    namespace buc_impl
    {
        inline void merge_sets (
            matrix<double>& dists,
            unsigned long dest,
            unsigned long src
        )
        {
            for (long r = 0; r < dists.nr(); ++r)
                dists(dest,r) = dists(r,dest) = std::max(dists(r,dest), dists(r,src));
        }

        struct compare_dist
        {
            bool operator() (
                const sample_pair& a,
                const sample_pair& b
            ) const
            {
                return a.distance() > b.distance();
            }
        };
    }

// ----------------------------------------------------------------------------------------

    template <
        typename EXP
        >
    unsigned long bottom_up_cluster (
        const matrix_exp<EXP>& dists_,
        std::vector<unsigned long>& labels,
        unsigned long min_num_clusters,
        double max_dist = std::numeric_limits<double>::infinity()
    )
    {
        matrix<double> dists = matrix_cast<double>(dists_);
        // make sure requires clause is not broken
        DLIB_CASSERT(dists.nr() == dists.nc() && min_num_clusters > 0, 
            "\t unsigned long bottom_up_cluster()"
            << "\n\t Invalid inputs were given to this function."
            << "\n\t dists.nr(): " << dists.nr() 
            << "\n\t dists.nc(): " << dists.nc() 
            << "\n\t min_num_clusters: " << min_num_clusters 
            );

        using namespace buc_impl;

        labels.resize(dists.nr());
        disjoint_subsets sets;
        sets.set_size(dists.nr());
        if (labels.size() == 0)
            return 0;

        // push all the edges in the graph into a priority queue so the best edges to merge
        // come first.
        std::priority_queue<sample_pair, std::vector<sample_pair>, compare_dist> que;
        for (long r = 0; r < dists.nr(); ++r)
            for (long c = r+1; c < dists.nc(); ++c)
                que.push(sample_pair(r,c,dists(r,c)));

        // Now start merging nodes.
        for (unsigned long iter = min_num_clusters; iter < sets.size(); ++iter)
        {
            // find the next best thing to merge.
            double best_dist = que.top().distance();
            unsigned long a = sets.find_set(que.top().index1());
            unsigned long b = sets.find_set(que.top().index2());
            que.pop();
            // we have been merging and modifying the distances, so make sure this distance
            // is still valid and these guys haven't been merged already.
            while(a == b || best_dist < dists(a,b))
            {
                // Haven't merged it yet, so put it back in with updated distance for
                // reconsideration later.
                if (a != b)
                    que.push(sample_pair(a, b, dists(a, b)));

                best_dist = que.top().distance();
                a = sets.find_set(que.top().index1());
                b = sets.find_set(que.top().index2());
                que.pop();
            }


            // now merge these sets if the best distance is small enough
            if (best_dist > max_dist)
                break;
            unsigned long news = sets.merge_sets(a,b);
            unsigned long olds = (news==a)?b:a;
            merge_sets(dists, news, olds);
        }

        // figure out which cluster each element is in.  Also make sure the labels are
        // contiguous.
        std::map<unsigned long, unsigned long> relabel;
        for (unsigned long r = 0; r < labels.size(); ++r)
        {
            unsigned long l = sets.find_set(r);
            // relabel to make contiguous
            if (relabel.count(l) == 0)
            {
                unsigned long next = relabel.size();
                relabel[l] = next;
            }
            labels[r] = relabel[l];
        }


        return relabel.size();
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    struct snl_range
    {
        snl_range() = default;
        snl_range(double val) : lower(val), upper(val) {}
        snl_range(double l, double u) : lower(l), upper(u) { DLIB_ASSERT(lower <= upper)}

        double lower = 0;
        double upper = 0;

        double width() const { return upper-lower; }
        bool operator<(const snl_range& item) const { return lower < item.lower; }
    };

    inline snl_range merge(const snl_range& a, const snl_range& b)
    {
        return snl_range(std::min(a.lower, b.lower), std::max(a.upper, b.upper));
    }

    inline double distance (const snl_range& a, const snl_range& b)
    {
        return std::max(a.lower,b.lower) - std::min(a.upper,b.upper);
    }

    inline std::ostream& operator<< (std::ostream& out, const snl_range& item )
    {
        out << "["<<item.lower<<","<<item.upper<<"]";
        return out;
    }

// ----------------------------------------------------------------------------------------

    inline std::vector<snl_range> segment_number_line (
        const std::vector<double>& x,
        const double max_range_width
    )
    {
        DLIB_CASSERT(max_range_width >= 0);

        // create initial ranges, one for each value in x.  So initially, all the ranges have
        // width of 0.
        std::vector<snl_range> ranges;
        for (auto v : x)
            ranges.push_back(v);
        std::sort(ranges.begin(), ranges.end());

        std::vector<snl_range> greedy_final_ranges;
        if (ranges.size() == 0)
            return greedy_final_ranges;
        // We will try two different clustering strategies.  One that does a simple greedy left
        // to right sweep and another that does a bottom up agglomerative clustering.  This
        // first loop runs the greedy left to right sweep.  Then at the end of this routine we
        // will return the results that produced the tightest clustering.
        greedy_final_ranges.push_back(ranges[0]);
        for (size_t i = 1; i < ranges.size(); ++i)
        {
            auto m = merge(greedy_final_ranges.back(), ranges[i]);
            if (m.width() <= max_range_width)
                greedy_final_ranges.back() = m;
            else
                greedy_final_ranges.push_back(ranges[i]);
        }


        // Here we do the bottom up clustering.  So compute the edges connecting our ranges.
        // We will simply say there are edges between ranges if and only if they are
        // immediately adjacent on the number line.
        std::vector<sample_pair> edges;
        for (size_t i = 1; i < ranges.size(); ++i)
            edges.push_back(sample_pair(i-1,i, distance(ranges[i-1],ranges[i])));
        std::sort(edges.begin(), edges.end(), order_by_distance<sample_pair>);

        disjoint_subsets sets;
        sets.set_size(ranges.size());

        // Now start merging nodes.
        for (auto edge : edges)
        {
            // find the next best thing to merge.
            unsigned long a = sets.find_set(edge.index1());
            unsigned long b = sets.find_set(edge.index2());

            // merge it if it doesn't result in an interval that's too big.
            auto m = merge(ranges[a], ranges[b]);
            if (m.width() <= max_range_width)
            {
                unsigned long news = sets.merge_sets(a,b);
                ranges[news] = m;
            }
        }

        // Now create a list of the final ranges.  We will do this by keeping track of which
        // range we already added to final_ranges.
        std::vector<snl_range> final_ranges;
        std::vector<bool> already_output(ranges.size(), false);
        for (unsigned long i = 0; i < sets.size(); ++i)
        {
            auto s = sets.find_set(i);
            if (!already_output[s])
            {
                final_ranges.push_back(ranges[s]);
                already_output[s] = true;
            }
        }

        // only use the greedy clusters if they found a clustering with fewer clusters.
        // Otherwise, the bottom up clustering probably produced a more sensible clustering.
        if (final_ranges.size() <= greedy_final_ranges.size())
            return final_ranges;
        else
            return greedy_final_ranges;
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_BOTTOM_uP_CLUSTER_Hh_