File size: 32,305 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 |
// Copyright (C) 2013 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/svm_threaded.h>
using namespace dlib;
using namespace std;
namespace py = pybind11;
typedef matrix<double,0,1> dense_vect;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
typedef std::vector<std::pair<unsigned long, unsigned long> > ranges;
// ----------------------------------------------------------------------------------------
template <typename samp_type, bool BIO, bool high_order, bool nonnegative>
class segmenter_feature_extractor
{
public:
typedef std::vector<samp_type> sequence_type;
const static bool use_BIO_model = BIO;
const static bool use_high_order_features = high_order;
const static bool allow_negative_weights = nonnegative;
unsigned long _num_features;
unsigned long _window_size;
segmenter_feature_extractor(
) : _num_features(1), _window_size(1) {}
segmenter_feature_extractor(
unsigned long _num_features_,
unsigned long _window_size_
) : _num_features(_num_features_), _window_size(_window_size_) {}
unsigned long num_features(
) const { return _num_features; }
unsigned long window_size(
) const {return _window_size; }
template <typename feature_setter>
void get_features (
feature_setter& set_feature,
const std::vector<dense_vect>& x,
unsigned long position
) const
{
for (long i = 0; i < x[position].size(); ++i)
{
set_feature(i, x[position](i));
}
}
template <typename feature_setter>
void get_features (
feature_setter& set_feature,
const std::vector<sparse_vect>& x,
unsigned long position
) const
{
for (unsigned long i = 0; i < x[position].size(); ++i)
{
set_feature(x[position][i].first, x[position][i].second);
}
}
friend void serialize(const segmenter_feature_extractor& item, std::ostream& out)
{
dlib::serialize(item._num_features, out);
dlib::serialize(item._window_size, out);
}
friend void deserialize(segmenter_feature_extractor& item, std::istream& in)
{
dlib::deserialize(item._num_features, in);
dlib::deserialize(item._window_size, in);
}
};
// ----------------------------------------------------------------------------------------
struct segmenter_type
{
/*!
WHAT THIS OBJECT REPRESENTS
This the object that python will use directly to represent a
sequence_segmenter. All it does is contain all the possible template
instantiations of a sequence_segmenter and invoke the right one depending on
the mode variable.
!*/
segmenter_type() : mode(-1)
{ }
ranges segment_sequence_dense (
const std::vector<dense_vect>& x
) const
{
switch (mode)
{
case 0: return segmenter0(x);
case 1: return segmenter1(x);
case 2: return segmenter2(x);
case 3: return segmenter3(x);
case 4: return segmenter4(x);
case 5: return segmenter5(x);
case 6: return segmenter6(x);
case 7: return segmenter7(x);
default: throw dlib::error("Invalid mode");
}
}
ranges segment_sequence_sparse (
const std::vector<sparse_vect>& x
) const
{
switch (mode)
{
case 8: return segmenter8(x);
case 9: return segmenter9(x);
case 10: return segmenter10(x);
case 11: return segmenter11(x);
case 12: return segmenter12(x);
case 13: return segmenter13(x);
case 14: return segmenter14(x);
case 15: return segmenter15(x);
default: throw dlib::error("Invalid mode");
}
}
const matrix<double,0,1> get_weights()
{
switch(mode)
{
case 0: return segmenter0.get_weights();
case 1: return segmenter1.get_weights();
case 2: return segmenter2.get_weights();
case 3: return segmenter3.get_weights();
case 4: return segmenter4.get_weights();
case 5: return segmenter5.get_weights();
case 6: return segmenter6.get_weights();
case 7: return segmenter7.get_weights();
case 8: return segmenter8.get_weights();
case 9: return segmenter9.get_weights();
case 10: return segmenter10.get_weights();
case 11: return segmenter11.get_weights();
case 12: return segmenter12.get_weights();
case 13: return segmenter13.get_weights();
case 14: return segmenter14.get_weights();
case 15: return segmenter15.get_weights();
default: throw dlib::error("Invalid mode");
}
}
friend void serialize (const segmenter_type& item, std::ostream& out)
{
serialize(item.mode, out);
switch(item.mode)
{
case 0: serialize(item.segmenter0, out); break;
case 1: serialize(item.segmenter1, out); break;
case 2: serialize(item.segmenter2, out); break;
case 3: serialize(item.segmenter3, out); break;
case 4: serialize(item.segmenter4, out); break;
case 5: serialize(item.segmenter5, out); break;
case 6: serialize(item.segmenter6, out); break;
case 7: serialize(item.segmenter7, out); break;
case 8: serialize(item.segmenter8, out); break;
case 9: serialize(item.segmenter9, out); break;
case 10: serialize(item.segmenter10, out); break;
case 11: serialize(item.segmenter11, out); break;
case 12: serialize(item.segmenter12, out); break;
case 13: serialize(item.segmenter13, out); break;
case 14: serialize(item.segmenter14, out); break;
case 15: serialize(item.segmenter15, out); break;
default: throw dlib::error("Invalid mode");
}
}
friend void deserialize (segmenter_type& item, std::istream& in)
{
deserialize(item.mode, in);
switch(item.mode)
{
case 0: deserialize(item.segmenter0, in); break;
case 1: deserialize(item.segmenter1, in); break;
case 2: deserialize(item.segmenter2, in); break;
case 3: deserialize(item.segmenter3, in); break;
case 4: deserialize(item.segmenter4, in); break;
case 5: deserialize(item.segmenter5, in); break;
case 6: deserialize(item.segmenter6, in); break;
case 7: deserialize(item.segmenter7, in); break;
case 8: deserialize(item.segmenter8, in); break;
case 9: deserialize(item.segmenter9, in); break;
case 10: deserialize(item.segmenter10, in); break;
case 11: deserialize(item.segmenter11, in); break;
case 12: deserialize(item.segmenter12, in); break;
case 13: deserialize(item.segmenter13, in); break;
case 14: deserialize(item.segmenter14, in); break;
case 15: deserialize(item.segmenter15, in); break;
default: throw dlib::error("Invalid mode");
}
}
int mode;
typedef segmenter_feature_extractor<dense_vect, false,false,false> fe0;
typedef segmenter_feature_extractor<dense_vect, false,false,true> fe1;
typedef segmenter_feature_extractor<dense_vect, false,true, false> fe2;
typedef segmenter_feature_extractor<dense_vect, false,true, true> fe3;
typedef segmenter_feature_extractor<dense_vect, true, false,false> fe4;
typedef segmenter_feature_extractor<dense_vect, true, false,true> fe5;
typedef segmenter_feature_extractor<dense_vect, true, true, false> fe6;
typedef segmenter_feature_extractor<dense_vect, true, true, true> fe7;
sequence_segmenter<fe0> segmenter0;
sequence_segmenter<fe1> segmenter1;
sequence_segmenter<fe2> segmenter2;
sequence_segmenter<fe3> segmenter3;
sequence_segmenter<fe4> segmenter4;
sequence_segmenter<fe5> segmenter5;
sequence_segmenter<fe6> segmenter6;
sequence_segmenter<fe7> segmenter7;
typedef segmenter_feature_extractor<sparse_vect, false,false,false> fe8;
typedef segmenter_feature_extractor<sparse_vect, false,false,true> fe9;
typedef segmenter_feature_extractor<sparse_vect, false,true, false> fe10;
typedef segmenter_feature_extractor<sparse_vect, false,true, true> fe11;
typedef segmenter_feature_extractor<sparse_vect, true, false,false> fe12;
typedef segmenter_feature_extractor<sparse_vect, true, false,true> fe13;
typedef segmenter_feature_extractor<sparse_vect, true, true, false> fe14;
typedef segmenter_feature_extractor<sparse_vect, true, true, true> fe15;
sequence_segmenter<fe8> segmenter8;
sequence_segmenter<fe9> segmenter9;
sequence_segmenter<fe10> segmenter10;
sequence_segmenter<fe11> segmenter11;
sequence_segmenter<fe12> segmenter12;
sequence_segmenter<fe13> segmenter13;
sequence_segmenter<fe14> segmenter14;
sequence_segmenter<fe15> segmenter15;
};
// ----------------------------------------------------------------------------------------
struct segmenter_params
{
segmenter_params()
{
use_BIO_model = true;
use_high_order_features = true;
allow_negative_weights = true;
window_size = 5;
num_threads = 4;
epsilon = 0.1;
max_cache_size = 40;
be_verbose = false;
C = 100;
}
bool use_BIO_model;
bool use_high_order_features;
bool allow_negative_weights;
unsigned long window_size;
unsigned long num_threads;
double epsilon;
unsigned long max_cache_size;
bool be_verbose;
double C;
};
string segmenter_params__str__(const segmenter_params& p)
{
ostringstream sout;
if (p.use_BIO_model)
sout << "BIO,";
else
sout << "BILOU,";
if (p.use_high_order_features)
sout << "highFeats,";
else
sout << "lowFeats,";
if (p.allow_negative_weights)
sout << "signed,";
else
sout << "non-negative,";
sout << "win="<<p.window_size << ",";
sout << "threads="<<p.num_threads << ",";
sout << "eps="<<p.epsilon << ",";
sout << "cache="<<p.max_cache_size << ",";
if (p.be_verbose)
sout << "verbose,";
else
sout << "non-verbose,";
sout << "C="<<p.C;
return trim(sout.str());
}
string segmenter_params__repr__(const segmenter_params& p)
{
ostringstream sout;
sout << "<";
sout << segmenter_params__str__(p);
sout << ">";
return sout.str();
}
void serialize ( const segmenter_params& item, std::ostream& out)
{
serialize(item.use_BIO_model, out);
serialize(item.use_high_order_features, out);
serialize(item.allow_negative_weights, out);
serialize(item.window_size, out);
serialize(item.num_threads, out);
serialize(item.epsilon, out);
serialize(item.max_cache_size, out);
serialize(item.be_verbose, out);
serialize(item.C, out);
}
void deserialize (segmenter_params& item, std::istream& in)
{
deserialize(item.use_BIO_model, in);
deserialize(item.use_high_order_features, in);
deserialize(item.allow_negative_weights, in);
deserialize(item.window_size, in);
deserialize(item.num_threads, in);
deserialize(item.epsilon, in);
deserialize(item.max_cache_size, in);
deserialize(item.be_verbose, in);
deserialize(item.C, in);
}
// ----------------------------------------------------------------------------------------
template <typename T>
void configure_trainer (
const std::vector<std::vector<dense_vect> >& samples,
structural_sequence_segmentation_trainer<T>& trainer,
const segmenter_params& params
)
{
pyassert(samples.size() != 0, "Invalid arguments. You must give some training sequences.");
pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences.");
pyassert(params.window_size != 0, "Invalid window_size parameter, it must be > 0.");
pyassert(params.epsilon > 0, "Invalid epsilon parameter, it must be > 0.");
pyassert(params.C > 0, "Invalid C parameter, it must be > 0.");
const long dims = samples[0][0].size();
trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size));
trainer.set_num_threads(params.num_threads);
trainer.set_epsilon(params.epsilon);
trainer.set_max_cache_size(params.max_cache_size);
trainer.set_c(params.C);
if (params.be_verbose)
trainer.be_verbose();
}
// ----------------------------------------------------------------------------------------
template <typename T>
void configure_trainer (
const std::vector<std::vector<sparse_vect> >& samples,
structural_sequence_segmentation_trainer<T>& trainer,
const segmenter_params& params
)
{
pyassert(samples.size() != 0, "Invalid arguments. You must give some training sequences.");
pyassert(samples[0].size() != 0, "Invalid arguments. You can't have zero length training sequences.");
unsigned long dims = 0;
for (unsigned long i = 0; i < samples.size(); ++i)
{
dims = std::max(dims, max_index_plus_one(samples[i]));
}
trainer = structural_sequence_segmentation_trainer<T>(T(dims, params.window_size));
trainer.set_num_threads(params.num_threads);
trainer.set_epsilon(params.epsilon);
trainer.set_max_cache_size(params.max_cache_size);
trainer.set_c(params.C);
if (params.be_verbose)
trainer.be_verbose();
}
// ----------------------------------------------------------------------------------------
segmenter_type train_dense (
const std::vector<std::vector<dense_vect> >& samples,
const std::vector<ranges>& segments,
segmenter_params params
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
int mode = 0;
if (params.use_BIO_model)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.use_high_order_features)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.allow_negative_weights)
mode = mode*2 + 1;
else
mode = mode*2;
segmenter_type res;
res.mode = mode;
switch(mode)
{
case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer;
configure_trainer(samples, trainer, params);
res.segmenter0 = trainer.train(samples, segments);
} break;
case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer;
configure_trainer(samples, trainer, params);
res.segmenter1 = trainer.train(samples, segments);
} break;
case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer;
configure_trainer(samples, trainer, params);
res.segmenter2 = trainer.train(samples, segments);
} break;
case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer;
configure_trainer(samples, trainer, params);
res.segmenter3 = trainer.train(samples, segments);
} break;
case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer;
configure_trainer(samples, trainer, params);
res.segmenter4 = trainer.train(samples, segments);
} break;
case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer;
configure_trainer(samples, trainer, params);
res.segmenter5 = trainer.train(samples, segments);
} break;
case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer;
configure_trainer(samples, trainer, params);
res.segmenter6 = trainer.train(samples, segments);
} break;
case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer;
configure_trainer(samples, trainer, params);
res.segmenter7 = trainer.train(samples, segments);
} break;
default: throw dlib::error("Invalid mode");
}
return res;
}
// ----------------------------------------------------------------------------------------
segmenter_type train_sparse (
const std::vector<std::vector<sparse_vect> >& samples,
const std::vector<ranges>& segments,
segmenter_params params
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
int mode = 0;
if (params.use_BIO_model)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.use_high_order_features)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.allow_negative_weights)
mode = mode*2 + 1;
else
mode = mode*2;
mode += 8;
segmenter_type res;
res.mode = mode;
switch(mode)
{
case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer;
configure_trainer(samples, trainer, params);
res.segmenter8 = trainer.train(samples, segments);
} break;
case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer;
configure_trainer(samples, trainer, params);
res.segmenter9 = trainer.train(samples, segments);
} break;
case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer;
configure_trainer(samples, trainer, params);
res.segmenter10 = trainer.train(samples, segments);
} break;
case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer;
configure_trainer(samples, trainer, params);
res.segmenter11 = trainer.train(samples, segments);
} break;
case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer;
configure_trainer(samples, trainer, params);
res.segmenter12 = trainer.train(samples, segments);
} break;
case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer;
configure_trainer(samples, trainer, params);
res.segmenter13 = trainer.train(samples, segments);
} break;
case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer;
configure_trainer(samples, trainer, params);
res.segmenter14 = trainer.train(samples, segments);
} break;
case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer;
configure_trainer(samples, trainer, params);
res.segmenter15 = trainer.train(samples, segments);
} break;
default: throw dlib::error("Invalid mode");
}
return res;
}
// ----------------------------------------------------------------------------------------
struct segmenter_test
{
double precision;
double recall;
double f1;
};
void serialize(const segmenter_test& item, std::ostream& out)
{
serialize(item.precision, out);
serialize(item.recall, out);
serialize(item.f1, out);
}
void deserialize(segmenter_test& item, std::istream& in)
{
deserialize(item.precision, in);
deserialize(item.recall, in);
deserialize(item.f1, in);
}
std::string segmenter_test__str__(const segmenter_test& item)
{
std::ostringstream sout;
sout << "precision: "<< item.precision << " recall: "<< item.recall << " f1-score: " << item.f1;
return sout.str();
}
std::string segmenter_test__repr__(const segmenter_test& item) { return "< " + segmenter_test__str__(item) + " >";}
// ----------------------------------------------------------------------------------------
const segmenter_test test_sequence_segmenter1 (
const segmenter_type& segmenter,
const std::vector<std::vector<dense_vect> >& samples,
const std::vector<ranges>& segments
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
matrix<double,1,3> res;
switch(segmenter.mode)
{
case 0: res = test_sequence_segmenter(segmenter.segmenter0, samples, segments); break;
case 1: res = test_sequence_segmenter(segmenter.segmenter1, samples, segments); break;
case 2: res = test_sequence_segmenter(segmenter.segmenter2, samples, segments); break;
case 3: res = test_sequence_segmenter(segmenter.segmenter3, samples, segments); break;
case 4: res = test_sequence_segmenter(segmenter.segmenter4, samples, segments); break;
case 5: res = test_sequence_segmenter(segmenter.segmenter5, samples, segments); break;
case 6: res = test_sequence_segmenter(segmenter.segmenter6, samples, segments); break;
case 7: res = test_sequence_segmenter(segmenter.segmenter7, samples, segments); break;
default: throw dlib::error("Invalid mode");
}
segmenter_test temp;
temp.precision = res(0);
temp.recall = res(1);
temp.f1 = res(2);
return temp;
}
const segmenter_test test_sequence_segmenter2 (
const segmenter_type& segmenter,
const std::vector<std::vector<sparse_vect> >& samples,
const std::vector<ranges>& segments
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
matrix<double,1,3> res;
switch(segmenter.mode)
{
case 8: res = test_sequence_segmenter(segmenter.segmenter8, samples, segments); break;
case 9: res = test_sequence_segmenter(segmenter.segmenter9, samples, segments); break;
case 10: res = test_sequence_segmenter(segmenter.segmenter10, samples, segments); break;
case 11: res = test_sequence_segmenter(segmenter.segmenter11, samples, segments); break;
case 12: res = test_sequence_segmenter(segmenter.segmenter12, samples, segments); break;
case 13: res = test_sequence_segmenter(segmenter.segmenter13, samples, segments); break;
case 14: res = test_sequence_segmenter(segmenter.segmenter14, samples, segments); break;
case 15: res = test_sequence_segmenter(segmenter.segmenter15, samples, segments); break;
default: throw dlib::error("Invalid mode");
}
segmenter_test temp;
temp.precision = res(0);
temp.recall = res(1);
temp.f1 = res(2);
return temp;
}
// ----------------------------------------------------------------------------------------
const segmenter_test cross_validate_sequence_segmenter1 (
const std::vector<std::vector<dense_vect> >& samples,
const std::vector<ranges>& segments,
long folds,
segmenter_params params
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
pyassert(1 < folds && folds <= static_cast<long>(samples.size()), "folds argument is outside the valid range.");
matrix<double,1,3> res;
int mode = 0;
if (params.use_BIO_model)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.use_high_order_features)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.allow_negative_weights)
mode = mode*2 + 1;
else
mode = mode*2;
switch(mode)
{
case 0: { structural_sequence_segmentation_trainer<segmenter_type::fe0> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 1: { structural_sequence_segmentation_trainer<segmenter_type::fe1> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 2: { structural_sequence_segmentation_trainer<segmenter_type::fe2> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 3: { structural_sequence_segmentation_trainer<segmenter_type::fe3> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 4: { structural_sequence_segmentation_trainer<segmenter_type::fe4> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 5: { structural_sequence_segmentation_trainer<segmenter_type::fe5> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 6: { structural_sequence_segmentation_trainer<segmenter_type::fe6> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 7: { structural_sequence_segmentation_trainer<segmenter_type::fe7> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
default: throw dlib::error("Invalid mode");
}
segmenter_test temp;
temp.precision = res(0);
temp.recall = res(1);
temp.f1 = res(2);
return temp;
}
const segmenter_test cross_validate_sequence_segmenter2 (
const std::vector<std::vector<sparse_vect> >& samples,
const std::vector<ranges>& segments,
long folds,
segmenter_params params
)
{
pyassert(is_sequence_segmentation_problem(samples, segments), "Invalid inputs");
pyassert(1 < folds && folds <= static_cast<long>(samples.size()), "folds argument is outside the valid range.");
matrix<double,1,3> res;
int mode = 0;
if (params.use_BIO_model)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.use_high_order_features)
mode = mode*2 + 1;
else
mode = mode*2;
if (params.allow_negative_weights)
mode = mode*2 + 1;
else
mode = mode*2;
mode += 8;
switch(mode)
{
case 8: { structural_sequence_segmentation_trainer<segmenter_type::fe8> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 9: { structural_sequence_segmentation_trainer<segmenter_type::fe9> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 10: { structural_sequence_segmentation_trainer<segmenter_type::fe10> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 11: { structural_sequence_segmentation_trainer<segmenter_type::fe11> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 12: { structural_sequence_segmentation_trainer<segmenter_type::fe12> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 13: { structural_sequence_segmentation_trainer<segmenter_type::fe13> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 14: { structural_sequence_segmentation_trainer<segmenter_type::fe14> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
case 15: { structural_sequence_segmentation_trainer<segmenter_type::fe15> trainer;
configure_trainer(samples, trainer, params);
res = cross_validate_sequence_segmenter(trainer, samples, segments, folds);
} break;
default: throw dlib::error("Invalid mode");
}
segmenter_test temp;
temp.precision = res(0);
temp.recall = res(1);
temp.f1 = res(2);
return temp;
}
// ----------------------------------------------------------------------------------------
void bind_sequence_segmenter(py::module& m)
{
py::class_<segmenter_params>(m, "segmenter_params",
"This class is used to define all the optional parameters to the \n\
train_sequence_segmenter() and cross_validate_sequence_segmenter() routines. ")
.def(py::init<>())
.def_readwrite("use_BIO_model", &segmenter_params::use_BIO_model)
.def_readwrite("use_high_order_features", &segmenter_params::use_high_order_features)
.def_readwrite("allow_negative_weights", &segmenter_params::allow_negative_weights)
.def_readwrite("window_size", &segmenter_params::window_size)
.def_readwrite("num_threads", &segmenter_params::num_threads)
.def_readwrite("epsilon", &segmenter_params::epsilon)
.def_readwrite("max_cache_size", &segmenter_params::max_cache_size)
.def_readwrite("C", &segmenter_params::C, "SVM C parameter")
.def_readwrite("be_verbose", &segmenter_params::be_verbose)
.def("__repr__",&segmenter_params__repr__)
.def("__str__",&segmenter_params__str__)
.def(py::pickle(&getstate<segmenter_params>, &setstate<segmenter_params>));
py::class_<segmenter_type> (m, "segmenter_type", "This object represents a sequence segmenter and is the type of object "
"returned by the dlib.train_sequence_segmenter() routine.")
.def("__call__", &segmenter_type::segment_sequence_dense)
.def("__call__", &segmenter_type::segment_sequence_sparse)
.def_property_readonly("weights", &segmenter_type::get_weights)
.def(py::pickle(&getstate<segmenter_type>, &setstate<segmenter_type>));
py::class_<segmenter_test> (m, "segmenter_test", "This object is the output of the dlib.test_sequence_segmenter() and "
"dlib.cross_validate_sequence_segmenter() routines.")
.def_readwrite("precision", &segmenter_test::precision)
.def_readwrite("recall", &segmenter_test::recall)
.def_readwrite("f1", &segmenter_test::f1)
.def("__repr__",&segmenter_test__repr__)
.def("__str__",&segmenter_test__str__)
.def(py::pickle(&getstate<segmenter_test>, &setstate<segmenter_test>));
m.def("train_sequence_segmenter", train_dense, py::arg("samples"), py::arg("segments"), py::arg("params")=segmenter_params());
m.def("train_sequence_segmenter", train_sparse, py::arg("samples"), py::arg("segments"), py::arg("params")=segmenter_params());
m.def("test_sequence_segmenter", test_sequence_segmenter1);
m.def("test_sequence_segmenter", test_sequence_segmenter2);
m.def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter1,
py::arg("samples"), py::arg("segments"), py::arg("folds"), py::arg("params")=segmenter_params());
m.def("cross_validate_sequence_segmenter", cross_validate_sequence_segmenter2,
py::arg("samples"), py::arg("segments"), py::arg("folds"), py::arg("params")=segmenter_params());
}
|