File size: 118,209 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 |
<html><!-- Created using the cpp_pretty_printer from the dlib C++ library. See http://dlib.net for updates. --><head><title>dlib C++ Library - tensor_tools.h</title></head><body bgcolor='white'><pre>
<font color='#009900'>// Copyright (C) 2015 Davis E. King ([email protected])
</font><font color='#009900'>// License: Boost Software License See LICENSE.txt for the full license.
</font><font color='#0000FF'>#ifndef</font> DLIB_TeNSOR_TOOLS_H_
<font color='#0000FF'>#define</font> DLIB_TeNSOR_TOOLS_H_
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='tensor.h.html'>tensor.h</a>"
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='cudnn_dlibapi.h.html'>cudnn_dlibapi.h</a>"
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='cublas_dlibapi.h.html'>cublas_dlibapi.h</a>"
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='cusolver_dlibapi.h.html'>cusolver_dlibapi.h</a>"
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='curand_dlibapi.h.html'>curand_dlibapi.h</a>"
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='cpu_dlib.h.html'>cpu_dlib.h</a>"
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='cuda_dlib.h.html'>cuda_dlib.h</a>"
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='../rand.h.html'>../rand.h</a>"
<font color='#0000FF'>#include</font> <font color='#5555FF'><</font>memory<font color='#5555FF'>></font>
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='../geometry/rectangle.h.html'>../geometry/rectangle.h</a>"
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='../test_for_odr_violations.h.html'>../test_for_odr_violations.h</a>"
<font color='#0000FF'>namespace</font> dlib
<b>{</b>
<font color='#0000FF'><u>bool</u></font> <b><a name='dnn_prefer_fastest_algorithms'></a>dnn_prefer_fastest_algorithms</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#0000FF'><u>void</u></font> <b><a name='set_dnn_prefer_fastest_algorithms'></a>set_dnn_prefer_fastest_algorithms</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#0000FF'><u>void</u></font> <b><a name='set_dnn_prefer_smallest_algorithms'></a>set_dnn_prefer_smallest_algorithms</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<b>}</b>
<font color='#0000FF'>namespace</font> dlib <b>{</b> <font color='#0000FF'>namespace</font> tt
<b>{</b>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='inverse_norms'></a>inverse_norms</b> <font face='Lucida Console'>(</font>
resizable_tensor<font color='#5555FF'>&</font> invnorms,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> data,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> eps
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #invnorms == reciprocal(sqrt(sum_cols(squared(mat(data))) + eps))
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='dot_prods'></a>dot_prods</b> <font face='Lucida Console'>(</font>
resizable_tensor<font color='#5555FF'>&</font> out,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> lhs,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> rhs
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(lhs,rhs) == true
ensures
- #out.num_samples() == lhs.num_samples()
- #out.k() == #out.nr() == #out.nc() == 1
- #out == sum_cols(pointwise_multiply(mat(lhs), mat(rhs)));
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='dot_prods'></a>dot_prods</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>bool</u></font> add_to,
tensor<font color='#5555FF'>&</font> out,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> lhs,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> rhs
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(lhs,rhs) == true
- out.size() == lhs.num_samples()
- out.k() == out.nr() == out.nc() == 1
ensures
- if (add_to) then
- #out == mat(out) + sum_cols(pointwise_multiply(mat(lhs), mat(rhs)));
- else
- #out == sum_cols(pointwise_multiply(mat(lhs), mat(rhs)));
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='scale_columns'></a>scale_columns</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> out,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> m,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> v
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(out,m) == true
- is_vector(v) == true
- v.size() == mat(m).nc()
ensures
- performs: out = scale_columns(mat(m),mat(v));
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='scale_rows'></a>scale_rows</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> out,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> m,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> v
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(out,m) == true
- is_vector(v) == true
- v.size() == m.num_samples()
ensures
- performs: out = scale_rows(mat(m),mat(v));
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='scale_rows2'></a>scale_rows2</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>float</u></font> beta,
tensor<font color='#5555FF'>&</font> out,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> m1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> m2,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> v1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> v2
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(out,m1) == true
- have_same_dimensions(out,m2) == true
- have_same_dimensions(v1,v2) == true
- is_vector(v1) == true
- v1.size() == m1.num_samples()
ensures
- performs:
out = beta*out + scale_rows(mat(m1) - scale_rows(mat(m2),mat(v1)), mat(v2));
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='exp'></a>exp</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size() == src.size()
ensures
- performs: dest = exp(mat(src))
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='log'></a>log</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size() == src.size()
ensures
- performs: dest = log(mat(src))
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='log10'></a>log10</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size() == src.size()
ensures
- performs: dest = log10(mat(src))
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='gemm'></a>gemm</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>float</u></font> beta,
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'><u>float</u></font> alpha,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> lhs,
<font color='#0000FF'><u>bool</u></font> trans_lhs,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> rhs,
<font color='#0000FF'><u>bool</u></font> trans_rhs
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest does not alias the memory of lhs or rhs
- The dimensions of lhs and rhs must be compatible for matrix multiplication.
In particular:
- Let L == trans_lhs ? trans(mat(lhs)) : mat(lhs)
- Let R == trans_rhs ? trans(mat(rhs)) : mat(rhs)
- Let D == mat(dest)
- D.nr() == L.nr() && D.nc() == R.nc()
(i.e. dest must be preallocated and have the correct output dimensions)
- L.nc() == R.nr()
ensures
- performs: dest = alpha*L*R + beta*mat(dest)
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='inv'></a>inv</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This is a functor for doing matrix inversion on the GPU. The only
reason it's an object is to avoid the reallocation of some GPU memory
blocks if you want to do a bunch of matrix inversions in a row.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'><u>void</u></font> <b><a name='operator'></a>operator</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> m,
resizable_tensor<font color='#5555FF'>&</font> out
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- m.size() == m.num_samples()*m.num_samples()
(i.e. mat(m) must be a square matrix)
ensures
- out == inv(mat(m));
!*/</font>
<font color='#0000FF'>private</font>:
<font color='#0000FF'>#ifdef</font> DLIB_USE_CUDA
cuda::inv finv;
<font color='#0000FF'>#endif</font>
<b>}</b>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='tensor_rand'></a>tensor_rand</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This is a tool for filling a tensor with random numbers.
Note that the sequence of random numbers output by this object is different
when dlib is compiled with DLIB_USE_CUDA. So you should not write code
that depends on any specific sequence of numbers coming out of a
tensor_rand.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#009900'>// not copyable
</font> <b><a name='tensor_rand'></a>tensor_rand</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> tensor_rand<font color='#5555FF'>&</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>delete</font>;
tensor_rand<font color='#5555FF'>&</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> tensor_rand<font color='#5555FF'>&</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>delete</font>;
<b><a name='tensor_rand'></a>tensor_rand</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> : tensor_rand<font face='Lucida Console'>(</font><font color='#979000'>0</font><font face='Lucida Console'>)</font> <b>{</b><b>}</b>
<b><a name='tensor_rand'></a>tensor_rand</b><font face='Lucida Console'>(</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> seed<font face='Lucida Console'>)</font>;
<font color='#0000FF'><u>void</u></font> <b><a name='fill_gaussian'></a>fill_gaussian</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> data,
<font color='#0000FF'><u>float</u></font> mean <font color='#5555FF'>=</font> <font color='#979000'>0</font>,
<font color='#0000FF'><u>float</u></font> stddev <font color='#5555FF'>=</font> <font color='#979000'>1</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- data.size()%2 == 0
ensures
- Fills data with random numbers drawn from a Gaussian distribution
with the given mean and standard deviation.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='fill_uniform'></a>fill_uniform</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> data
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- Fills data with uniform random numbers in the range (0.0, 1.0].
!*/</font>
<font color='#0000FF'>#ifdef</font> DLIB_USE_CUDA
cuda::curand_generator rnd;
<font color='#0000FF'>#else</font>
dlib::rand rnd;
<font color='#0000FF'>#endif</font>
<b>}</b>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='multiply'></a>multiply</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>bool</u></font> add_to,
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src2
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.k() == src1.k() == src2.k()
- dest.nr() == src1.nr() == src2.nr()
- dest.nc() == src1.nc() == src2.nc()
- dest.num_samples(), src1.num_samples(), and src2.num_samples() must each
either be 1 or whichever ones aren't equal to 1 must have the same values.
ensures
- let MD = max(dest.num_samples(), src1.num_samples(), src2.num_samples)
- This function pointwise multiplies src1 with src2 and stores the result into
#dest. However, how the multiplication happens depends on the dimensions of
the tensors. First, when src1 and src2 are multiplied together, if either
has a num_samples() dimension that is != MD, then it is first replicated to
produce a tensor with num_samples()==MD dimensions and then they are
pointwise multiplied together.
Second, if dest.num_samples()==1, then after the pointwise multiplication of
src1 with src2, the result has its samples summed to produce an output tensor
with num_samples()==1 which is then assigned to #dest.
- if (add_to) then
- Instead of assigning the result to dest, this function adds the result to dest.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='scale_channels'></a>scale_channels</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>bool</u></font> add_to,
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> scales
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest, src) == true
- scales.num_samples() == src.num_samples()
- scales.k() == src.k()
- scales.nr() == 1
- scales.nc() == 1
ensures
- Scales each channel of src by the corresponding value in scales. To be
precise, we will have:
- #dest(n,k,r,c) == src(n,k,r,c)*scales(n,k,1,1)
- if (add_to) then
- Instead of assigning the result to dest, this function adds the result to dest.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='multiply_conv'></a>multiply_conv</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>bool</u></font> add_to,
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src2
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- if (have_same_dimensions(dest, src1) == true) then
- src2.num_samples() == 1
- src2.nr() == 1
- src2.nc() == 1
- src2.k() == src1.k()
- else
- have_same_dimensions(src1, src2) == true)
- dest.num_samples() == 1
- dest.nr() == 1
- dest.nc() == 1
- dest.k() == src1.k()
ensures
- Performs #dest == src1*src2
In particular, if the elements of dest, src1, and src2 were indexed by (n,k,r,c) then
we would have:
- if (have_same_dimensions(dest,src1)) then
#dest(n,k,r,c) == src1(n,k,r,c)*src2(k)
- else
#dest(k) == sum over {n,r,c} of src1(n,k,r,c)*src2(n,k,r,c)
- if (add_to) then
- Instead of assigning the result to dest, this function adds the result to dest.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='multiply_zero_padded'></a>multiply_zero_padded</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>bool</u></font> add_to,
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src2
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- if (add_to) then
- performs: dest += src1 * src2
- else
- performs: dest = src1 * src2
- In either case, the multiplication happens pointwise according to 4D tensor
arithmetic. If the dimensions don't match then missing elements are presumed
to be equal to 0.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='affine_transform'></a>affine_transform</b><font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> A,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> B
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size()==src.size()
ensures
- #dest == A*src + B
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='affine_transform'></a>affine_transform</b><font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> A
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size()==src.size()
ensures
- #dest == A*src
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='affine_transform'></a>affine_transform</b><font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src2,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> A,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> B,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> C
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size()==src1.size()
- dest.size()==src2.size()
ensures
- #dest == A*src1 + B*src2 + C
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='affine_transform'></a>affine_transform</b><font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src2,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> A,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> B
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size()==src1.size()
- dest.size()==src2.size()
ensures
- #dest == A*src1 + B*src2
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='affine_transform'></a>affine_transform</b><font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src2,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src3,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> A,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> B,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> C,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> D
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size()==src1.size()
- dest.size()==src2.size()
- dest.size()==src3.size()
ensures
- #dest == A*src1 + B*src2 + C*src3 + D
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='affine_transform'></a>affine_transform</b><font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src2,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src3,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> A,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> B,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> C
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size()==src1.size()
- dest.size()==src2.size()
- dest.size()==src3.size()
ensures
- #dest == A*src1 + B*src2 + C*src3
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='affine_transform_range'></a>affine_transform_range</b><font face='Lucida Console'>(</font>
<font color='#0000FF'><u>size_t</u></font> begin,
<font color='#0000FF'><u>size_t</u></font> end,
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src2,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src3,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> A,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> B,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> C
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size()==src1.size()
- dest.size()==src2.size()
- dest.size()==src3.size()
- begin <= end <= dest.size()
ensures
- This function operates much like
affine_transform(dest,src1,src2,src3,A,B,C,0), except that it runs over only
the half open range [begin,end) rather than processing the entire tensor.
Specifically, it does this:
- for i in the range [begin, end):
- #dest.host()[i] == A*src1.host()[i] + B*src2.host()[i] + C*src3.host()[i]
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='affine_transform'></a>affine_transform</b><font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> rectangle<font color='#5555FF'>&</font> rect,
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src2,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src3,
<font color='#0000FF'><u>float</u></font> A,
<font color='#0000FF'><u>float</u></font> B,
<font color='#0000FF'><u>float</u></font> C
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size()==src1.size()
- dest.size()==src2.size()
- dest.size()==src3.size()
- dest.num_samples()==src1.num_samples()
- dest.num_samples()==src2.num_samples()
- dest.num_samples()==src3.num_samples()
- get_rect(mat(dest)).contains(rect) == true
(i.e. rect must be entirely contained within dest)
ensures
- This function operates much like
affine_transform(dest,src1,src2,src3,A,B,C,0), except that it runs over only
the sub-rectangle indicated by rect. In particular, this function is equivalent
to:
set_subm(dest,rect) = A*subm(mat(src1),rect) + B*subm(mat(src2),rect) + C*subm(mat(src3),rect)
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='affine_transform'></a>affine_transform</b><font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> A,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> B
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest,src) == true
- if (A.num_samples() == 1) then
- B.num_samples() == 1
- else
- A.num_samples() == src.num_samples()
- B.num_samples() == src.num_samples()
- A.nr() == B.nr() == src.nr()
- A.nc() == B.nc() == src.nc()
- A.k() == B.k() == src.k()
ensures
- if (A.num_samples() == 1) then
- #dest == A*src + B
(done for each sample in src)
- else
- for all valid i:
- #dest.host()[i] == A.host()[i]*src.host()[i] + B.host()[i]
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='affine_transform_conv'></a>affine_transform_conv</b><font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> A,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> B
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest,src) == true
- have_same_dimensions(A, B) == true
- A.num_samples() == 1
- A.nr() == 1
- A.nc() == 1
- A.k() == src.k()
ensures
- Performs #dest == A*src + B
In particular, if the elements of dest and src were indexed by (n,k,r,c) then
we would have:
#dest(n,k,r,c) == A(k)*src(n,k,r,c) + B(k).
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='compute_adam_update'></a>compute_adam_update</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>size_t</u></font> begin,
<font color='#0000FF'><u>size_t</u></font> end,
tensor<font color='#5555FF'>&</font> s,
tensor<font color='#5555FF'>&</font> m,
tensor<font color='#5555FF'>&</font> v,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> t,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> learning_rate,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> weight_decay,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> momentum1,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> momentum2,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> params,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> params_grad
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- s.size() == m.size() = v.size() == params.size() == params_grad.size()
- t > 0
- learning_rate > 0
- weight_decay >= 0
- 0 <= momentum1 < 1
- 0 <= momentum2 < 1
- begin <= end <= params.size()
ensures
- This function implements the ADAM parameter update method described in the paper:
Kingma, Diederik P., and Jimmy Ba Adam. "A method for stochastic
optimization." International Conference on Learning Representation. 2015.
Specifically, it implements the method shown as Algorithm 1.
- #s is the update vector that should be added to the parameters.
- The function only operates in the half open range [begin,end) of the memory
blocks of each tensor. E.g. to make this function run on the entire tensor
set begin to 0 and end to params.size().
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='batch_normalize_inference'></a>batch_normalize_inference</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> eps,
resizable_tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gamma,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> beta,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> running_means,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> running_variances
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- eps > 0
- gamma.num_samples() == 1
- gamma.nr() == src.nr()
- gamma.nc() == src.nc()
- gamma.k() == src.k()
- have_same_dimensions(gamma, beta)
- have_same_dimensions(gamma, running_means)
- have_same_dimensions(gamma, running_variances)
ensures
- Linearly transforms src as a call to batch_normalize() would if src had means
and variances as given by running_means and running_variances. That is, this
function performs:
dest = gamma*(src-running_means)/sqrt(running_variances+eps) + beta
Note that it does it in a pointwise fashion over the samples in src.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='batch_normalize'></a>batch_normalize</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> eps,
resizable_tensor<font color='#5555FF'>&</font> dest,
resizable_tensor<font color='#5555FF'>&</font> means,
resizable_tensor<font color='#5555FF'>&</font> invstds,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> averaging_factor,
resizable_tensor<font color='#5555FF'>&</font> running_means,
resizable_tensor<font color='#5555FF'>&</font> running_variances,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gamma,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> beta
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- eps > 0
- src.num_samples() > 1
- gamma.num_samples() == 1
- beta.num_samples() == 1
- gamma.nr() == beta.nr() == src.nr()
- gamma.nc() == beta.nc() == src.nc()
- gamma.k() == beta.k() == src.k()
- 0 <= averaging_factor <= 1
- if (averaging_factor != 1)
- have_same_dimensions(running_means, means) == true
- have_same_dimensions(running_variances, invstds) == true
ensures
- have_same_dimensions(#dest, src) == true
- #means.num_samples() == 1
- #invstds.num_samples() == 1
- means.nr() == invstds.nr() == src.nr()
- means.nc() == invstds.nc() == src.nc()
- means.k() == invstds.k() == src.k()
- #src == the batch normalized version of src.
- #means == the mean values of the contents of src.
- #invstds == 1/(the standard deviation values of the contents of src).
- #running_means = (1-averaging_factor)*mat(#running_means) + averaging_factor*mat(#means);
- #running_variances = (1-averaging_factor)*mat(#running_variances) + averaging_factor*(variance of contents of src);
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='batch_normalize_gradient'></a>batch_normalize_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> eps,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> means,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> invstds,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gamma,
tensor<font color='#5555FF'>&</font> src_grad,
tensor<font color='#5555FF'>&</font> gamma_grad,
tensor<font color='#5555FF'>&</font> beta_grad
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- eps > 0
- invstds and means should be the output of a call to
batch_normalize(eps,dest,means,invstds,src,gamma,beta)
- have_same_dimensions(gradient_input, src) == true
- have_same_dimensions(src, src_grad) == true
- src.num_samples() > 1
- gamma.num_samples() == 1
- have_same_dimensions(gamma, gamma_grad) == true
- have_same_dimensions(gamma, beta_grad) == true
- gamma.nr() == src.nr()
- gamma.nc() == src.nc()
- gamma.k() == src.k()
- have_same_dimensions(means, gamma) == true
- have_same_dimensions(invstds, gamma) == true
ensures
- Let f(src,gamma,beta) == dot(gradient_input, dest output of
batch_normalize(eps,dest,means,invstds,src,gamma,beta))
- Adds the gradient of f() with respect to src to #src_grad.
- Assigns the gradient of f() with respect to gamma to #gamma_grad.
- Assigns the gradient of f() with respect to beta to #beta_grad.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='batch_normalize_conv_inference'></a>batch_normalize_conv_inference</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> eps,
resizable_tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gamma,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> beta,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> running_means,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> running_variances
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- eps > 0
- gamma.num_samples() == 1
- gamma.nr() == 1
- gamma.nc() == 1
- gamma.k() == src.k()
- have_same_dimensions(gamma, beta)
- have_same_dimensions(gamma, running_means)
- have_same_dimensions(gamma, running_variances)
ensures
- Linearly transforms src as a call to batch_normalize_conv() would if src had
means and variances as given by running_means and running_variances. That
is, this function performs:
dest = gamma*(src-running_means)/sqrt(running_variances+eps) + beta
Note that it does this in a pointwise fashion over the samples, rows, and
columns in src.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='batch_normalize_conv'></a>batch_normalize_conv</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> eps,
resizable_tensor<font color='#5555FF'>&</font> dest,
resizable_tensor<font color='#5555FF'>&</font> means,
resizable_tensor<font color='#5555FF'>&</font> invstds,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> averaging_factor,
resizable_tensor<font color='#5555FF'>&</font> running_means,
resizable_tensor<font color='#5555FF'>&</font> running_variances,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gamma,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> beta
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- eps > 0
- src.num_samples() > 1
- gamma.num_samples()==gamma.nr()==gamma.nc() == 1
- beta.num_samples() ==beta.nr() ==gamma.nc() == 1
- gamma.k() == beta.k() == src.k()
- 0 <= averaging_factor <= 1
- if (averaging_factor != 1)
- have_same_dimensions(running_means, means) == true
- have_same_dimensions(running_variances, invstds) == true
ensures
- have_same_dimensions(#dest, src) == true
- #means.num_samples()==means.nr()==means.nc() == 1
- #invstds.num_samples() ==invstds.nr() ==invstds.nc() == 1
- means.k() == invstds.k() == src.k()
- #src == the batch normalized version of src.
- #means == the mean values of the contents of src.
- #invstds == 1/(the standard deviation values of the contents of src).
- #running_means = (1-averaging_factor)*mat(#running_means) + averaging_factor*mat(#means);
- #running_variances = (1-averaging_factor)*mat(#running_variances) + averaging_factor*(variance of contents of src);
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='batch_normalize_conv_gradient'></a>batch_normalize_conv_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> eps,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> means,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> invstds,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gamma,
tensor<font color='#5555FF'>&</font> src_grad,
tensor<font color='#5555FF'>&</font> gamma_grad,
tensor<font color='#5555FF'>&</font> beta_grad
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- eps > 0
- invstds and means should be the output of a call to
batch_normalize_conv(eps,dest,means,invstds,src,gamma,beta)
- have_same_dimensions(gradient_input, src) == true
- have_same_dimensions(src, src_grad) == true
- src.num_samples() > 1
- gamma.num_samples()==gamma.nr()==gamma.nc() == 1
- have_same_dimensions(gamma, gamma_grad) == true
- have_same_dimensions(gamma, beta_grad) == true
- gamma.k() == src.k()
- have_same_dimensions(means, gamma) == true
- have_same_dimensions(invstds, gamma) == true
ensures
- Let f(src,gamma,beta) == dot(gradient_input, dest output of
batch_normalize_conv(eps,dest,means,invstds,src,gamma,beta))
- Adds the gradient of f() with respect to src to #src_grad.
- Assigns the gradient of f() with respect to gamma to #gamma_grad.
- Assigns the gradient of f() with respect to beta to #beta_grad.
!*/</font>
<font color='#009900'>// -----------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='layer_normalize'></a>layer_normalize</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> eps,
resizable_tensor<font color='#5555FF'>&</font> dest,
resizable_tensor<font color='#5555FF'>&</font> means,
resizable_tensor<font color='#5555FF'>&</font> invstds,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gamma,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> beta
<font face='Lucida Console'>)</font>;
<font color='#0000FF'><u>void</u></font> <b><a name='layer_normalize_gradient'></a>layer_normalize_gradient</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> eps,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> means,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> invstds,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gamma,
tensor<font color='#5555FF'>&</font> src_grad,
tensor<font color='#5555FF'>&</font> gamma_grad,
tensor<font color='#5555FF'>&</font> beta_grad
<font face='Lucida Console'>)</font>;
<font color='#009900'>// -----------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='threshold'></a>threshold</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> data,
<font color='#0000FF'><u>float</u></font> thresh
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- Sets all elements of data to 1 or 0 depending on if they are above or below
the given threshold. Specifically, for all valid i:
- #data.host()[i] == data.host()[i]>thresh ? 1 : 0
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='dot'></a>dot</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> a,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> b,
tensor<font color='#5555FF'>&</font> result,
<font color='#0000FF'><u>size_t</u></font> idx
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- a.size() == b.size()
- idx < result.size()
ensures
- #result.host()[idx] == result.host()[idx] + dot(a,b);
I.e. Adds the dot product between a and b into the idx-th element of result.
The reason you might want to use this more complex version of dot() is
because, when using CUDA, it runs by generating asynchronous kernel launches
whereas the version of dot() that returns the result immediately as a scalar
must block the host while we wait for the result to be computed and then
transferred from the GPU do the host for return by dot(). So this version of
dot() might be much faster in some cases.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='add'></a>add</b><font face='Lucida Console'>(</font>
<font color='#0000FF'><u>float</u></font> beta,
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'><u>float</u></font> alpha,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- One of the following is true:
- have_same_dimensions(src, dest)
- src.num_samples()==1 && src.k()==dest.k() && src.nr()==1 && src.nc()==1
- src.num_samples()==1 && src.k()==dest.k() && src.nr()==dest.nr() && src.nc()==dest.nc()
- src.num_samples()==1 && src.k()==1 && src.nr()==dest.nr() && src.nc()==dest.nc()
- src.num_samples()==dest.num_samples() && src.k()==1 && src.nr()==1 && src.nc()==1
- is_same_object(src,dest) == false
ensures
- performs: dest = beta*dest + alpha*src
However, how the addition happens depends on the dimensions of src. In
particular, this function adds the scaled values of one src tensor to dest.
Each dimension of the src tensor must match the corresponding dimension of
the dest tensor or must be equal to 1. In the latter case, the same value
from the src tensor, for those dimensions, will be used to add into the dest
tensor.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='add'></a>add</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src1,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src2
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- performs: dest = src1 + src2
The addition happens pointwise according to 4D tensor arithmetic. If the
dimensions don't match then missing elements are presumed to be equal to 0.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='assign_conv_bias_gradient'></a>assign_conv_bias_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- grad.num_samples() == 1
- grad.k() >= 1
- grad.nr() == 1
- grad.nc() == 1
- gradient_input.k() == grad.k()
- gradient_input.size() > 0
- is_same_object(grad,gradient_input) == false
ensures
- let BIAS be a tensor with the same dimensions as grad.
- let OUT be the output of add(1,OUT,1,BIAS)
- let f(gradient_input,BIAS) == dot(gradient_input,OUT)
- Then this function computes the gradient of f() with respect to BIAS and
assigns it to grad.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='assign_bias_gradient'></a>assign_bias_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- grad.num_samples() == 1
- gradient_input.k() == grad.k()
- gradient_input.nr() == grad.nr()
- gradient_input.nc() == grad.nc()
- gradient_input.size() > 0
- is_same_object(grad,gradient_input) == false
ensures
- let BIAS be a tensor with the same dimensions as grad.
- let OUT be the output of add(1,OUT,1,BIAS)
- let f(gradient_input,BIAS) == dot(gradient_input,OUT)
- Then this function computes the gradient of f() with respect to BIAS and
assigns it to grad.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='tensor_conv'></a>tensor_conv</b>
<b>{</b>
<font color='#0000FF'>public</font>:
<b><a name='tensor_conv'></a>tensor_conv</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> tensor_conv<font color='#5555FF'>&</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>delete</font>;
tensor_conv<font color='#5555FF'>&</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> tensor_conv<font color='#5555FF'>&</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>delete</font>;
<b><a name='tensor_conv'></a>tensor_conv</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <b>{</b><b>}</b>
<font color='#0000FF'><u>void</u></font> <b><a name='clear'></a>clear</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <b>{</b> impl.<font color='#BB00BB'>clear</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <b>}</b>
<font color='#0000FF'><u>void</u></font> <b><a name='operator'></a>operator</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>bool</u></font> add_to_output,
tensor<font color='#5555FF'>&</font> output,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> data,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> filters
<font face='Lucida Console'>)</font> <b>{</b> <font color='#BB00BB'>impl</font><font face='Lucida Console'>(</font>add_to_output,output,data,filters<font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
requires
- setup() has been called. Specifically, setup() has been called like this:
this->setup(data, filters, stride_y, stride_x, padding_y, padding_x);
- is_same_object(output,data) == false
- is_same_object(output,filters) == false
- filters.k() == data.k()
- filters.nr() <= src.nr() + 2*padding_y
- filters.nc() <= src.nc() + 2*padding_x
- #output.num_samples() == data.num_samples()
- #output.k() == filters.num_samples()
- #output.nr() == 1+(data.nr() + 2*padding_y - filters.nr())/stride_y
- #output.nc() == 1+(data.nc() + 2*padding_x - filters.nc())/stride_x
ensures
- Convolves filters over data. If add_to_output==true then we add the
results to output, otherwise we assign to output, overwriting the
previous values in output.
- filters contains filters.num_samples() filters.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='operator'></a>operator</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>bool</u></font> add_to_output,
resizable_tensor<font color='#5555FF'>&</font> output,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> data,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> filters
<font face='Lucida Console'>)</font> <b>{</b> <font color='#BB00BB'>impl</font><font face='Lucida Console'>(</font>add_to_output,output,data,filters<font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
requires
- setup() has been called. Specifically, setup() has been called like this:
this->setup(data, filters, stride_y, stride_x, padding_y, padding_x);
- is_same_object(output,data) == false
- is_same_object(output,filters) == false
- filters.k() == data.k()
- filters.nr() <= src.nr() + 2*padding_y
- filters.nc() <= src.nc() + 2*padding_x
ensures
- Convolves filters over data. If add_to_output==true then we add the
results to output, otherwise we assign to output, overwriting the
previous values in output.
- filters contains filters.num_samples() filters.
- #output.num_samples() == data.num_samples()
- #output.k() == filters.num_samples()
- #output.nr() == 1+(data.nr() + 2*padding_y - filters.nr())/stride_y
- #output.nc() == 1+(data.nc() + 2*padding_x - filters.nc())/stride_x
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='get_gradient_for_data'></a>get_gradient_for_data</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>bool</u></font> add_to_output,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> filters,
tensor<font color='#5555FF'>&</font> data_gradient
<font face='Lucida Console'>)</font> <b>{</b> impl.<font color='#BB00BB'>get_gradient_for_data</font><font face='Lucida Console'>(</font>add_to_output,gradient_input,filters,data_gradient<font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
requires
- One of the following must be true:
- filters has the same dimensions as the filters object given to the
last call to operator(). Also, data_gradient has the same dimensions
as the data object given to the last call to operator().
- setup() has been called. Specifically, setup() has been called like this:
this->setup(data_gradient, filters, stride_y, stride_x, padding_y, padding_x);
- gradient_input has the following dimensions:
- gradient_input.num_samples() == data_gradient.num_samples()
- gradient_input.k() == filters.num_samples()
- gradient_input.nr() == 1+(data_gradient.nr() + 2*padding_y - filters.nr())/stride_y
- gradient_input.nc() == 1+(data_gradient.nc() + 2*padding_x - filters.nc())/stride_x
- NOTE, these dimensions are what you would obtain if gradient_input
has the same dimensions as the last output of operator().
- is_same_object(data_gradient,filters) == false
- is_same_object(data_gradient,gradient_input) == false
ensures
- let OUT be the output of (*this)(OUT,data,filters,sx,sy).
- let f(data,filters) == dot(OUT, gradient_input)
- if (add_to_output) then
- This function finds the gradient of f() with respect to data and adds
this gradient to data_gradient.
- else
- This function finds the gradient of f() with respect to data and
assigns this gradient to data_gradient, overwriting the previous
values in data_gradient.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='get_gradient_for_filters'></a>get_gradient_for_filters</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> <font color='#0000FF'><u>bool</u></font> add_to_output,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> data,
tensor<font color='#5555FF'>&</font> filters_gradient
<font face='Lucida Console'>)</font> <b>{</b> impl.<font color='#BB00BB'>get_gradient_for_filters</font><font face='Lucida Console'>(</font>add_to_output,gradient_input,data,filters_gradient<font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
requires
- One of the following must be true:
- filters_gradient has the same dimensions as the filters object given
to the last call to operator(). Also, data has the same dimensions
as the data object given to the last call to operator().
- setup() has been called. Specifically, setup() has been called like this:
this->setup(data, filters_gradient, stride_y, stride_x, padding_y, padding_x);
- gradient_input has the following dimensions:
- gradient_input.num_samples() == data.num_samples()
- gradient_input.k() == filters.num_samples()
- gradient_input.nr() == 1+(data.nr() + 2*padding_y - filters.nr())/stride_y
- gradient_input.nc() == 1+(data.nc() + 2*padding_x - filters.nc())/stride_x
- NOTE, these dimensions are what you would obtain if gradient_input
has the same dimensions as the last output of operator().
- is_same_object(filters_gradient,data) == false
- is_same_object(filters_gradient,gradient_input) == false
ensures
- let OUT be the output of (*this)(OUT,data,filters,sx,sy).
- let f(data,filters) == dot(OUT, gradient_input)
- if (add_to_output) then
- This function finds the gradient of f() with respect to filters and
adds this gradient to filters_gradient.
- else
- This function finds the gradient of f() with respect to filters and
assigns this gradient to filters_gradient, overwriting the previous
values in filters_gradient.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='setup'></a>setup</b><font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> data,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> filters,
<font color='#0000FF'><u>int</u></font> stride_y,
<font color='#0000FF'><u>int</u></font> stride_x,
<font color='#0000FF'><u>int</u></font> padding_y,
<font color='#0000FF'><u>int</u></font> padding_x
<font face='Lucida Console'>)</font> <b>{</b>impl.<font color='#BB00BB'>setup</font><font face='Lucida Console'>(</font>data,filters,stride_y,stride_x,padding_y,padding_x<font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
requires
- filters.k() == data.k()
- stride_y > 0
- stride_x > 0
- 0 <= padding_y < filters.nr()
- 0 <= padding_x < filters.nc()
ensures
- When operator() is called, the output tensor will have these dimensions:
- output.nr() == 1+(data.nr() + 2*padding_y - filters.nr())/stride_y
- output.nc() == 1+(data.nc() + 2*padding_x - filters.nc())/stride_x
- output.num_samples() == data.num_samples()
- output.k() == filters.num_samples()
- The point of setup() is to allow this object to gather information about
all the tensor sizes and filter layouts involved in the computation. In
particular, the reason the tensors are input into setup() is just to
observe their sizes. setup() doesn't do anything with the contents of
the tensors, or store any kind of references to the data or filter
tensors.
!*/</font>
<font color='#0000FF'>private</font>:
<font color='#0000FF'>#ifdef</font> DLIB_USE_CUDA
cuda::tensor_conv impl;
<font color='#0000FF'>#else</font>
cpu::tensor_conv impl;
<font color='#0000FF'>#endif</font>
<b>}</b>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='pooling'></a>pooling</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
The pooling object is a tool for performing spatial pooling over a tensor.
It can be configured to do either max or average pooling.
!*/</font>
<font color='#0000FF'>public</font>:
<b><a name='pooling'></a>pooling</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> pooling<font color='#5555FF'>&</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>delete</font>;
pooling<font color='#5555FF'>&</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> pooling<font color='#5555FF'>&</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>delete</font>;
<b><a name='pooling'></a>pooling</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>;
<font color='#0000FF'><u>void</u></font> <b><a name='clear'></a>clear</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <b>{</b> impl.<font color='#BB00BB'>clear</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <b>}</b>
<font color='#0000FF'><u>void</u></font> <b><a name='setup_max_pooling'></a>setup_max_pooling</b><font face='Lucida Console'>(</font>
<font color='#0000FF'><u>int</u></font> window_height,
<font color='#0000FF'><u>int</u></font> window_width,
<font color='#0000FF'><u>int</u></font> stride_y,
<font color='#0000FF'><u>int</u></font> stride_x,
<font color='#0000FF'><u>int</u></font> padding_y,
<font color='#0000FF'><u>int</u></font> padding_x
<font face='Lucida Console'>)</font> <b>{</b> impl.<font color='#BB00BB'>setup_max_pooling</font><font face='Lucida Console'>(</font>window_height, window_width, stride_y, stride_x, padding_y, padding_x<font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
requires
- window_height > 0
- window_width > 0
- stride_y > 0
- stride_x > 0
- 0 <= padding_y < window_height
- 0 <= padding_x < window_width
ensures
- When you call operator() it will do max pooling with the given
parameters.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='setup_avg_pooling'></a>setup_avg_pooling</b><font face='Lucida Console'>(</font>
<font color='#0000FF'><u>int</u></font> window_height,
<font color='#0000FF'><u>int</u></font> window_width,
<font color='#0000FF'><u>int</u></font> stride_y,
<font color='#0000FF'><u>int</u></font> stride_x,
<font color='#0000FF'><u>int</u></font> padding_y,
<font color='#0000FF'><u>int</u></font> padding_x
<font face='Lucida Console'>)</font> <b>{</b> impl.<font color='#BB00BB'>setup_avg_pooling</font><font face='Lucida Console'>(</font>window_height, window_width, stride_y, stride_x, padding_y, padding_x<font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
requires
- window_height > 0
- window_width > 0
- stride_y > 0
- stride_x > 0
- 0 <= padding_y < window_height
- 0 <= padding_x < window_width
ensures
- When you call operator() it will do average pooling with the given
parameters.
!*/</font>
<font color='#0000FF'><u>bool</u></font> <b><a name='does_max_pooling'></a>does_max_pooling</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font> <b>{</b> <font color='#0000FF'>return</font> impl.<font color='#BB00BB'>does_max_pooling</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <b>}</b>
<font color='#0000FF'><u>void</u></font> <b><a name='operator'></a>operator</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font face='Lucida Console'>(</font>
resizable_tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font> <b>{</b> <font color='#BB00BB'>impl</font><font face='Lucida Console'>(</font>dest, src<font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
requires
- is_same_object(dest,src) == false
- either setup_max_pooling() or setup_avg_pooling() has been called.
- window_width <= src.nc() + 2*padding_x
- window_height <= src.nr() + 2*padding_y
ensures
- #dest.num_samples() == src.num_samples()
- #dest.k() == src.k()
- #dest.nr() == 1 + (src.nr() + 2*padding_y - window_height)/stride_y
- #dest.nc() == 1 + (src.nc() + 2*padding_x - window_width)/stride_x
- WINDOW == centered_rect(x*stride_x + window_width/2 - padding_x,
y*stride_y + window_height/2 - padding_y,
window_width,
window_height)
- for all valid s, k, r, and c:
- if (does_max_pooling()) then
- image_plane(#dest,s,k)(r,c) == max(subm_clipped(image_plane(src,s,k),WINDOW(c,r)))
- else
- image_plane(#dest,s,k)(r,c) == mean(subm_clipped(image_plane(src,s,k),WINDOW(c,r)))
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='get_gradient'></a>get_gradient</b><font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
tensor<font color='#5555FF'>&</font> grad
<font face='Lucida Console'>)</font> <b>{</b> impl.<font color='#BB00BB'>get_gradient</font><font face='Lucida Console'>(</font>gradient_input, dest, src, grad<font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
requires
- have_same_dimensions(gradient_input,dest) == true
- have_same_dimensions(src,grad) == true
- dest contains the result of calling (*this)(dest,src)
- is_same_object(grad,gradient_input) == false
- is_same_object(grad,dest) == false
- is_same_object(grad,src) == false
ensures
- Recalling that dest is the output of (*this)(dest,src),
let f(src) == dot(gradient_input,dest)
- Then this function computes the gradient of f() with respect to src and
adds it to grad.
!*/</font>
<font color='#0000FF'>private</font>:
<font color='#0000FF'>#ifdef</font> DLIB_USE_CUDA
cuda::pooling impl;
<font color='#0000FF'>#else</font>
cpu::pooling impl;
<font color='#0000FF'>#endif</font>
<b>}</b>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='softmax'></a>softmax</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- Note that the softmax function is a vector valued function:
s(x) == exp(x)/sum(exp(x))
- Computes the softmax function on src and writes the results to dest. The
softmax is computed per spatial location across the different channels at
each location. That is, softmax() outputs a new tensor, #dest, where each of
the spatial locations in dest (i.e. image idx, row idx, and column idx)
contains the output of s() evaluated over the channel values at each
location.
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='softmax_gradient'></a>softmax_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
ensures
- We interpret dest as the output of softmax(dest,SRC) for some SRC tensor.
Then let f(SRC) == dot(gradient_input,dest). Then this function computes the
gradient of f() with respect to SRC and stores it to grad. Moreover, if
is_same_object(grad,gradient_input)==true then the output is assigned to
grad, replacing its previous contents. Otherwise the output is added to
grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='softmax_all'></a>softmax_all</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- Note that the softmax function is a vector valued function:
s(x) == exp(x)/sum(exp(x))
- Computes the softmax function on src and writes the results to dest. The
softmax is computed over the entire tensor with one invocation of s(). So
unlike softmax() which computes many s() evaluations, one for each spatial
location, softmax_all() calls s() once for the entire tensor.
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='softmax_all_gradient'></a>softmax_all_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
- is_same_object(grad, dest)==false
ensures
- We interpret dest as the output of softmax_all(dest,SRC) for some SRC tensor.
Then let f(SRC) == dot(gradient_input,dest) Then this function computes the
gradient of f() with respect to SRC and assigns it to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='sigmoid'></a>sigmoid</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- for all valid i:
- #dest.host()[i] == 1/(1+std::exp(-src.host()[i]))
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='sigmoid_gradient'></a>sigmoid_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
ensures
- Recalling that dest is the output of sigmoid(dest,SRC) for some SRC tensor,
let f(SRC) == dot(gradient_input,dest). Then this function computes the
gradient of f() with respect to SRC and stores it to grad. Moreover, if
is_same_object(grad,gradient_input)==true then the output is assigned to
grad, replacing its previous contents. Otherwise the output is added to
grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='mish'></a>mish</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- for all valid i:
- #dest.host()[i] == src.host()[i]*std::tanh(std::log(1+std::exp(src.host()[i])))
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='mish_gradient'></a>mish_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
ensures
- This function computes the gradient of f() with respect to SRC and stores
it to grad. Moreover, if is_same_object(grad,gradient_input)==true then
the output is assigned to grad, replacing its previous contents.
Otherwise the output is added to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='relu'></a>relu</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- for all valid i:
- #dest.host()[i] == std::max(0,src.host()[i])
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='relu_gradient'></a>relu_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
ensures
- Recalling that dest is the output of relu(dest,SRC) for some SRC tensor,
let f(SRC) == dot(gradient_input,dest). Then this function computes the
gradient of f() with respect to SRC and stores it to grad. Moreover, if
is_same_object(grad,gradient_input)==true then the output is assigned to
grad, replacing its previous contents. Otherwise the output is added to
grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='prelu'></a>prelu</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> param
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest, src) == true
- param.size() == 1
ensures
- for all valid i:
- if (src.host()[i] > 0) then
- #dest.host()[i] == src.host()[i]
- else
- #dest.host()[i] == src.host()[i] * param.host()[0]
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='prelu_gradient'></a>prelu_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> param,
tensor<font color='#5555FF'>&</font> params_grad
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(grad,src) == true
- have_same_dimensions(grad,gradient_input) == true
- param.size() == 1
- params_grad.size() == 1
- is_same_object(grad, gradient_input) == false
ensures
- Recalling that dest is the output of prelu(dest,src,param) let
f(src,param) == dot(gradient_input,dest)
- Then this function computes the gradient of f() with respect to src and
param. It assigns the gradient with respect to param to #params_grad and
adds the gradient with respect to src to #grad.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='leaky_relu'></a>leaky_relu</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> alpha
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- for all valid i:
- if (src.host()[i] > 0) then
- #dest.host()[i] == src.host()[i]
- else
- #dest.host()[i] == src.host()[i] * alpha
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='leaky_relu_gradient'></a>leaky_relu_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input,
<font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font> alpha
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
ensures
- Recalling that dest is the output of leaky_relu(dest,SRC) for some SRC tensor,
let f(SRC) == dot(gradient_input,dest). Then this function computes the
gradient of f() with respect to SRC and stores it to grad. Moreover, if
is_same_object(grad,gradient_input)==true then the output is assigned to
grad, replacing its previous contents. Otherwise the output is added to
grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='tanh'></a>tanh</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- for all valid i:
- #dest.host()[i] == std::tanh(src.host()[i])
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='tanh_gradient'></a>tanh_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
ensures
- Recalling that dest is the output of tanh(dest,SRC) for some SRC tensor,
let f(SRC) == dot(gradient_input,dest). Then this function computes the
gradient of f() with respect to SRC and stores it to grad. Moreover, if
is_same_object(grad,gradient_input)==true then the output is assigned to
grad, replacing its previous contents. Otherwise the output is added to
grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='gelu'></a>gelu</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest, src) == true
ensures
- for all valid i:
- #dest.host()[i] == src.host()[i]/2 * (1 + erf(src.host()[i]/sqrt(2))
- This function supports in-place operation, i.e. having
is_same_object(dest, src)==true
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='gelu_gradient'></a>gelu_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- have_same_dimensions(dest,gradient_input) == true
- have_same_dimensions(dest,grad) == true
ensures
- This function computes the gradient of f() with respect to SRC and stores
it to grad. Moreover, if is_same_object(grad,gradient_input)==true then
the output is assigned to grad, replacing its previous contents.
Otherwise the output is added to grad.
- This function supports in-place operation, i.e. having
is_same_object(grad, gradient_input)==true
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='resize_bilinear'></a>resize_bilinear</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'><u>long</u></font> dest_row_stride,
<font color='#0000FF'><u>long</u></font> dest_channel_stride,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'><u>long</u></font> src_row_stride,
<font color='#0000FF'><u>long</u></font> src_channel_stride
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- is_same_object(dest, src)==false
- dest.num_samples() == src.num_samples()
- dest.k() == src.k()
ensures
- for all valid i,k: image_plane(dest,i,k) is a copy of image_plane(src,i,k)
that has been bilinearly interpolated to fit into the shape of
image_plane(dest,i,k).
- Instead of supposing the row stride and channel stride in the tensors is
given by tensor::nc() and tensor::nr()*tensor::nc() respectively, we use the
provided stride values to transition from one row and channel to the next.
This is useful in combination with alias_tensor objects since it allows you
to operate on subwindows in an image.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='resize_bilinear_gradient'></a>resize_bilinear_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'><u>long</u></font> grad_row_stride,
<font color='#0000FF'><u>long</u></font> grad_channel_stride,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input,
<font color='#0000FF'><u>long</u></font> gradient_input_row_stride,
<font color='#0000FF'><u>long</u></font> gradient_input_channel_stride
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- is_same_object(grad, gradient_input)==false
- gradient_input.num_samples() == grad.num_samples()
- gradient_input.k() == grad.k()
ensures
- Suppose that DEST is the output of resize_bilinear(DEST,SRC) for some SRC
tensor, let f(SRC) == dot(gradient_input,DEST). Then this function computes
the gradient of f() with respect to SRC and adds it to grad. It should be
noted that we don't need to know the contents of DEST to compute this
gradient. All that matters is that gradient_input have the same dimensions
as DEST.
- Instead of supposing the row stride and channel stride in the tensors is
given by tensor::nc() and tensor::nr()*tensor::nc() respectively, we use the
provided stride values to transition from one row and channel to the next.
This is useful in combination with alias_tensor objects since it allows you
to operate on subwindows in an image.
!*/</font>
<font color='#0000FF'>inline</font> <font color='#0000FF'><u>void</u></font> <b><a name='resize_bilinear'></a>resize_bilinear</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src
<font face='Lucida Console'>)</font> <b>{</b> <font color='#BB00BB'>resize_bilinear</font><font face='Lucida Console'>(</font>dest, dest.<font color='#BB00BB'>nc</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>, dest.<font color='#BB00BB'>nr</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font><font color='#5555FF'>*</font>dest.<font color='#BB00BB'>nc</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>, src, src.<font color='#BB00BB'>nc</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>, src.<font color='#BB00BB'>nr</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font><font color='#5555FF'>*</font>src.<font color='#BB00BB'>nc</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
requires
- is_same_object(dest, src)==false
- dest.num_samples() == src.num_samples()
- dest.k() == src.k()
ensures
- for all valid i,k: image_plane(dest,i,k) is a copy of image_plane(src,i,k)
that has been bilinearly interpolated to fit into the shape of
image_plane(dest,i,k).
!*/</font>
<font color='#0000FF'>inline</font> <font color='#0000FF'><u>void</u></font> <b><a name='resize_bilinear_gradient'></a>resize_bilinear_gradient</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&</font> grad,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> gradient_input
<font face='Lucida Console'>)</font> <b>{</b> <font color='#BB00BB'>resize_bilinear_gradient</font><font face='Lucida Console'>(</font>grad, grad.<font color='#BB00BB'>nc</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>, grad.<font color='#BB00BB'>nr</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font><font color='#5555FF'>*</font>grad.<font color='#BB00BB'>nc</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>, gradient_input, gradient_input.<font color='#BB00BB'>nc</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>, gradient_input.<font color='#BB00BB'>nr</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font><font color='#5555FF'>*</font>gradient_input.<font color='#BB00BB'>nc</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
requires
- is_same_object(grad, gradient_input)==false
- gradient_input.num_samples() == grad.num_samples()
- gradient_input.k() == grad.k()
ensures
- Suppose that DEST is the output of resize_bilinear(DEST,SRC) for some SRC
tensor, let f(SRC) == dot(gradient_input,DEST). Then this function computes
the gradient of f() with respect to SRC and adds it to grad. It should be
noted that we don't need to know the contents of DEST to compute this
gradient. All that matters is that gradient_input have the same dimensions
as DEST.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='multi_device_tensor_averager'></a>multi_device_tensor_averager</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object is a tool for very quickly averaging a bunch of tensors
together.
!*/</font>
<font color='#0000FF'>public</font>:
<b><a name='multi_device_tensor_averager'></a>multi_device_tensor_averager</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> multi_device_tensor_averager<font color='#5555FF'>&</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>delete</font>;
multi_device_tensor_averager<font color='#5555FF'>&</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> multi_device_tensor_averager<font color='#5555FF'>&</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>delete</font>;
<b><a name='multi_device_tensor_averager'></a>multi_device_tensor_averager</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>;
<font color='#0000FF'><u>void</u></font> <b><a name='set'></a>set</b><font face='Lucida Console'>(</font>
std::vector<font color='#5555FF'><</font>tensor<font color='#5555FF'>*</font><font color='#5555FF'>></font> items
<font face='Lucida Console'>)</font>
<font color='#009900'>/*!
requires
- All the tensors in items are the same size
ensures
- When you call average() we will average the tensors in items.
- It's important that the tensors already be allocated to their devices
before you call set(). This is because set() will setup the types of
between device transfers now and use them when you call average().
!*/</font>
<b>{</b>
<font color='#0000FF'>using</font> <font color='#0000FF'>namespace</font> ::dlib::cuda;
accessible_groups.<font color='#BB00BB'>clear</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
epa.<font color='#BB00BB'>clear</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>items.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'><</font> <font color='#979000'>1</font><font face='Lucida Console'>)</font>
<font color='#0000FF'>return</font>;
scale <font color='#5555FF'>=</font> <font color='#979000'>1.0</font><font color='#5555FF'>/</font>items.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#009900'>// split item into groups of accessible devices
</font> std::vector<font color='#5555FF'><</font>tensor<font color='#5555FF'>*</font><font color='#5555FF'>></font> group, unused;
<font color='#0000FF'>while</font><font face='Lucida Console'>(</font>items.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>></font> <font color='#979000'>0</font><font face='Lucida Console'>)</font>
<b>{</b>
group.<font color='#BB00BB'>push_back</font><font face='Lucida Console'>(</font>items[<font color='#979000'>0</font>]<font face='Lucida Console'>)</font>;
<font color='#0000FF'>for</font><font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>1</font>; i <font color='#5555FF'><</font> items.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
<b>{</b>
<font color='#0000FF'>if</font> <font face='Lucida Console'>(</font><font color='#BB00BB'>can_access_peer</font><font face='Lucida Console'>(</font><font color='#5555FF'>*</font>items[<font color='#979000'>0</font>], <font color='#5555FF'>*</font>items[i]<font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>
group.<font color='#BB00BB'>push_back</font><font face='Lucida Console'>(</font>items[i]<font face='Lucida Console'>)</font>;
<font color='#0000FF'>else</font>
unused.<font color='#BB00BB'>push_back</font><font face='Lucida Console'>(</font>items[i]<font face='Lucida Console'>)</font>;
<b>}</b>
accessible_groups.<font color='#BB00BB'>push_back</font><font face='Lucida Console'>(</font>group<font face='Lucida Console'>)</font>;
unused.<font color='#BB00BB'>swap</font><font face='Lucida Console'>(</font>items<font face='Lucida Console'>)</font>;
unused.<font color='#BB00BB'>clear</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
group.<font color='#BB00BB'>clear</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<b>}</b>
<font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'>auto</font><font color='#5555FF'>&</font><font color='#5555FF'>&</font> g : accessible_groups<font face='Lucida Console'>)</font>
<b>{</b>
<font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>1</font>; i <font color='#5555FF'><</font> g.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
<b>{</b>
epa.<font color='#BB00BB'>emplace_back</font><font face='Lucida Console'>(</font><font color='#0000FF'>new</font> <font color='#BB00BB'>enable_peer_access</font><font face='Lucida Console'>(</font><font color='#5555FF'>*</font>g[<font color='#979000'>0</font>], <font color='#5555FF'>*</font>g[i]<font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>;
<b>}</b>
<b>}</b>
<b>}</b>
<font color='#0000FF'><u>size_t</u></font> <b><a name='num_device_groups'></a>num_device_groups</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font> <b>{</b> <font color='#0000FF'>return</font> accessible_groups.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
ensures
- The devices given to set() are grouped together when they can directly
access each other using GPUDirect. This function returns the number of
such groups. For example, if all devices can directly access each other
then the number of groups is 1.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='average'></a>average</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>
<font color='#009900'>/*!
requires
- All the devices have stopped writing to the tensors given to set(). So
you should probably call cudaDeviceSynchronize() on each of the relevant
devices before calling average().
ensures
- Computes the average of all the tensors given to set() and then sets them
all equal to the average.
!*/</font>
<b>{</b>
<font color='#0000FF'>using</font> <font color='#0000FF'>namespace</font> ::dlib::cuda;
<font color='#009900'>// First we average things within each group
</font> <font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'>auto</font><font color='#5555FF'>&</font><font color='#5555FF'>&</font> g : accessible_groups<font face='Lucida Console'>)</font>
<b>{</b>
raii_set_device <font color='#BB00BB'>set_dev</font><font face='Lucida Console'>(</font><font color='#5555FF'>*</font>g[<font color='#979000'>0</font>]<font face='Lucida Console'>)</font>;
<font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>g.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font><font color='#5555FF'>=</font> <font color='#979000'>1</font><font face='Lucida Console'>)</font>
tt::<font color='#BB00BB'>affine_transform</font><font face='Lucida Console'>(</font><font color='#5555FF'>*</font>g[<font color='#979000'>0</font>], <font color='#5555FF'>*</font>g[<font color='#979000'>0</font>], scale<font face='Lucida Console'>)</font>;
<font color='#0000FF'>else</font>
tt::<font color='#BB00BB'>affine_transform</font><font face='Lucida Console'>(</font><font color='#5555FF'>*</font>g[<font color='#979000'>0</font>], <font color='#5555FF'>*</font>g[<font color='#979000'>0</font>], <font color='#5555FF'>*</font>g[<font color='#979000'>1</font>], scale, scale<font face='Lucida Console'>)</font>;
<font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>2</font>; i <font color='#5555FF'><</font> g.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
tt::<font color='#BB00BB'>affine_transform</font><font face='Lucida Console'>(</font><font color='#5555FF'>*</font>g[<font color='#979000'>0</font>], <font color='#5555FF'>*</font>g[<font color='#979000'>0</font>], <font color='#5555FF'>*</font>g[i], <font color='#979000'>1</font>, scale<font face='Lucida Console'>)</font>;
<b>}</b>
<font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>accessible_groups.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>></font> <font color='#979000'>1</font><font face='Lucida Console'>)</font>
<b>{</b>
tensor<font color='#5555FF'>&</font> total_avg <font color='#5555FF'>=</font> <font color='#5555FF'>*</font>accessible_groups[<font color='#979000'>0</font>][<font color='#979000'>0</font>];
raii_set_device <font color='#BB00BB'>set_dev</font><font face='Lucida Console'>(</font>total_avg<font face='Lucida Console'>)</font>;
accum_buffer.<font color='#BB00BB'>copy_size</font><font face='Lucida Console'>(</font>total_avg<font face='Lucida Console'>)</font>;
<font color='#009900'>// now we need to average things across groups
</font> <font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>1</font>; i <font color='#5555FF'><</font> accessible_groups.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
<b>{</b>
<font color='#BB00BB'>memcpy</font><font face='Lucida Console'>(</font>accum_buffer, <font color='#5555FF'>*</font>accessible_groups[i][<font color='#979000'>0</font>]<font face='Lucida Console'>)</font>;
tt::<font color='#BB00BB'>add</font><font face='Lucida Console'>(</font>total_avg, total_avg, accum_buffer<font face='Lucida Console'>)</font>;
<b>}</b>
<font color='#009900'>// Now total_avg has the final average in it. So we need to send
</font> <font color='#009900'>// copies of it back to each of the groups.
</font> <font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>1</font>; i <font color='#5555FF'><</font> accessible_groups.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
<b>{</b>
<font color='#BB00BB'>memcpy</font><font face='Lucida Console'>(</font><font color='#5555FF'>*</font>accessible_groups[i][<font color='#979000'>0</font>], total_avg<font face='Lucida Console'>)</font>;
<b>}</b>
<b>}</b>
<font color='#009900'>// Now propagate averages back out to each element using point to point
</font> <font color='#009900'>// communication inside a group.
</font> <font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'>auto</font><font color='#5555FF'>&</font><font color='#5555FF'>&</font> g : accessible_groups<font face='Lucida Console'>)</font>
<b>{</b>
raii_set_device <font color='#BB00BB'>set_dev</font><font face='Lucida Console'>(</font><font color='#5555FF'>*</font>g[<font color='#979000'>0</font>]<font face='Lucida Console'>)</font>;
<font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>1</font>; i <font color='#5555FF'><</font> g.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
<font color='#BB00BB'>memcpy</font><font face='Lucida Console'>(</font><font color='#5555FF'>*</font>g[i], <font color='#5555FF'>*</font>g[<font color='#979000'>0</font>]<font face='Lucida Console'>)</font>;
<b>}</b>
<b>}</b>
<font color='#0000FF'>private</font>:
std::vector<font color='#5555FF'><</font>std::unique_ptr<font color='#5555FF'><</font>::dlib::cuda::enable_peer_access<font color='#5555FF'>></font><font color='#5555FF'>></font> epa;
std::vector<font color='#5555FF'><</font>std::vector<font color='#5555FF'><</font>tensor<font color='#5555FF'>*</font><font color='#5555FF'>></font><font color='#5555FF'>></font> accessible_groups;
<font color='#0000FF'><u>float</u></font> scale;
resizable_tensor accum_buffer;
<b>}</b>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='copy_tensor'></a>copy_tensor</b><font face='Lucida Console'>(</font>
<font color='#0000FF'><u>bool</u></font> add_to,
tensor<font color='#5555FF'>&</font> dest,
<font color='#0000FF'><u>size_t</u></font> dest_k_offset,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&</font> src,
<font color='#0000FF'><u>size_t</u></font> src_k_offset,
<font color='#0000FF'><u>size_t</u></font> count_k
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.nc() == src.nc()
- dest.nr() == src.nr()
- dest.num_samples() == src.num_samples()
- dest.k() - dest_k_offset >= count_k
- src.k() - src_k_offset >= count_k
- is_same_object(dest,src) == false
- The memory areas of src and dest do not overlap.
ensures
- if (add_to) then
- performs: dest[i, k + dest_k_offset, r, c] += src[i, k + src_k_offset, r, c], where k in [0..count_k]
i.e., adds content of each sample from src in to corresponding place of sample at dest.
- else
- performs: dest[i, k + dest_k_offset, r, c] = src[i, k + src_k_offset, r, c], where k in [0..count_k]
i.e., copies content of each sample from src in to corresponding place of sample at dest.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<b>}</b><b>}</b>
<font color='#0000FF'>#ifdef</font> NO_MAKEFILE
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='tensor_tools.cpp.html'>tensor_tools.cpp</a>"
<font color='#0000FF'>#endif</font>
<font color='#0000FF'>#endif</font> <font color='#009900'>// DLIB_TeNSOR_TOOLS_H_
</font>
</pre></body></html> |