File size: 10,753 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNN_CuDNN_H_
#define DLIB_DNN_CuDNN_H_
#ifdef DLIB_USE_CUDA
#include "cuda_errors.h"
#include <memory>
#include "cuda_data_ptr.h"
namespace dlib
{
class tensor;
class resizable_tensor;
namespace cuda
{
// -----------------------------------------------------------------------------------
class tensor_descriptor
{
/*!
Each tensor object will carry a tensor_descriptor in it when compiled with
CUDA.
!*/
public:
// not copyable
tensor_descriptor(const tensor_descriptor&) = delete;
tensor_descriptor& operator=(const tensor_descriptor&) = delete;
// but is movable
tensor_descriptor(tensor_descriptor&& item) : tensor_descriptor() { swap(item); }
tensor_descriptor& operator=(tensor_descriptor&& item) { swap(item); return *this; }
tensor_descriptor();
~tensor_descriptor();
void set_size(
int n,
int k,
int nr,
int nc
);
/*!
ensures
- if any of the arguments are 0 then they are all set to 0 in the tensor.
!*/
void get_size (
int& n,
int& k,
int& nr,
int& nc
) const;
const void* get_handle (
) const { return handle; }
private:
void swap(tensor_descriptor& item) { std::swap(handle, item.handle); }
void* handle;
};
// ------------------------------------------------------------------------------------
void add(
float beta,
tensor& dest,
float alpha,
const tensor& src
);
// ------------------------------------------------------------------------------------
void assign_conv_bias_gradient (
tensor& grad,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
void batch_normalize_inference (
const double eps,
resizable_tensor& dest,
const tensor& src,
const tensor& gamma,
const tensor& beta,
const tensor& running_means,
const tensor& running_variances
);
void batch_normalize (
const double eps,
resizable_tensor& dest,
resizable_tensor& means,
resizable_tensor& invstds,
const double averaging_factor,
resizable_tensor& running_means,
resizable_tensor& running_variances,
const tensor& src,
const tensor& gamma,
const tensor& beta
);
void batch_normalize_gradient(
const double eps,
const tensor& gradient_input,
const tensor& means,
const tensor& invstds,
const tensor& src,
const tensor& gamma,
tensor& src_grad,
tensor& gamma_grad,
tensor& beta_grad
);
// ------------------------------------------------------------------------------------
void batch_normalize_conv_inference (
const double eps,
resizable_tensor& dest,
const tensor& src,
const tensor& gamma,
const tensor& beta,
const tensor& running_means,
const tensor& running_variances
);
void batch_normalize_conv (
const double eps,
resizable_tensor& dest,
resizable_tensor& means,
resizable_tensor& invstds,
const double averaging_factor,
resizable_tensor& running_means,
resizable_tensor& running_variances,
const tensor& src,
const tensor& gamma,
const tensor& beta
);
void batch_normalize_conv_gradient(
const double eps,
const tensor& gradient_input,
const tensor& means,
const tensor& invstds,
const tensor& src,
const tensor& gamma,
tensor& src_grad,
tensor& gamma_grad,
tensor& beta_grad
);
// ------------------------------------------------------------------------------------
class tensor_conv
{
public:
tensor_conv(const tensor_conv&) = delete;
tensor_conv& operator=(const tensor_conv&) = delete;
tensor_conv();
void clear(
);
~tensor_conv (
);
void operator() (
const bool add_to_output,
tensor& output,
const tensor& data,
const tensor& filters
);
void operator() (
const bool add_to_output,
resizable_tensor& output,
const tensor& data,
const tensor& filters
);
void get_gradient_for_data (
const bool add_to_output,
const tensor& gradient_input,
const tensor& filters,
tensor& data_gradient
);
void get_gradient_for_filters (
const bool add_to_output,
const tensor& gradient_input,
const tensor& data,
tensor& filters_gradient
);
void setup(
const tensor& data,
const tensor& filters,
int stride_y,
int stride_x,
int padding_y,
int padding_x
);
private:
// These variables record the type of data given to the last call to setup().
int stride_y;
int stride_x;
int padding_y;
int padding_x;
long data_num_samples, data_k, data_nr, data_nc;
long filters_num_samples, filters_k, filters_nr, filters_nc;
void* filter_handle;
void* conv_handle;
// dimensions of the output tensor from operator()
int out_num_samples;
int out_k;
int out_nr;
int out_nc;
// sets the three _algo fields.
void select_best_algorithms(const tensor& data, const tensor_descriptor& dest_desc);
int forward_algo;
int backward_data_algo;
int backward_filters_algo;
size_t forward_workspace_size_in_bytes;
size_t backward_data_workspace_size_in_bytes;
size_t backward_filters_workspace_size_in_bytes;
cuda_data_void_ptr forward_workspace;
cuda_data_void_ptr backward_data_workspace;
cuda_data_void_ptr backward_filters_workspace;
};
// ------------------------------------------------------------------------------------
class pooling
{
public:
pooling(const pooling&) = delete;
pooling& operator=(const pooling&) = delete;
pooling (
);
~pooling(
);
void clear(
);
void setup_max_pooling(
int window_height,
int window_width,
int stride_y,
int stride_x,
int padding_y,
int padding_x
);
void setup_avg_pooling(
int window_height,
int window_width,
int stride_y,
int stride_x,
int padding_y,
int padding_x
);
bool does_max_pooling(
) const { return do_max_pooling; }
void operator() (
resizable_tensor& dest,
const tensor& src
);
void get_gradient(
const tensor& gradient_input,
const tensor& dest,
const tensor& src,
tensor& grad
);
private:
void setup(
int window_height,
int window_width,
int stride_y,
int stride_x,
int padding_y,
int padding_x,
int pooling_mode
);
void* handle;
int window_height;
int window_width;
int stride_y;
int stride_x;
int padding_y;
int padding_x;
bool do_max_pooling;
};
// ------------------------------------------------------------------------------------
void softmax (
tensor& dest,
const tensor& src
);
void softmax_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
void softmax_all (
tensor& dest,
const tensor& src
);
void softmax_all_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
void sigmoid (
tensor& dest,
const tensor& src
);
void sigmoid_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
void relu (
tensor& dest,
const tensor& src
);
void relu_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
void tanh (
tensor& dest,
const tensor& src
);
void tanh_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
);
// ------------------------------------------------------------------------------------
}
}
#endif // DLIB_USE_CUDA
#endif // DLIB_DNN_CuDNN_H_
|