File size: 31,986 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
// Copyright (C) 2007  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_BAYES_UTILs_ABSTRACT_
#ifdef DLIB_BAYES_UTILs_ABSTRACT_

#include "../algs.h"
#include "../noncopyable.h"
#include "../interfaces/enumerable.h"
#include "../interfaces/map_pair.h"
#include "../serialize.h"
#include <iostream>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    class assignment : public enumerable<map_pair<unsigned long, unsigned long> >
    {
        /*!
            INITIAL VALUE
                - size() == 0

            ENUMERATION ORDER
                The enumerator will iterate over the entries in the assignment in 
                ascending order according to index values.  (i.e. the elements are 
                enumerated in sorted order according to the value of their keys)

            WHAT THIS OBJECT REPRESENTS
                This object models an assignment of random variables to particular values.
                It is used with the joint_probability_table and conditional_probability_table
                objects to represent assignments of various random variables to actual values.

                So for example, if you had a joint_probability_table that represented the
                following table:
                    P(A = 0, B = 0) = 0.2
                    P(A = 0, B = 1) = 0.3
                    P(A = 1, B = 0) = 0.1
                    P(A = 1, B = 1) = 0.4

                    Also lets define an enum so we have concrete index numbers for A and B
                    enum { A = 0, B = 1};

                Then you could query the value of P(A=1, B=0) as follows:
                    assignment a;
                    a.set(A, 1);
                    a.set(B, 0);
                    // and now it is the case that:
                    table.probability(a) == 0.1 
                    a[A] == 1
                    a[B] == 0


                Also note that when enumerating the elements of an assignment object
                the key() refers to the index and the value() refers to the value at that
                index. For example: 

                // assume a is an assignment object
                a.reset();
                while (a.move_next())
                {
                    // in this loop it is always the case that:
                    // a[a.element().key()] == a.element().value()
                }
        !*/

    public:

        assignment(
        );
        /*!
            ensures
                - this object is properly initialized
        !*/

        assignment(
            const assignment& a
        );
        /*!
            ensures
                - #*this is a copy of a
        !*/

        assignment& operator = (
            const assignment& rhs
        );
        /*!
            ensures
                - #*this is a copy of rhs
                - returns *this
        !*/

        void clear(
        );
        /*!
            ensures
                - this object has been returned to its initial value
        !*/

        bool operator < (
            const assignment& item
        ) const;
        /*!
            ensures
                - The exact functioning of this operator is undefined.  The only guarantee
                  is that it establishes a total ordering on all possible assignment objects.
                  In other words, this operator makes it so that you can use assignment
                  objects in the associative containers but otherwise isn't of any 
                  particular use.
        !*/

        bool has_index (
            unsigned long idx
        ) const;
        /*!
            ensures
                - if (this assignment object has an entry for index idx) then
                    - returns true
                - else
                    - returns false
        !*/

        void add (
            unsigned long idx,
            unsigned long value = 0
        );
        /*!
            requires
                - has_index(idx) == false
            ensures
                - #has_index(idx) == true 
                - #(*this)[idx] == value 
        !*/

        void remove (
            unsigned long idx
        );
        /*!
            requires
                - has_index(idx) == true 
            ensures
                - #has_index(idx) == false 
        !*/

        unsigned long& operator[] (
            const long idx
        );
        /*!
            requires
                - has_index(idx) == true
            ensures
                - returns a reference to the value associated with index idx
        !*/

        const unsigned long& operator[] (
            const long idx
        ) const;
        /*!
            requires
                - has_index(idx) == true
            ensures
                - returns a const reference to the value associated with index idx
        !*/

        void swap (
            assignment& item
        );
        /*!
            ensures
                - swaps *this and item
        !*/

    };

    inline void swap (
        assignment& a,
        assignment& b
    ) { a.swap(b); }
    /*!
        provides a global swap
    !*/

    std::ostream& operator << (
        std::ostream& out,
        const assignment& a
    );
    /*!
        ensures
            - writes a to the given output stream in the following format:
              (index1:value1, index2:value2, ..., indexN:valueN)
    !*/

    void serialize (
        const assignment& item,
        std::ostream& out 
    );   
    /*!
        provides serialization support 
    !*/

    void deserialize (
        assignment& item,
        std::istream& in
    );   
    /*!
        provides deserialization support 
    !*/

// ------------------------------------------------------------------------

    class joint_probability_table : public enumerable<map_pair<assignment, double> >
    {
        /*!
            INITIAL VALUE
                - size() == 0

            ENUMERATION ORDER
                The enumerator will iterate over the entries in the probability table 
                in no particular order but they will all be visited.

            WHAT THIS OBJECT REPRESENTS
                This object models a joint probability table.  That is, it models
                the function p(X).  So this object models the probability of a particular
                set of variables (referred to as X).
        !*/

    public:

        joint_probability_table(
        );
        /*!
            ensures
                - this object is properly initialized
        !*/

        joint_probability_table (
            const joint_probability_table& t
        );
        /*!
            ensures
                - this object is a copy of t
        !*/

        void clear(
        );
        /*!
            ensures
                - this object has its initial value
        !*/

        joint_probability_table& operator= (
            const joint_probability_table& rhs
        );
        /*!
            ensures
                - this object is a copy of rhs
                - returns a reference to *this
        !*/

        bool has_entry_for (
            const assignment& a
        ) const;
        /*!
            ensures
                - if (this joint_probability_table has an entry for p(X = a)) then
                    - returns true
                - else
                    - returns false
        !*/

        void set_probability (
            const assignment& a,
            double p
        );
        /*!
            requires
                - 0 <= p <= 1
            ensures
                - if (has_entry_for(a) == false) then
                    - #size() == size() + 1
                - #probability(a) == p
                - #has_entry_for(a) == true
        !*/

        void add_probability (
            const assignment& a,
            double p
        );
        /*!
            requires
                - 0 <= p <= 1
            ensures
                - if (has_entry_for(a) == false) then
                    - #size() == size() + 1
                    - #probability(a) == p
                - else
                    - #probability(a) == min(probability(a) + p, 1.0)
                      (i.e. does a saturating add)
                - #has_entry_for(a) == true
        !*/

        const double probability (
            const assignment& a
        ) const;
        /*!
            ensures
                - returns the probability p(X == a)
        !*/

        template <
            typename T
            >
        void marginalize (
            const T& vars,
            joint_probability_table& output_table
        ) const;
        /*!
            requires
                - T is an implementation of set/set_kernel_abstract.h
            ensures
                - marginalizes *this by summing over all variables not in vars.  The
                  result is stored in output_table.  
        !*/

        void marginalize (
            const unsigned long var,
            joint_probability_table& output_table
        ) const;
        /*!
            ensures
                - is identical to calling the above marginalize() function with a set
                  that contains only var.  Or in other words, performs a marginalization
                  with just one variable var.  So that output_table will contain a table giving
                  the marginal probability of var all by itself.
        !*/

        void normalize (
        );
        /*!
            ensures
                - let sum == the sum of all the probabilities in this table
                - after normalize() has finished it will be the case that the sum of all
                  the entries in this table is 1.0.  This is accomplished by dividing all
                  the entries by the sum described above.
        !*/

        void swap (
            joint_probability_table& item
        );
        /*!
            ensures
                - swaps *this and item
        !*/

    };

    inline void swap (
        joint_probability_table& a,
        joint_probability_table& b
    ) { a.swap(b); }
    /*!
        provides a global swap
    !*/

    void serialize (
        const joint_probability_table& item,
        std::ostream& out 
    );   
    /*!
        provides serialization support
    !*/

    void deserialize (
        joint_probability_table& item,
        std::istream& in
    );   
    /*!
        provides deserialization support 
    !*/

// ----------------------------------------------------------------------------------------

    class conditional_probability_table : noncopyable
    {
        /*!
            INITIAL VALUE
                - num_values() == 0
                - has_value_for(x, y) == false for all values of x and y

            WHAT THIS OBJECT REPRESENTS
                This object models a conditional probability table.  That is, it models
                the function p( X | parents).  So this object models the conditional 
                probability of a particular variable (referred to as X) given another set 
                of variables (referred to as parents).  
        !*/

    public:

        conditional_probability_table(
        );
        /*!
            ensures
                - this object is properly initialized
        !*/

        void clear(
        );
        /*!
            ensures
                - this object has its initial value
        !*/

        void empty_table (
        );
        /*!
            ensures
                - for all possible v and p:
                    - #has_entry_for(v,p) == false
                  (i.e. this function clears out the table when you call it but doesn't 
                  change the value of num_values())
        !*/

        void set_num_values (
            unsigned long num
        );
        /*!
            ensures
                - #num_values() == num
                - for all possible v and p:
                    - #has_entry_for(v,p) == false
                  (i.e. this function clears out the table when you call it)
        !*/

        unsigned long num_values (
        ) const; 
        /*!
            ensures
                - This object models the probability table p(X | parents).  This
                  function returns the number of values X can take on.
        !*/

        bool has_entry_for (
            unsigned long value,
            const assignment& ps
        ) const;
        /*!
            ensures
                - if (this conditional_probability_table has an entry for p(X = value, parents = ps)) then
                    - returns true
                - else
                    - returns false
        !*/

        void set_probability (
            unsigned long value,
            const assignment& ps,
            double p
        );
        /*!
            requires
                - value < num_values()
                - 0 <= p <= 1
            ensures
                - #probability(ps, value) == p
                - #has_entry_for(value, ps) == true
        !*/

        double probability(
            unsigned long value,
            const assignment& ps
        ) const;
        /*!
            requires
                - value < num_values()
                - has_entry_for(value, ps) == true
            ensures
                - returns the probability p( X = value | parents = ps). 
        !*/

        void swap (
            conditional_probability_table& item
        );
        /*!
            ensures
                - swaps *this and item
        !*/
    };

    inline void swap (
        conditional_probability_table& a,
        conditional_probability_table& b
    ) { a.swap(b); }
    /*!
        provides a global swap
    !*/

    void serialize (
        const conditional_probability_table& item,
        std::ostream& out 
    );   
    /*!
        provides serialization support
    !*/

    void deserialize (
        conditional_probability_table& item,
        std::istream& in
    );   
    /*!
        provides deserialization support 
    !*/

// ------------------------------------------------------------------------
// ------------------------------------------------------------------------
// ------------------------------------------------------------------------

    class bayes_node : noncopyable
    {
        /*!
            INITIAL VALUE
                - is_evidence() == false
                - value() == 0
                - table().num_values() == 0

            WHAT THIS OBJECT REPRESENTS
                This object represents a node in a bayesian network.  It is
                intended to be used inside the dlib::directed_graph object to
                represent bayesian networks.
        !*/

    public:
        bayes_node (
        );
        /*!
            ensures
                - this object is properly initialized
        !*/

        unsigned long value (
        ) const;
        /*!
            ensures
                - returns the current value of this node
        !*/

        void set_value (
            unsigned long new_value
        );
        /*!
            requires
                - new_value < table().num_values()
            ensures
                - #value() == new_value
        !*/

        conditional_probability_table& table (
        );
        /*!
            ensures
                - returns a reference to the conditional_probability_table associated with this node
        !*/

        const conditional_probability_table& table (
        ) const;
        /*!
            ensures
                - returns a const reference to the conditional_probability_table associated with this 
                  node.
        !*/

        bool is_evidence (
        ) const;
        /*!
            ensures
                - if (this is an evidence node) then
                    - returns true
                - else
                    - returns false
        !*/

        void set_as_nonevidence (
        );
        /*!
            ensures
                - #is_evidence() == false
        !*/

        void set_as_evidence (
        );
        /*!
            ensures
                - #is_evidence() == true 
        !*/

        void swap (
            bayes_node& item
        );
        /*!
            ensures
                - swaps *this and item
        !*/

    };

    inline void swap (
        bayes_node& a,
        bayes_node& b
    ) { a.swap(b); }
    /*!
        provides a global swap
    !*/

    void serialize (
        const bayes_node& item,
        std::ostream& out 
    );   
    /*!
        provides serialization support
    !*/

    void deserialize (
        bayes_node& item,
        std::istream& in
    );   
    /*!
        provides deserialization support 
    !*/

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    /*
        The following group of functions are convenience functions for manipulating 
        bayes_node objects while they are inside a directed_graph.   These functions
        also have additional requires clauses that, in debug mode, will protect you
        from attempts to manipulate a bayesian network in an inappropriate way.
    */

    namespace bayes_node_utils
    {

        template <
            typename T
            >
        void set_node_value (
            T& bn,
            unsigned long n,
            unsigned long val
        );
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
                - val < node_num_values(bn, n)
            ensures
                - #bn.node(n).data.value() = val
        !*/

    // ------------------------------------------------------------------------------------

        template <
            typename T
            >
        unsigned long node_value (
            const T& bn,
            unsigned long n
        );
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
            ensures
                - returns bn.node(n).data.value()
        !*/

    // ------------------------------------------------------------------------------------

        template <
            typename T
            >
        bool node_is_evidence (
            const T& bn,
            unsigned long n
        ); 
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
            ensures
                - returns bn.node(n).data.is_evidence()
        !*/

    // ------------------------------------------------------------------------------------

        template <
            typename T
            >
        void set_node_as_evidence (
            T& bn,
            unsigned long n
        );
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
            ensures
                - executes: bn.node(n).data.set_as_evidence()
        !*/

    // ------------------------------------------------------------------------------------

        template <
            typename T
            >
        void set_node_as_nonevidence (
            T& bn,
            unsigned long n
        );
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
            ensures
                - executes: bn.node(n).data.set_as_nonevidence()
        !*/

    // ------------------------------------------------------------------------------------

        template <
            typename T
            >
        void set_node_num_values (
            T& bn,
            unsigned long n,
            unsigned long num
        ); 
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
            ensures
                - #bn.node(n).data.table().num_values() == num
                  (i.e. sets the number of different values this node can take)
        !*/

    // ------------------------------------------------------------------------------------

        template <
            typename T
            >
        unsigned long node_num_values (
            const T& bn,
            unsigned long n
        );
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
            ensures
                - returns bn.node(n).data.table().num_values() 
                  (i.e. returns the number of different values this node can take)
        !*/

    // ------------------------------------------------------------------------------------

        template <
            typename T
            >
        const double node_probability (
            const T& bn,
            unsigned long n,
            unsigned long value,
            const assignment& parents 
        );
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
                - value < node_num_values(bn,n)
                - parents.size() == bn.node(n).number_of_parents()
                - if (parents.has_index(x)) then
                    - bn.has_edge(x, n)
                    - parents[x] < node_num_values(bn,x)
            ensures
                - returns bn.node(n).data.table().probability(value, parents)
                  (i.e. returns the probability of node n having the given value when
                  its parents have the given assignment)
        !*/

    // ------------------------------------------------------------------------------------

        template <
            typename T
            >
        const double set_node_probability (
            const T& bn,
            unsigned long n,
            unsigned long value,
            const assignment& parents,
            double p
        );
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
                - value < node_num_values(bn,n)
                - 0 <= p <= 1
                - parents.size() == bn.node(n).number_of_parents()
                - if (parents.has_index(x)) then
                    - bn.has_edge(x, n)
                    - parents[x] < node_num_values(bn,x)
            ensures
                - #bn.node(n).data.table().probability(value, parents) == p
                  (i.e. sets the probability of node n having the given value when
                  its parents have the given assignment to the probability p)
        !*/

    // ------------------------------------------------------------------------------------

        template <typename T>
        const assignment node_first_parent_assignment (
            const T& bn,
            unsigned long n
        );
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
            ensures
                - returns an assignment A such that:
                    - A.size() == bn.node(n).number_of_parents()
                    - if (P is a parent of bn.node(n)) then
                        - A.has_index(P)
                        - A[P] == 0
                    - I.e. this function returns an assignment that contains all
                      the parents of the given node.  Also, all the values of each
                      parent in the assignment is set to zero.
        !*/

    // ------------------------------------------------------------------------------------

        template <typename T>
        bool node_next_parent_assignment (
            const T& bn,
            unsigned long n,
            assignment& A
        );
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
                - A.size() == bn.node(n).number_of_parents()
                - if (A.has_index(x)) then
                    - bn.has_edge(x, n)
                    - A[x] < node_num_values(bn,x)
            ensures
                - The behavior of this function is defined by the following code:
                  assignment a(node_first_parent_assignment(bn,n);
                  do {
                    // this loop loops over all possible parent assignments
                    // of the node bn.node(n).  Each time through the loop variable a
                    // will be the next assignment.
                  } while (node_next_parent_assignment(bn,n,a))
        !*/

    // ------------------------------------------------------------------------------------

        template <typename T>
        bool node_cpt_filled_out (
            const T& bn,
            unsigned long n
        );
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
                - n < bn.number_of_nodes()
            ensures
                - if (the conditional_probability_table bn.node(n).data.table() is
                  fully filled out for this node) then
                    - returns true
                    - This means that each parent assignment for the given node
                      along with all possible values of this node shows up in the
                      table.
                    - It also means that all the probabilities conditioned on the
                      same parent assignment sum to 1.0
                - else
                    - returns false
        !*/

    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    class bayesian_network_gibbs_sampler : noncopyable
    {
        /*!
            INITIAL VALUE
                This object has no state

            WHAT THIS OBJECT REPRESENTS
                This object performs Markov Chain Monte Carlo sampling of a bayesian
                network using the Gibbs sampling technique. 

                Note that this object is limited to only bayesian networks that 
                don't contain deterministic nodes.  That is, incorrect results may
                be computed if this object is used when the bayesian network contains 
                any nodes that have a probability of 1 in their conditional probability
                tables for any event.  So don't use this object for networks with 
                deterministic nodes.
        !*/
    public:

        bayesian_network_gibbs_sampler (
        );
        /*!
            ensures
                - this object is properly initialized
        !*/

        template <
            typename T
            >
        void sample_graph (
            T& bn
        )
        /*!
            requires
                - T is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - T::type == bayes_node
            ensures
                - modifies randomly (via the Gibbs sampling technique) samples all the nodes
                  in the network and updates their values with the newly sampled values
        !*/
    };

// ----------------------------------------------------------------------------------------

    class bayesian_network_join_tree : noncopyable
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This object represents an implementation of the join tree algorithm
                for inference in bayesian networks.  It doesn't have any mutable state.
                To you use you just give it a directed_graph that contains a bayesian 
                network and a graph object that contains that networks corresponding
                join tree.  Then you may query this object to determine the probabilities
                of any variables in the original bayesian network.
        !*/

    public:

        template <
            typename bn_type,
            typename join_tree_type 
            >
        bayesian_network_join_tree (
            const bn_type& bn,
            const join_tree_type& join_tree
        );
        /*!
            requires
                - bn_type is an implementation of directed_graph/directed_graph_kernel_abstract.h
                - bn_type::type == bayes_node
                - join_tree_type is an implementation of graph/graph_kernel_abstract.h
                - join_tree_type::type is an implementation of set/set_compare_abstract.h and
                  this set type contains unsigned long objects. 
                - join_tree_type::edge_type is an implementation of set/set_compare_abstract.h and
                  this set type contains unsigned long objects. 
                - is_join_tree(bn, join_tree) == true
                - bn == a valid bayesian network with all its conditional probability tables
                  filled out
                - for all valid n:
                    - node_cpt_filled_out(bn,n) == true
                - graph_contains_length_one_cycle(bn) == false
                - graph_is_connected(bn) == true
                - bn.number_of_nodes() > 0
            ensures
                - this object is properly initialized
        !*/

        unsigned long number_of_nodes (
        ) const;
        /*!
            ensures
                - returns the number of nodes in the bayesian network that this
                  object was instantiated from.
        !*/

        const matrix<double,1> probability(
            unsigned long idx
        ) const;
        /*!
            requires
                - idx < number_of_nodes()
            ensures
                - returns the probability distribution for the node with index idx that was in the bayesian 
                  network that *this was instantiated from.  Let D represent this distribution, then:
                    - D.nc() == the number of values the node idx ranges over
                    - D.nr() == 1 
                    - D(i) == the probability of node idx taking on the value i 
        !*/

        void swap (
            bayesian_network_join_tree& item
        );
        /*!
            ensures
                - swaps *this with item
        !*/

    };

    inline void swap (
        bayesian_network_join_tree& a,
        bayesian_network_join_tree& b
    ) { a.swap(b); }
    /*!
        provides a global swap
    !*/

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_BAYES_UTILs_ABSTRACT_