File size: 19,209 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
// Copyright (C) 2012  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_MODULARITY_ClUSTERING__H__
#define DLIB_MODULARITY_ClUSTERING__H__

#include "modularity_clustering_abstract.h"
#include "../sparse_vector.h"
#include "../graph_utils/edge_list_graphs.h"
#include "../matrix.h"
#include "../rand.h"

namespace dlib
{

// -----------------------------------------------------------------------------------------

    namespace impl
    {
        inline double newman_cluster_split (
            dlib::rand& rnd,
            const std::vector<ordered_sample_pair>& edges,
            const matrix<double,0,1>& node_degrees, // k from the Newman paper
            const matrix<double,0,1>& Bdiag,        // diag(B) from the Newman paper
            const double& edge_sum,                 // m from the Newman paper
            matrix<double,0,1>& labels,
            const double eps,
            const unsigned long max_iterations
        )
        /*!
            requires
                - node_degrees.size() == max_index_plus_one(edges)
                - Bdiag.size() == max_index_plus_one(edges)
                - edges must be sorted according to order_by_index()
            ensures
                - This routine splits a graph into two subgraphs using the Newman 
                  clustering method.  
                - returns the modularity obtained when the graph is split according
                  to the contents of #labels. 
                - #labels.size() == node_degrees.size()
                - for all valid i: #labels(i) == -1 or +1
                - if (this function returns 0) then
                    - all the labels are equal, i.e. the graph is not split.
        !*/
        {
            // Scale epsilon so that it is relative to the expected value of an element of a
            // unit vector of length node_degrees.size().
            const double power_iter_eps = eps * std::sqrt(1.0/node_degrees.size());

            // Make a random unit vector and put in labels.
            labels.set_size(node_degrees.size());
            for (long i = 0; i < labels.size(); ++i)
                labels(i) = rnd.get_random_gaussian();
            labels /= length(labels);

            matrix<double,0,1> Bv, Bv_unit;

            // Do the power iteration for a while.
            double eig = -1;
            double offset = 0;
            while (eig < 0)
            {

                // any number larger than power_iter_eps
                double iteration_change = power_iter_eps*2+1; 
                for (unsigned long i = 0; i < max_iterations && iteration_change > power_iter_eps; ++i) 
                {
                    sparse_matrix_vector_multiply(edges, labels, Bv);
                    Bv -= dot(node_degrees, labels)/(2*edge_sum) * node_degrees;

                    if (offset != 0)
                    {
                        Bv -= offset*labels;
                    }


                    const double len = length(Bv);
                    if (len != 0)
                    {
                        Bv_unit = Bv/len;
                        iteration_change = max(abs(labels-Bv_unit));
                        labels.swap(Bv_unit);
                    }
                    else
                    {
                        // Had a bad time, pick another random vector and try it with the
                        // power iteration.
                        for (long i = 0; i < labels.size(); ++i)
                            labels(i) = rnd.get_random_gaussian();
                    }
                }

                eig = dot(Bv,labels);
                // we will repeat this loop if the largest eigenvalue is negative
                offset = eig;
            }


            for (long i = 0; i < labels.size(); ++i)
            {
                if (labels(i) > 0)
                    labels(i) = 1;
                else
                    labels(i) = -1;
            }


            // compute B*labels, store result in Bv.
            sparse_matrix_vector_multiply(edges, labels, Bv);
            Bv -= dot(node_degrees, labels)/(2*edge_sum) * node_degrees;

            // Do some label refinement.  In this step we swap labels if it
            // improves the modularity score.
            bool flipped_label = true;
            while(flipped_label)
            {
                flipped_label = false;
                unsigned long idx = 0;
                for (long i = 0; i < labels.size(); ++i)
                {
                    const double val = -2*labels(i);
                    const double increase = 4*Bdiag(i) + 2*val*Bv(i);

                    // if there is an increase in modularity for swapping this label
                    if (increase > 0)
                    {
                        labels(i) *= -1;
                        while (idx < edges.size() && edges[idx].index1() == (unsigned long)i)
                        {
                            const long j = edges[idx].index2();
                            Bv(j) += val*edges[idx].distance();
                            ++idx;
                        }

                        Bv -= (val*node_degrees(i)/(2*edge_sum))*node_degrees;

                        flipped_label = true;
                    }
                    else
                    {
                        while (idx < edges.size() && edges[idx].index1() == (unsigned long)i)
                        {
                            ++idx;
                        }
                    }
                }
            }


            const double modularity = dot(Bv, labels)/(4*edge_sum);

            return modularity;
        }

    // -------------------------------------------------------------------------------------

        inline unsigned long newman_cluster_helper (
            dlib::rand& rnd,
            const std::vector<ordered_sample_pair>& edges,
            const matrix<double,0,1>& node_degrees, // k from the Newman paper
            const matrix<double,0,1>& Bdiag,        // diag(B) from the Newman paper
            const double& edge_sum,                 // m from the Newman paper
            std::vector<unsigned long>& labels,
            double modularity_threshold,
            const double eps,
            const unsigned long max_iterations
        )
        /*!
            ensures
                - returns the number of clusters the data was split into
        !*/
        {
            matrix<double,0,1> l;
            const double modularity = newman_cluster_split(rnd,edges,node_degrees,Bdiag,edge_sum,l,eps,max_iterations);


            // We need to collapse the node index values down to contiguous values.  So
            // we use the following two vectors to contain the mappings from input index
            // values to their corresponding index values in each split.
            std::vector<unsigned long> left_idx_map(node_degrees.size());
            std::vector<unsigned long> right_idx_map(node_degrees.size());

            // figure out how many nodes went into each side of the split.
            unsigned long num_left_split = 0;
            unsigned long num_right_split = 0;
            for (long i = 0; i < l.size(); ++i)
            {
                if (l(i) > 0)
                {
                    left_idx_map[i] = num_left_split;
                    ++num_left_split;
                }
                else
                {
                    right_idx_map[i] = num_right_split;
                    ++num_right_split;
                }
            }

            // do a recursive split if it will improve the modularity.
            if (modularity > modularity_threshold && num_left_split > 0 && num_right_split > 0)
            {

                // split the node_degrees and Bdiag matrices into left and right split parts
                matrix<double,0,1> left_node_degrees(num_left_split);
                matrix<double,0,1> right_node_degrees(num_right_split);
                matrix<double,0,1> left_Bdiag(num_left_split);
                matrix<double,0,1> right_Bdiag(num_right_split);
                for (long i = 0; i < l.size(); ++i)
                {
                    if (l(i) > 0)
                    {
                        left_node_degrees(left_idx_map[i]) = node_degrees(i);
                        left_Bdiag(left_idx_map[i]) = Bdiag(i);
                    }
                    else
                    {
                        right_node_degrees(right_idx_map[i]) = node_degrees(i);
                        right_Bdiag(right_idx_map[i]) = Bdiag(i);
                    }
                }


                // put the edges from one side of the split into split_edges
                std::vector<ordered_sample_pair> split_edges;
                modularity_threshold = 0;
                for (unsigned long k = 0; k < edges.size(); ++k)
                {
                    const unsigned long i = edges[k].index1();
                    const unsigned long j = edges[k].index2();
                    const double d = edges[k].distance();
                    if (l(i) > 0 && l(j) > 0)
                    {
                        split_edges.push_back(ordered_sample_pair(left_idx_map[i], left_idx_map[j], d));
                        modularity_threshold += d;
                    }
                }
                modularity_threshold -= sum(left_node_degrees*sum(left_node_degrees))/(2*edge_sum);
                modularity_threshold /= 4*edge_sum;

                unsigned long num_left_clusters;
                std::vector<unsigned long> left_labels;
                num_left_clusters = newman_cluster_helper(rnd,split_edges,left_node_degrees,left_Bdiag,
                                                          edge_sum,left_labels,modularity_threshold,
                                                          eps, max_iterations);

                // now load the other side into split_edges and cluster it as well
                split_edges.clear();
                modularity_threshold = 0;
                for (unsigned long k = 0; k < edges.size(); ++k)
                {
                    const unsigned long i = edges[k].index1();
                    const unsigned long j = edges[k].index2();
                    const double d = edges[k].distance();
                    if (l(i) < 0 && l(j) < 0)
                    {
                        split_edges.push_back(ordered_sample_pair(right_idx_map[i], right_idx_map[j], d));
                        modularity_threshold += d;
                    }
                }
                modularity_threshold -= sum(right_node_degrees*sum(right_node_degrees))/(2*edge_sum);
                modularity_threshold /= 4*edge_sum;

                unsigned long num_right_clusters;
                std::vector<unsigned long> right_labels;
                num_right_clusters = newman_cluster_helper(rnd,split_edges,right_node_degrees,right_Bdiag,
                                                           edge_sum,right_labels,modularity_threshold,
                                                           eps, max_iterations);

                // Now merge the labels from the two splits.
                labels.resize(node_degrees.size());
                for (unsigned long i = 0; i < labels.size(); ++i)
                {
                    // if this node was in the left split
                    if (l(i) > 0)
                    {
                        labels[i] = left_labels[left_idx_map[i]];
                    }
                    else // if this node was in the right split
                    {
                        labels[i] = right_labels[right_idx_map[i]] + num_left_clusters;
                    }
                }


                return num_left_clusters + num_right_clusters;
            }
            else
            {
                labels.assign(node_degrees.size(),0);
                return 1;
            }

        }
    }

// ----------------------------------------------------------------------------------------

    inline unsigned long newman_cluster (
        const std::vector<ordered_sample_pair>& edges,
        std::vector<unsigned long>& labels,
        const double eps = 1e-4,
        const unsigned long max_iterations = 2000
    )
    {
        // make sure requires clause is not broken
        DLIB_ASSERT(is_ordered_by_index(edges),
                    "\t unsigned long newman_cluster()"
                    << "\n\t Invalid inputs were given to this function"
        );

        labels.clear();
        if (edges.size() == 0)
            return 0;

        const unsigned long num_nodes = max_index_plus_one(edges);

        // compute the node_degrees vector, edge_sum value, and diag(B).
        matrix<double,0,1> node_degrees(num_nodes);
        matrix<double,0,1> Bdiag(num_nodes);
        Bdiag = 0;
        double edge_sum = 0;
        node_degrees = 0;
        for (unsigned long i = 0; i < edges.size(); ++i)
        {
            node_degrees(edges[i].index1()) += edges[i].distance();
            edge_sum += edges[i].distance();
            if (edges[i].index1() == edges[i].index2())
                Bdiag(edges[i].index1()) += edges[i].distance();
        }
        edge_sum /= 2;
        Bdiag -= squared(node_degrees)/(2*edge_sum);


        dlib::rand rnd;
        return impl::newman_cluster_helper(rnd,edges,node_degrees,Bdiag,edge_sum,labels,0,eps,max_iterations);
    }

// ----------------------------------------------------------------------------------------

    inline unsigned long newman_cluster (
        const std::vector<sample_pair>& edges,
        std::vector<unsigned long>& labels,
        const double eps = 1e-4,
        const unsigned long max_iterations = 2000
    )
    {
        std::vector<ordered_sample_pair> oedges;
        convert_unordered_to_ordered(edges, oedges);
        std::sort(oedges.begin(), oedges.end(), &order_by_index<ordered_sample_pair>);

        return newman_cluster(oedges, labels, eps, max_iterations);
    }

// ----------------------------------------------------------------------------------------

    namespace impl
    {
        inline std::vector<unsigned long> remap_labels (
            const std::vector<unsigned long>& labels,
            unsigned long& num_labels
        )
        /*!
            ensures
                - This function takes labels and produces a mapping which maps elements of
                  labels into the most compact range in [0, max] as possible.  In particular,
                  there won't be any unused integers in the mapped range.
                - #num_labels == the number of distinct values in labels.
                - returns a vector V such that:
                    - V.size() == labels.size()
                    - max(mat(V))+1 == num_labels.
                    - for all valid i,j:
                        - if (labels[i] == labels[j]) then
                            - V[i] == V[j]
                        - else
                            - V[i] != V[j]
        !*/
        {
            std::map<unsigned long, unsigned long> temp;
            for (unsigned long i = 0; i < labels.size(); ++i)
            {
                if (temp.count(labels[i]) == 0)
                {
                    const unsigned long next = temp.size();
                    temp[labels[i]] = next;
                }
            }

            num_labels = temp.size();

            std::vector<unsigned long> result(labels.size());
            for (unsigned long i = 0; i < labels.size(); ++i)
            {
                result[i] = temp[labels[i]];
            }
            return result;
        }
    }

// ----------------------------------------------------------------------------------------

    inline double modularity (
        const std::vector<sample_pair>& edges,
        const std::vector<unsigned long>& labels
    )
    {
        const unsigned long num_nodes = max_index_plus_one(edges);
        // make sure requires clause is not broken
        DLIB_ASSERT(labels.size() == num_nodes,
                    "\t double modularity()"
                    << "\n\t Invalid inputs were given to this function"
        );

        unsigned long num_labels;
        const std::vector<unsigned long>& labels_ = dlib::impl::remap_labels(labels,num_labels);

        std::vector<double> cluster_sums(num_labels,0);
        std::vector<double> k(num_nodes,0);

        double Q = 0;
        double m = 0;
        for (unsigned long i = 0; i < edges.size(); ++i)
        {
            const unsigned long n1 = edges[i].index1();
            const unsigned long n2 = edges[i].index2();
            k[n1] += edges[i].distance();
            if (n1 != n2)
                k[n2] += edges[i].distance();

            if (n1 != n2)
                m += edges[i].distance();
            else
                m += edges[i].distance()/2;

            if (labels_[n1] == labels_[n2])
            {
                if (n1 != n2)
                    Q += 2*edges[i].distance();
                else
                    Q += edges[i].distance();
            }
        }

        if (m == 0)
            return 0;

        for (unsigned long i = 0; i < labels_.size(); ++i)
        {
            cluster_sums[labels_[i]] += k[i];
        }

        for (unsigned long i = 0; i < labels_.size(); ++i)
        {
            Q -= k[i]*cluster_sums[labels_[i]]/(2*m);
        }

        return 1.0/(2*m)*Q;
    }

// ----------------------------------------------------------------------------------------

    inline double modularity (
        const std::vector<ordered_sample_pair>& edges,
        const std::vector<unsigned long>& labels
    )
    {
        const unsigned long num_nodes = max_index_plus_one(edges);
        // make sure requires clause is not broken
        DLIB_ASSERT(labels.size() == num_nodes,
                    "\t double modularity()"
                    << "\n\t Invalid inputs were given to this function"
        );


        unsigned long num_labels;
        const std::vector<unsigned long>& labels_ = dlib::impl::remap_labels(labels,num_labels);

        std::vector<double> cluster_sums(num_labels,0);
        std::vector<double> k(num_nodes,0);

        double Q = 0;
        double m = 0;
        for (unsigned long i = 0; i < edges.size(); ++i)
        {
            const unsigned long n1 = edges[i].index1();
            const unsigned long n2 = edges[i].index2();
            k[n1] += edges[i].distance();
            m += edges[i].distance();
            if (labels_[n1] == labels_[n2])
            {
                Q += edges[i].distance();
            }
        }

        if (m == 0)
            return 0;

        for (unsigned long i = 0; i < labels_.size(); ++i)
        {
            cluster_sums[labels_[i]] += k[i];
        }

        for (unsigned long i = 0; i < labels_.size(); ++i)
        {
            Q -= k[i]*cluster_sums[labels_[i]]/m;
        }

        return 1.0/m*Q;
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_MODULARITY_ClUSTERING__H__