File size: 19,209 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
// Copyright (C) 2012 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_MODULARITY_ClUSTERING__H__
#define DLIB_MODULARITY_ClUSTERING__H__
#include "modularity_clustering_abstract.h"
#include "../sparse_vector.h"
#include "../graph_utils/edge_list_graphs.h"
#include "../matrix.h"
#include "../rand.h"
namespace dlib
{
// -----------------------------------------------------------------------------------------
namespace impl
{
inline double newman_cluster_split (
dlib::rand& rnd,
const std::vector<ordered_sample_pair>& edges,
const matrix<double,0,1>& node_degrees, // k from the Newman paper
const matrix<double,0,1>& Bdiag, // diag(B) from the Newman paper
const double& edge_sum, // m from the Newman paper
matrix<double,0,1>& labels,
const double eps,
const unsigned long max_iterations
)
/*!
requires
- node_degrees.size() == max_index_plus_one(edges)
- Bdiag.size() == max_index_plus_one(edges)
- edges must be sorted according to order_by_index()
ensures
- This routine splits a graph into two subgraphs using the Newman
clustering method.
- returns the modularity obtained when the graph is split according
to the contents of #labels.
- #labels.size() == node_degrees.size()
- for all valid i: #labels(i) == -1 or +1
- if (this function returns 0) then
- all the labels are equal, i.e. the graph is not split.
!*/
{
// Scale epsilon so that it is relative to the expected value of an element of a
// unit vector of length node_degrees.size().
const double power_iter_eps = eps * std::sqrt(1.0/node_degrees.size());
// Make a random unit vector and put in labels.
labels.set_size(node_degrees.size());
for (long i = 0; i < labels.size(); ++i)
labels(i) = rnd.get_random_gaussian();
labels /= length(labels);
matrix<double,0,1> Bv, Bv_unit;
// Do the power iteration for a while.
double eig = -1;
double offset = 0;
while (eig < 0)
{
// any number larger than power_iter_eps
double iteration_change = power_iter_eps*2+1;
for (unsigned long i = 0; i < max_iterations && iteration_change > power_iter_eps; ++i)
{
sparse_matrix_vector_multiply(edges, labels, Bv);
Bv -= dot(node_degrees, labels)/(2*edge_sum) * node_degrees;
if (offset != 0)
{
Bv -= offset*labels;
}
const double len = length(Bv);
if (len != 0)
{
Bv_unit = Bv/len;
iteration_change = max(abs(labels-Bv_unit));
labels.swap(Bv_unit);
}
else
{
// Had a bad time, pick another random vector and try it with the
// power iteration.
for (long i = 0; i < labels.size(); ++i)
labels(i) = rnd.get_random_gaussian();
}
}
eig = dot(Bv,labels);
// we will repeat this loop if the largest eigenvalue is negative
offset = eig;
}
for (long i = 0; i < labels.size(); ++i)
{
if (labels(i) > 0)
labels(i) = 1;
else
labels(i) = -1;
}
// compute B*labels, store result in Bv.
sparse_matrix_vector_multiply(edges, labels, Bv);
Bv -= dot(node_degrees, labels)/(2*edge_sum) * node_degrees;
// Do some label refinement. In this step we swap labels if it
// improves the modularity score.
bool flipped_label = true;
while(flipped_label)
{
flipped_label = false;
unsigned long idx = 0;
for (long i = 0; i < labels.size(); ++i)
{
const double val = -2*labels(i);
const double increase = 4*Bdiag(i) + 2*val*Bv(i);
// if there is an increase in modularity for swapping this label
if (increase > 0)
{
labels(i) *= -1;
while (idx < edges.size() && edges[idx].index1() == (unsigned long)i)
{
const long j = edges[idx].index2();
Bv(j) += val*edges[idx].distance();
++idx;
}
Bv -= (val*node_degrees(i)/(2*edge_sum))*node_degrees;
flipped_label = true;
}
else
{
while (idx < edges.size() && edges[idx].index1() == (unsigned long)i)
{
++idx;
}
}
}
}
const double modularity = dot(Bv, labels)/(4*edge_sum);
return modularity;
}
// -------------------------------------------------------------------------------------
inline unsigned long newman_cluster_helper (
dlib::rand& rnd,
const std::vector<ordered_sample_pair>& edges,
const matrix<double,0,1>& node_degrees, // k from the Newman paper
const matrix<double,0,1>& Bdiag, // diag(B) from the Newman paper
const double& edge_sum, // m from the Newman paper
std::vector<unsigned long>& labels,
double modularity_threshold,
const double eps,
const unsigned long max_iterations
)
/*!
ensures
- returns the number of clusters the data was split into
!*/
{
matrix<double,0,1> l;
const double modularity = newman_cluster_split(rnd,edges,node_degrees,Bdiag,edge_sum,l,eps,max_iterations);
// We need to collapse the node index values down to contiguous values. So
// we use the following two vectors to contain the mappings from input index
// values to their corresponding index values in each split.
std::vector<unsigned long> left_idx_map(node_degrees.size());
std::vector<unsigned long> right_idx_map(node_degrees.size());
// figure out how many nodes went into each side of the split.
unsigned long num_left_split = 0;
unsigned long num_right_split = 0;
for (long i = 0; i < l.size(); ++i)
{
if (l(i) > 0)
{
left_idx_map[i] = num_left_split;
++num_left_split;
}
else
{
right_idx_map[i] = num_right_split;
++num_right_split;
}
}
// do a recursive split if it will improve the modularity.
if (modularity > modularity_threshold && num_left_split > 0 && num_right_split > 0)
{
// split the node_degrees and Bdiag matrices into left and right split parts
matrix<double,0,1> left_node_degrees(num_left_split);
matrix<double,0,1> right_node_degrees(num_right_split);
matrix<double,0,1> left_Bdiag(num_left_split);
matrix<double,0,1> right_Bdiag(num_right_split);
for (long i = 0; i < l.size(); ++i)
{
if (l(i) > 0)
{
left_node_degrees(left_idx_map[i]) = node_degrees(i);
left_Bdiag(left_idx_map[i]) = Bdiag(i);
}
else
{
right_node_degrees(right_idx_map[i]) = node_degrees(i);
right_Bdiag(right_idx_map[i]) = Bdiag(i);
}
}
// put the edges from one side of the split into split_edges
std::vector<ordered_sample_pair> split_edges;
modularity_threshold = 0;
for (unsigned long k = 0; k < edges.size(); ++k)
{
const unsigned long i = edges[k].index1();
const unsigned long j = edges[k].index2();
const double d = edges[k].distance();
if (l(i) > 0 && l(j) > 0)
{
split_edges.push_back(ordered_sample_pair(left_idx_map[i], left_idx_map[j], d));
modularity_threshold += d;
}
}
modularity_threshold -= sum(left_node_degrees*sum(left_node_degrees))/(2*edge_sum);
modularity_threshold /= 4*edge_sum;
unsigned long num_left_clusters;
std::vector<unsigned long> left_labels;
num_left_clusters = newman_cluster_helper(rnd,split_edges,left_node_degrees,left_Bdiag,
edge_sum,left_labels,modularity_threshold,
eps, max_iterations);
// now load the other side into split_edges and cluster it as well
split_edges.clear();
modularity_threshold = 0;
for (unsigned long k = 0; k < edges.size(); ++k)
{
const unsigned long i = edges[k].index1();
const unsigned long j = edges[k].index2();
const double d = edges[k].distance();
if (l(i) < 0 && l(j) < 0)
{
split_edges.push_back(ordered_sample_pair(right_idx_map[i], right_idx_map[j], d));
modularity_threshold += d;
}
}
modularity_threshold -= sum(right_node_degrees*sum(right_node_degrees))/(2*edge_sum);
modularity_threshold /= 4*edge_sum;
unsigned long num_right_clusters;
std::vector<unsigned long> right_labels;
num_right_clusters = newman_cluster_helper(rnd,split_edges,right_node_degrees,right_Bdiag,
edge_sum,right_labels,modularity_threshold,
eps, max_iterations);
// Now merge the labels from the two splits.
labels.resize(node_degrees.size());
for (unsigned long i = 0; i < labels.size(); ++i)
{
// if this node was in the left split
if (l(i) > 0)
{
labels[i] = left_labels[left_idx_map[i]];
}
else // if this node was in the right split
{
labels[i] = right_labels[right_idx_map[i]] + num_left_clusters;
}
}
return num_left_clusters + num_right_clusters;
}
else
{
labels.assign(node_degrees.size(),0);
return 1;
}
}
}
// ----------------------------------------------------------------------------------------
inline unsigned long newman_cluster (
const std::vector<ordered_sample_pair>& edges,
std::vector<unsigned long>& labels,
const double eps = 1e-4,
const unsigned long max_iterations = 2000
)
{
// make sure requires clause is not broken
DLIB_ASSERT(is_ordered_by_index(edges),
"\t unsigned long newman_cluster()"
<< "\n\t Invalid inputs were given to this function"
);
labels.clear();
if (edges.size() == 0)
return 0;
const unsigned long num_nodes = max_index_plus_one(edges);
// compute the node_degrees vector, edge_sum value, and diag(B).
matrix<double,0,1> node_degrees(num_nodes);
matrix<double,0,1> Bdiag(num_nodes);
Bdiag = 0;
double edge_sum = 0;
node_degrees = 0;
for (unsigned long i = 0; i < edges.size(); ++i)
{
node_degrees(edges[i].index1()) += edges[i].distance();
edge_sum += edges[i].distance();
if (edges[i].index1() == edges[i].index2())
Bdiag(edges[i].index1()) += edges[i].distance();
}
edge_sum /= 2;
Bdiag -= squared(node_degrees)/(2*edge_sum);
dlib::rand rnd;
return impl::newman_cluster_helper(rnd,edges,node_degrees,Bdiag,edge_sum,labels,0,eps,max_iterations);
}
// ----------------------------------------------------------------------------------------
inline unsigned long newman_cluster (
const std::vector<sample_pair>& edges,
std::vector<unsigned long>& labels,
const double eps = 1e-4,
const unsigned long max_iterations = 2000
)
{
std::vector<ordered_sample_pair> oedges;
convert_unordered_to_ordered(edges, oedges);
std::sort(oedges.begin(), oedges.end(), &order_by_index<ordered_sample_pair>);
return newman_cluster(oedges, labels, eps, max_iterations);
}
// ----------------------------------------------------------------------------------------
namespace impl
{
inline std::vector<unsigned long> remap_labels (
const std::vector<unsigned long>& labels,
unsigned long& num_labels
)
/*!
ensures
- This function takes labels and produces a mapping which maps elements of
labels into the most compact range in [0, max] as possible. In particular,
there won't be any unused integers in the mapped range.
- #num_labels == the number of distinct values in labels.
- returns a vector V such that:
- V.size() == labels.size()
- max(mat(V))+1 == num_labels.
- for all valid i,j:
- if (labels[i] == labels[j]) then
- V[i] == V[j]
- else
- V[i] != V[j]
!*/
{
std::map<unsigned long, unsigned long> temp;
for (unsigned long i = 0; i < labels.size(); ++i)
{
if (temp.count(labels[i]) == 0)
{
const unsigned long next = temp.size();
temp[labels[i]] = next;
}
}
num_labels = temp.size();
std::vector<unsigned long> result(labels.size());
for (unsigned long i = 0; i < labels.size(); ++i)
{
result[i] = temp[labels[i]];
}
return result;
}
}
// ----------------------------------------------------------------------------------------
inline double modularity (
const std::vector<sample_pair>& edges,
const std::vector<unsigned long>& labels
)
{
const unsigned long num_nodes = max_index_plus_one(edges);
// make sure requires clause is not broken
DLIB_ASSERT(labels.size() == num_nodes,
"\t double modularity()"
<< "\n\t Invalid inputs were given to this function"
);
unsigned long num_labels;
const std::vector<unsigned long>& labels_ = dlib::impl::remap_labels(labels,num_labels);
std::vector<double> cluster_sums(num_labels,0);
std::vector<double> k(num_nodes,0);
double Q = 0;
double m = 0;
for (unsigned long i = 0; i < edges.size(); ++i)
{
const unsigned long n1 = edges[i].index1();
const unsigned long n2 = edges[i].index2();
k[n1] += edges[i].distance();
if (n1 != n2)
k[n2] += edges[i].distance();
if (n1 != n2)
m += edges[i].distance();
else
m += edges[i].distance()/2;
if (labels_[n1] == labels_[n2])
{
if (n1 != n2)
Q += 2*edges[i].distance();
else
Q += edges[i].distance();
}
}
if (m == 0)
return 0;
for (unsigned long i = 0; i < labels_.size(); ++i)
{
cluster_sums[labels_[i]] += k[i];
}
for (unsigned long i = 0; i < labels_.size(); ++i)
{
Q -= k[i]*cluster_sums[labels_[i]]/(2*m);
}
return 1.0/(2*m)*Q;
}
// ----------------------------------------------------------------------------------------
inline double modularity (
const std::vector<ordered_sample_pair>& edges,
const std::vector<unsigned long>& labels
)
{
const unsigned long num_nodes = max_index_plus_one(edges);
// make sure requires clause is not broken
DLIB_ASSERT(labels.size() == num_nodes,
"\t double modularity()"
<< "\n\t Invalid inputs were given to this function"
);
unsigned long num_labels;
const std::vector<unsigned long>& labels_ = dlib::impl::remap_labels(labels,num_labels);
std::vector<double> cluster_sums(num_labels,0);
std::vector<double> k(num_nodes,0);
double Q = 0;
double m = 0;
for (unsigned long i = 0; i < edges.size(); ++i)
{
const unsigned long n1 = edges[i].index1();
const unsigned long n2 = edges[i].index2();
k[n1] += edges[i].distance();
m += edges[i].distance();
if (labels_[n1] == labels_[n2])
{
Q += edges[i].distance();
}
}
if (m == 0)
return 0;
for (unsigned long i = 0; i < labels_.size(); ++i)
{
cluster_sums[labels_[i]] += k[i];
}
for (unsigned long i = 0; i < labels_.size(); ++i)
{
Q -= k[i]*cluster_sums[labels_[i]]/m;
}
return 1.0/m*Q;
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_MODULARITY_ClUSTERING__H__
|