File size: 7,264 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
// Copyright (C) 2015  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_APPROXIMATE_LINEAR_MODELS_ABSTRACT_Hh_
#ifdef DLIB_APPROXIMATE_LINEAR_MODELS_ABSTRACT_Hh_

#include "../matrix.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    struct example_feature_extractor 
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This object defines the interface a feature extractor must implement if it
                is to be used with the process_sample and policy objects defined at the
                bottom of this file.  Moreover, it is meant to represent the core part
                of a model used in a reinforcement learning algorithm.
                
                In particular, this object models a Q(state,action) function where
                    Q(state,action) == dot(w, PSI(state,action))
                    where PSI(state,action) is a feature vector and w is a parameter
                    vector.

                Therefore, a feature extractor defines how the PSI(x,y) feature vector is
                calculated.  It also defines the types used to represent the state and
                action objects. 


            THREAD SAFETY
                Instances of this object are required to be threadsafe, that is, it should
                be safe for multiple threads to make concurrent calls to the member
                functions of this object.
        !*/

        // The state and actions can be any types so long as you provide typedefs for them.
        typedef T state_type;
        typedef U action_type; 
        // We can also say that the last element in the weight vector w must be 1.  This
        // can be useful for including a prior into your model.
        const static bool force_last_weight_to_1 = false;

        example_feature_extractor(
        );
        /*!
            ensures
                - this object is properly initialized.
        !*/

        unsigned long num_features(
        ) const;
        /*!
            ensures
                - returns the dimensionality of the PSI() feature vector.  
        !*/

        action_type find_best_action (
            const state_type& state,
            const matrix<double,0,1>& w
        ) const;
        /*!
            ensures
                - returns the action A that maximizes Q(state,A) = dot(w,PSI(state,A)).
                  That is, this function finds the best action to take in the given state
                  when our model is parameterized by the given weight vector w.
        !*/

        void get_features (
            const state_type& state,
            const action_type& action,
            matrix<double,0,1>& feats
        ) const;
        /*!
            ensures
                - #feats.size() == num_features()
                - #feats == PSI(state,action)
        !*/

    };

// ----------------------------------------------------------------------------------------

    template <
        typename feature_extractor
        >
    struct process_sample
    {
        /*!
            REQUIREMENTS ON feature_extractor
                feature_extractor should implement the example_feature_extractor interface
                defined at the top of this file.

            WHAT THIS OBJECT REPRESENTS
                This object holds a training sample for a reinforcement learning algorithm.
                In particular, it should be a sample from some process where the process
                was in state this->state, then took this->action action which resulted in
                receiving this->reward and ending up in the state this->next_state.
        !*/

        typedef feature_extractor feature_extractor_type;
        typedef typename feature_extractor::state_type state_type;
        typedef typename feature_extractor::action_type action_type;

        process_sample(){}

        process_sample(
            const state_type& s,
            const action_type& a,
            const state_type& n,
            const double& r
        ) : state(s), action(a), next_state(n), reward(r) {}

        state_type  state;
        action_type action;
        state_type  next_state;
        double reward;
    };

    template < typename feature_extractor >
    void serialize (const process_sample<feature_extractor>& item, std::ostream& out);
    template < typename feature_extractor >
    void deserialize (process_sample<feature_extractor>& item, std::istream& in);
    /*!
        provides serialization support.
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename feature_extractor
        >
    class policy
    {
        /*!
            REQUIREMENTS ON feature_extractor
                feature_extractor should implement the example_feature_extractor interface
                defined at the top of this file.

            WHAT THIS OBJECT REPRESENTS
                This is a policy based on the supplied feature_extractor model.  In
                particular, it maps from feature_extractor::state_type to the best action
                to take in that state.
        !*/

    public:

        typedef feature_extractor feature_extractor_type;
        typedef typename feature_extractor::state_type state_type;
        typedef typename feature_extractor::action_type action_type;


        policy (
        );
        /*!
            ensures
                - #get_feature_extractor() == feature_extractor() 
                  (i.e. it will have its default value)
                - #get_weights().size() == #get_feature_extractor().num_features()
                - #get_weights() == 0
        !*/

        policy (
            const matrix<double,0,1>& weights,
            const feature_extractor& fe
        ); 
        /*!
            requires
                - fe.num_features() == weights.size()
            ensures
                - #get_feature_extractor() == fe
                - #get_weights() == weights
        !*/

        action_type operator() (
            const state_type& state
        ) const;
        /*!
            ensures
                - returns get_feature_extractor().find_best_action(state,w);
        !*/

        const feature_extractor& get_feature_extractor (
        ) const; 
        /*!
            ensures
                - returns the feature extractor used by this object
        !*/

        const matrix<double,0,1>& get_weights (
        ) const; 
        /*!
            ensures
                - returns the parameter vector (w) associated with this object.  The length
                  of the vector is get_feature_extractor().num_features().  
        !*/

    };

    template < typename feature_extractor >
    void serialize(const policy<feature_extractor>& item, std::ostream& out);
    template < typename feature_extractor >
    void deserialize(policy<feature_extractor>& item, std::istream& in);
    /*!
        provides serialization support.
    !*/

// ----------------------------------------------------------------------------------------


#endif // DLIB_APPROXIMATE_LINEAR_MODELS_ABSTRACT_Hh_