File size: 4,947 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_LSPI_Hh_
#define DLIB_LSPI_Hh_
#include "lspi_abstract.h"
#include "approximate_linear_models.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename feature_extractor
>
class lspi
{
public:
typedef feature_extractor feature_extractor_type;
typedef typename feature_extractor::state_type state_type;
typedef typename feature_extractor::action_type action_type;
explicit lspi(
const feature_extractor& fe_
) : fe(fe_)
{
init();
}
lspi(
)
{
init();
}
double get_discount (
) const { return discount; }
void set_discount (
double value
)
{
// make sure requires clause is not broken
DLIB_ASSERT(0 < value && value <= 1,
"\t void lspi::set_discount(value)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t value: " << value
);
discount = value;
}
const feature_extractor& get_feature_extractor (
) const { return fe; }
void be_verbose (
)
{
verbose = true;
}
void be_quiet (
)
{
verbose = false;
}
void set_epsilon (
double eps_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(eps_ > 0,
"\t void lspi::set_epsilon(eps_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t eps_: " << eps_
);
eps = eps_;
}
double get_epsilon (
) const
{
return eps;
}
void set_lambda (
double lambda_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(lambda_ >= 0,
"\t void lspi::set_lambda(lambda_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t lambda_: " << lambda_
);
lambda = lambda_;
}
double get_lambda (
) const
{
return lambda;
}
void set_max_iterations (
unsigned long max_iter
) { max_iterations = max_iter; }
unsigned long get_max_iterations (
) { return max_iterations; }
template <typename vector_type>
policy<feature_extractor> train (
const vector_type& samples
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(samples.size() > 0,
"\t policy lspi::train(samples)"
<< "\n\t invalid inputs were given to this function"
);
matrix<double,0,1> w(fe.num_features());
w = 0;
matrix<double,0,1> prev_w, b, f1, f2;
matrix<double> A;
double change;
unsigned long iter = 0;
do
{
A = identity_matrix<double>(fe.num_features())*lambda;
b = 0;
for (unsigned long i = 0; i < samples.size(); ++i)
{
fe.get_features(samples[i].state, samples[i].action, f1);
fe.get_features(samples[i].next_state,
fe.find_best_action(samples[i].next_state,w),
f2);
A += f1*trans(f1 - discount*f2);
b += f1*samples[i].reward;
}
prev_w = w;
if (feature_extractor::force_last_weight_to_1)
w = join_cols(pinv(colm(A,range(0,A.nc()-2)))*(b-colm(A,A.nc()-1)),mat(1.0));
else
w = pinv(A)*b;
change = length(w-prev_w);
++iter;
if (verbose)
std::cout << "iteration: " << iter << "\tchange: " << change << std::endl;
} while(change > eps && iter < max_iterations);
return policy<feature_extractor>(w,fe);
}
private:
void init()
{
lambda = 0.01;
discount = 0.8;
eps = 0.01;
verbose = false;
max_iterations = 100;
}
double lambda;
double discount;
double eps;
bool verbose;
unsigned long max_iterations;
feature_extractor fe;
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_LSPI_Hh_
|