File size: 6,106 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#undef DLIB_LSPI_ABSTRACT_Hh_
#ifdef DLIB_LSPI_ABSTRACT_Hh_
#include "approximate_linear_models_abstract.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
template <
typename feature_extractor
>
class lspi
{
/*!
REQUIREMENTS ON feature_extractor
feature_extractor should implement the example_feature_extractor interface
defined at the top of dlib/control/approximate_linear_models_abstract.h
WHAT THIS OBJECT REPRESENTS
This object is an implementation of the reinforcement learning algorithm
described in the following paper:
Lagoudakis, Michail G., and Ronald Parr. "Least-squares policy
iteration." The Journal of Machine Learning Research 4 (2003):
1107-1149.
This means that it takes a bunch of training data in the form of
process_samples and outputs a policy that hopefully performs well when run
on the process that generated those samples.
!*/
public:
typedef feature_extractor feature_extractor_type;
typedef typename feature_extractor::state_type state_type;
typedef typename feature_extractor::action_type action_type;
explicit lspi(
const feature_extractor& fe_
);
/*!
ensures
- #get_feature_extractor() == fe_
- #get_lambda() == 0.01
- #get_discount == 0.8
- #get_epsilon() == 0.01
- is not verbose
- #get_max_iterations() == 100
!*/
lspi(
);
/*!
ensures
- #get_feature_extractor() == feature_extractor()
(i.e. it will have its default value)
- #get_lambda() == 0.01
- #get_discount == 0.8
- #get_epsilon() == 0.01
- is not verbose
- #get_max_iterations() == 100
!*/
double get_discount (
) const;
/*!
ensures
- returns the discount applied to the sum of rewards in the Bellman
equation.
!*/
void set_discount (
double value
);
/*!
requires
- 0 < value <= 1
ensures
- #get_discount() == value
!*/
const feature_extractor& get_feature_extractor (
) const;
/*!
ensures
- returns the feature extractor used by this object
!*/
void be_verbose (
);
/*!
ensures
- This object will print status messages to standard out so that a
user can observe the progress of the algorithm.
!*/
void be_quiet (
);
/*!
ensures
- this object will not print anything to standard out
!*/
void set_epsilon (
double eps
);
/*!
requires
- eps > 0
ensures
- #get_epsilon() == eps
!*/
double get_epsilon (
) const;
/*!
ensures
- returns the error epsilon that determines when training should stop.
Smaller values may result in a more accurate solution but take longer to
train.
!*/
void set_lambda (
double lambda_
);
/*!
requires
- lambda >= 0
ensures
- #get_lambda() == lambda
!*/
double get_lambda (
) const;
/*!
ensures
- returns the regularization parameter. It is the parameter that
determines the trade off between trying to fit the training data
exactly or allowing more errors but hopefully improving the
generalization ability of the resulting function. Smaller values
encourage exact fitting while larger values of lambda may encourage
better generalization.
!*/
void set_max_iterations (
unsigned long max_iter
);
/*!
ensures
- #get_max_iterations() == max_iter
!*/
unsigned long get_max_iterations (
);
/*!
ensures
- returns the maximum number of iterations the SVM optimizer is allowed to
run before it is required to stop and return a result.
!*/
template <
typename vector_type
>
policy<feature_extractor> train (
const vector_type& samples
) const;
/*!
requires
- samples.size() > 0
- samples is something with an interface that looks like
std::vector<process_sample<feature_extractor>>. That is, it should
be some kind of array of process_sample objects.
ensures
- Trains a policy based on the given data and returns the results. The
idea is to find a policy that will obtain the largest possible reward
when run on the process that generated the samples. In particular,
if the returned policy is P then:
- P(S) == the best action to take when in state S.
- if (feature_extractor::force_last_weight_to_1) then
- The last element of P.get_weights() is 1.
!*/
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_LSPI_ABSTRACT_Hh_
|