File size: 5,544 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNN_CuBLAS_CPP_
#define DLIB_DNN_CuBLAS_CPP_
#ifdef DLIB_USE_CUDA
#include "cublas_dlibapi.h"
#include "cuda_utils.h"
#include <cublas_v2.h>
#include <vector>
static const char* cublas_get_error_string(cublasStatus_t s)
{
switch(s)
{
case CUBLAS_STATUS_NOT_INITIALIZED:
return "CUDA Runtime API initialization failed.";
case CUBLAS_STATUS_ALLOC_FAILED:
return "CUDA Resources could not be allocated.";
default:
return "A call to cuBLAS failed";
}
}
// Check the return value of a call to the cuBLAS runtime for an error condition.
#define CHECK_CUBLAS(call) \
do{ \
const cublasStatus_t error = call; \
if (error != CUBLAS_STATUS_SUCCESS) \
{ \
std::ostringstream sout; \
sout << "Error while calling " << #call << " in file " << __FILE__ << ":" << __LINE__ << ". ";\
sout << "code: " << error << ", reason: " << cublas_get_error_string(error);\
throw dlib::cublas_error(sout.str()); \
} \
}while(false)
namespace dlib
{
namespace cuda
{
// -----------------------------------------------------------------------------------
class cublas_context
{
public:
// not copyable
cublas_context(const cublas_context&) = delete;
cublas_context& operator=(const cublas_context&) = delete;
cublas_context()
{
handles.resize(16);
}
~cublas_context()
{
for (auto h : handles)
{
if (h)
cublasDestroy(h);
}
}
cublasHandle_t get_handle (
)
{
int new_device_id;
CHECK_CUDA(cudaGetDevice(&new_device_id));
// make room for more devices if needed
if (new_device_id >= (long)handles.size())
handles.resize(new_device_id+16);
// If we don't have a handle already for this device then make one
if (!handles[new_device_id])
CHECK_CUBLAS(cublasCreate(&handles[new_device_id]));
// Finally, return the handle for the current device
return handles[new_device_id];
}
private:
std::vector<cublasHandle_t> handles;
};
static cublasHandle_t context()
{
thread_local cublas_context c;
return c.get_handle();
}
// -----------------------------------------------------------------------------------
void gemm (
float beta,
tensor& dest,
float alpha,
const tensor& lhs,
bool trans_lhs,
const tensor& rhs,
bool trans_rhs
)
{
// Recall that BLAS uses column major order so to deal with that we flip the
// order of the lhs and rhs arguments.
const auto transa = trans_lhs ? CUBLAS_OP_T : CUBLAS_OP_N;
const auto transb = trans_rhs ? CUBLAS_OP_T : CUBLAS_OP_N;
const int dest_nr = dest.num_samples();
const int dest_nc = dest.size()/dest_nr;
const int lhs_nr = lhs.num_samples();
const int lhs_nc = lhs.size()/lhs_nr;
const int rhs_nr = rhs.num_samples();
const int rhs_nc = rhs.size()/rhs_nr;
if (trans_lhs && trans_rhs)
{
DLIB_ASSERT( dest_nr == lhs_nc &&
dest_nc == rhs_nr &&
lhs_nr == rhs_nc)
}
else if (!trans_lhs && trans_rhs)
{
DLIB_ASSERT( dest_nr == lhs_nr &&
dest_nc == rhs_nr &&
lhs_nc == rhs_nc)
}
else if (trans_lhs && !trans_rhs)
{
DLIB_ASSERT( dest_nr == lhs_nc &&
dest_nc == rhs_nc &&
lhs_nr == rhs_nr)
}
else
{
DLIB_ASSERT( dest_nr == lhs_nr &&
dest_nc == rhs_nc &&
lhs_nc == rhs_nr)
}
const int k = trans_rhs ? rhs_nc : rhs_nr;
CHECK_CUBLAS(cublasSgemm(context(),
transb,
transa,
dest_nc, dest_nr, k,
&alpha,
rhs.device(), rhs_nc,
lhs.device(), lhs_nc,
&beta,
dest.device(),dest_nc));
}
// ------------------------------------------------------------------------------------
}
}
#endif // DLIB_USE_CUDA
#endif // DLIB_DNN_CuBLAS_CPP_
|