File size: 24,588 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 |
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNN_CuDA_H_
#define DLIB_DNN_CuDA_H_
#include "tensor.h"
#include "../geometry/rectangle.h"
#include "../dnn/misc.h"
namespace dlib
{
namespace cuda
{
// ----------------------------------------------------------------------------------------
void set_device (
int dev
);
int get_device (
);
int get_num_devices (
);
std::string get_device_name (
int device
);
void set_current_device_blocking_sync(
);
bool can_access_peer (int device_id, int peer_device_id);
bool can_access_peer (const tensor& device, const tensor& peer_device);
void device_synchronize (int dev);
void device_synchronize (const tensor& dev);
class raii_set_device
{
public:
raii_set_device() = delete;
raii_set_device(const raii_set_device&) = delete;
raii_set_device& operator=(const raii_set_device&) = delete;
raii_set_device(int dev)
{
prev_dev = get_device();
set_device(dev);
}
raii_set_device(const tensor& dev)
{
prev_dev = get_device();
set_device(dev.device_id());
}
void operator() (int dev)
{
set_device(dev);
}
void operator() (const tensor& dev)
{
set_device(dev.device_id());
}
~raii_set_device() noexcept(false)
{
set_device(prev_dev);
}
private:
int prev_dev;
};
#ifdef DLIB_USE_CUDA
class enable_peer_access
{
public:
enable_peer_access() = delete;
enable_peer_access(const enable_peer_access&) = delete;
enable_peer_access& operator=(const enable_peer_access&) = delete;
enable_peer_access(
int device_id,
int peer_device_id
);
enable_peer_access(
const tensor& device,
const tensor& peer_device
) : enable_peer_access(device.device_id(), peer_device.device_id())
{}
~enable_peer_access() noexcept(false);
private:
bool call_disable;
int device_id;
int peer_device_id;
};
// -----------------------------------------------------------------------------------
void inverse_norms (
resizable_tensor& invnorms,
const tensor& data,
const double eps
);
void dot_prods (
resizable_tensor& out,
const tensor& lhs,
const tensor& rhs
);
void dot_prods (
bool add_to,
tensor& out,
const tensor& lhs,
const tensor& rhs
);
void scale_columns (
tensor& out,
const tensor& m,
const tensor& v
);
void scale_rows (
tensor& out,
const tensor& m,
const tensor& v
);
void scale_rows2 (
float beta,
tensor& out,
const tensor& m1,
const tensor& m2,
const tensor& v1,
const tensor& v2
);
void exp (
tensor& dest,
const tensor& src
);
void log (
tensor& dest,
const tensor& src
);
void log10 (
tensor& dest,
const tensor& src
);
// ------------------------------------------------------------------------------------
void set_tensor (
tensor& t,
float value
);
void scale_tensor (
tensor& t,
float value
);
// ------------------------------------------------------------------------------------
void multiply (
bool add_to,
tensor& dest,
const tensor& src1,
const tensor& src2
);
void multiply_conv (
bool add_to,
tensor& dest,
const tensor& src1,
const tensor& src2
);
void multiply_zero_padded (
bool add_to,
tensor& dest,
const tensor& src1,
const tensor& src2
);
void scale_channels (
bool add_to,
tensor& dest,
const tensor& src,
const tensor& scales
);
void add (
tensor& dest,
const tensor& src1,
const tensor& src2
);
// -----------------------------------------------------------------------------------
void affine_transform(
tensor& dest,
const tensor& src,
const float A,
const float B
);
void affine_transform(
tensor& dest,
const tensor& src,
const float A
);
void affine_transform(
tensor& dest,
const tensor& src1,
const tensor& src2,
const float A,
const float B,
const float C
);
void affine_transform(
tensor& dest,
const tensor& src1,
const tensor& src2,
const float A,
const float B
);
void affine_transform(
tensor& dest,
const tensor& src1,
const tensor& src2,
const tensor& src3,
const float A,
const float B,
const float C,
const float D
);
void affine_transform_range(
size_t begin,
size_t end,
tensor& dest,
const tensor& src1,
const tensor& src2,
const tensor& src3,
const float A,
const float B,
const float C
);
void affine_transform(
const rectangle& rect,
tensor& dest,
const tensor& src1,
const tensor& src2,
const tensor& src3,
float A,
float B,
float C
);
// Note that this function isn't in the tt:: namespace because add_scaled() is
// called by cuda::add() so we don't need a tt:: version of add_scaled().
void add_scaled(
tensor& dest,
const float scale,
const tensor& src
);
void add_cv_to_all_columns(
float beta,
tensor& dest,
float alpha,
const tensor& src
);
// -----------------------------------------------------------------------------------
void affine_transform(
tensor& dest,
const tensor& src,
const tensor& A,
const tensor& B
);
// -----------------------------------------------------------------------------------
void affine_transform_conv(
tensor& dest,
const tensor& src,
const tensor& A,
const tensor& B
);
// ----------------------------------------------------------------------------------------
void compute_adam_update (
size_t begin,
size_t end,
tensor& s,
tensor& m,
tensor& v,
const float t,
const float learning_rate,
const float weight_decay,
const float momentum1,
const float momentum2,
const tensor& params,
const tensor& params_grad
);
// -----------------------------------------------------------------------------------
void assign_bias_gradient (
tensor& grad,
const tensor& gradient_input
);
// -----------------------------------------------------------------------------------
void layer_normalize (
const double eps,
resizable_tensor& dest,
resizable_tensor& means,
resizable_tensor& invstds,
const tensor& src,
const tensor& gamma,
const tensor& beta
);
void layer_normalize_gradient (
const double eps,
const tensor& gradient_input,
const tensor& means,
const tensor& invstds,
const tensor& src,
const tensor& gamma,
tensor& src_grad,
tensor& gamma_grad,
tensor& beta_grad
);
// -----------------------------------------------------------------------------------
void threshold (
tensor& data,
float thresh
);
// ----------------------------------------------------------------------------------------
void dot (
const tensor& a,
const tensor& b,
tensor& result,
size_t idx
);
// ----------------------------------------------------------------------------------------
void prelu (
tensor& dest,
const tensor& src,
const tensor& param
);
void prelu_gradient (
tensor& grad,
const tensor& src,
const tensor& gradient_input,
const tensor& param,
tensor& params_grad
);
// ----------------------------------------------------------------------------------------
void leaky_relu (
tensor& dest,
const tensor& src,
const float alpha
);
void leaky_relu_gradient (
tensor& grad,
const tensor& src,
const tensor& gradient_input,
const float alpha
);
// ----------------------------------------------------------------------------------------
void mish (
tensor& dest,
const tensor& src
);
void mish_gradient (
tensor& grad,
const tensor& src,
const tensor& gradient_input
);
// ----------------------------------------------------------------------------------------
void gelu (
tensor& dest,
const tensor& src
);
void gelu_gradient (
tensor& grad,
const tensor& src,
const tensor& gradient_input
);
// ----------------------------------------------------------------------------------------
void resize_bilinear (
tensor& dest,
long dest_row_stride,
long dest_channel_stride,
const tensor& src,
long src_row_stride,
long src_channel_stride
);
void resize_bilinear_gradient (
tensor& grad,
long grad_row_stride,
long grad_channel_stride,
const tensor& gradient_input,
long gradient_input_row_stride,
long gradient_input_channel_stride
);
inline void resize_bilinear (
tensor& dest,
const tensor& src
) { resize_bilinear(dest, dest.nc(), dest.nr()*dest.nc(), src, src.nc(), src.nr()*src.nc()); }
inline void resize_bilinear_gradient (
tensor& grad,
const tensor& gradient_input
) { resize_bilinear_gradient(grad, grad.nc(), grad.nr()*grad.nc(), gradient_input, gradient_input.nc(), gradient_input.nr()*gradient_input.nc()); }
// ----------------------------------------------------------------------------------------
void copy_tensor(
bool add_to,
tensor& dest,
size_t dest_k_offset,
const tensor& src,
size_t src_k_offset,
size_t count_k
);
// ----------------------------------------------------------------------------------------
class compute_loss_binary_log_per_pixel
{
/*!
The point of this class is to compute the loss computed by
loss_binary_log_per_pixel_, but to do so with CUDA.
!*/
public:
compute_loss_binary_log_per_pixel(
)
{
}
template <
typename const_label_iterator
>
void operator() (
const_label_iterator truth,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
) const
{
const auto image_size = subnetwork_output.nr()*subnetwork_output.nc();
const size_t bytes_per_plane = image_size*sizeof(float);
// Allocate a cuda buffer to store all the truth images and also one float
// for the scalar loss output.
buf = device_global_buffer(subnetwork_output.num_samples()*bytes_per_plane + sizeof(float));
cuda_data_ptr<float> loss_buf = static_pointer_cast<float>(buf, 1);
buf = buf+sizeof(float);
// copy the truth data into a cuda buffer.
for (long i = 0; i < subnetwork_output.num_samples(); ++i, ++truth)
{
const matrix<float>& t = *truth;
DLIB_ASSERT(t.nr() == subnetwork_output.nr());
DLIB_ASSERT(t.nc() == subnetwork_output.nc());
memcpy(buf + i*bytes_per_plane, &t(0,0), bytes_per_plane);
}
auto truth_buf = static_pointer_cast<const float>(buf, subnetwork_output.num_samples()*image_size);
do_work(loss_buf, truth_buf, subnetwork_output, gradient, loss);
}
private:
static void do_work(
cuda_data_ptr<float> loss_work_buffer,
cuda_data_ptr<const float> truth_buffer,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
);
mutable cuda_data_void_ptr buf;
};
// ----------------------------------------------------------------------------------------
class compute_loss_multiclass_log_per_pixel
{
/*!
The point of this class is to compute the loss computed by
loss_multiclass_log_per_pixel_, but to do so with CUDA.
!*/
public:
compute_loss_multiclass_log_per_pixel(
)
{
}
template <
typename const_label_iterator
>
void operator() (
const_label_iterator truth,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
) const
{
const auto image_size = subnetwork_output.nr()*subnetwork_output.nc();
const size_t bytes_per_plane = image_size*sizeof(uint16_t);
// Allocate a cuda buffer to store all the truth images and also one float
// for the scalar loss output.
buf = device_global_buffer(subnetwork_output.num_samples()*bytes_per_plane + sizeof(float));
cuda_data_ptr<float> loss_buf = static_pointer_cast<float>(buf, 1);
buf = buf+sizeof(float);
// copy the truth data into a cuda buffer.
for (long i = 0; i < subnetwork_output.num_samples(); ++i, ++truth)
{
const matrix<uint16_t>& t = *truth;
DLIB_ASSERT(t.nr() == subnetwork_output.nr());
DLIB_ASSERT(t.nc() == subnetwork_output.nc());
memcpy(buf + i*bytes_per_plane, &t(0,0), bytes_per_plane);
}
auto truth_buf = static_pointer_cast<const uint16_t>(buf, subnetwork_output.num_samples()*image_size);
do_work(loss_buf, truth_buf, subnetwork_output, gradient, loss);
}
private:
static void do_work(
cuda_data_ptr<float> loss_work_buffer,
cuda_data_ptr<const uint16_t> truth_buffer,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
);
mutable cuda_data_void_ptr buf;
};
// ----------------------------------------------------------------------------------------
class compute_loss_multiclass_log_per_pixel_weighted
{
/*!
The point of this class is to compute the loss computed by
loss_multiclass_log_per_pixel_weighted_, but to do so with CUDA.
!*/
public:
compute_loss_multiclass_log_per_pixel_weighted(
)
{
}
template <
typename const_label_iterator
>
void operator() (
const_label_iterator truth,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
) const
{
const auto image_size = subnetwork_output.nr()*subnetwork_output.nc();
const size_t bytes_per_plane = image_size*sizeof(uint16_t);
const size_t weight_bytes_per_plane = image_size*sizeof(float);
matrix<uint16_t> labels(truth->nr(), truth->nc());
matrix<float> weights(truth->nr(), truth->nc());
// Allocate a cuda buffer to store all the truth images and also one float
// for the scalar loss output.
buf = device_global_buffer(subnetwork_output.num_samples()*(bytes_per_plane + weight_bytes_per_plane) + sizeof(float));
cuda_data_ptr<float> loss_buf = static_pointer_cast<float>(buf, 1);
buf = buf+sizeof(float);
const auto weights_offset = subnetwork_output.num_samples() * bytes_per_plane;
// copy the truth data into a cuda buffer.
for (long i = 0; i < subnetwork_output.num_samples(); ++i, ++truth)
{
const matrix<weighted_label<uint16_t>>& t = *truth;
DLIB_ASSERT(t.nr() == subnetwork_output.nr());
DLIB_ASSERT(t.nc() == subnetwork_output.nc());
for (long r = 0; r < t.nr(); ++r)
{
for (long c = 0; c < t.nc(); ++c)
{
labels(r, c) = t(r, c).label;
weights(r, c) = t(r, c).weight;
}
}
memcpy(buf + i*bytes_per_plane, &labels(0,0), bytes_per_plane);
memcpy(buf + weights_offset + i*weight_bytes_per_plane, &weights(0, 0), weight_bytes_per_plane);
}
auto truth_buf = static_pointer_cast<const uint16_t>(buf, subnetwork_output.num_samples()*image_size);
buf = buf+weights_offset;
auto weights_buf = static_pointer_cast<const float>(buf, subnetwork_output.num_samples()*image_size);
do_work(loss_buf, truth_buf, weights_buf, subnetwork_output, gradient, loss);
}
private:
static void do_work(
cuda_data_ptr<float> loss_work_buffer,
cuda_data_ptr<const uint16_t> truth_buffer,
cuda_data_ptr<const float> weights_buffer,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
);
mutable cuda_data_void_ptr buf;
};
// ----------------------------------------------------------------------------------------
class compute_loss_mean_squared_per_channel_and_pixel
{
/*!
The point of this class is to compute the loss computed by
loss_mean_squared_per_channel_and_pixel_, but to do so with CUDA.
!*/
public:
compute_loss_mean_squared_per_channel_and_pixel(
)
{
}
template <
typename const_label_iterator
>
void operator() (
const_label_iterator truth,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
) const
{
const auto image_size = subnetwork_output.nr()*subnetwork_output.nc()*subnetwork_output.k();
const size_t bytes_per_image = image_size*sizeof(float);
// Allocate a cuda buffer to store all the truth images and also one float
// for the scalar loss output.
buf = device_global_buffer(subnetwork_output.num_samples()*bytes_per_image + sizeof(float));
cuda_data_ptr<float> loss_buf = static_pointer_cast<float>(buf, 1);
buf = buf+sizeof(float);
const size_t bytes_per_plane = subnetwork_output.nr()*subnetwork_output.nc()*sizeof(float);
// copy the truth data into a cuda buffer.
for (long i = 0; i < subnetwork_output.num_samples(); ++i, ++truth)
{
const auto& t = *truth;
DLIB_ASSERT(static_cast<long>(t.size()) == subnetwork_output.k());
for (size_t j = 0; j < t.size(); ++j) {
DLIB_ASSERT(t[j].nr() == subnetwork_output.nr());
DLIB_ASSERT(t[j].nc() == subnetwork_output.nc());
memcpy(buf + i*bytes_per_image + j*bytes_per_plane, &t[j](0,0), bytes_per_plane);
}
}
auto truth_buf = static_pointer_cast<const float>(buf, subnetwork_output.num_samples()*image_size);
do_work(loss_buf, truth_buf, subnetwork_output, gradient, loss);
}
private:
static void do_work(
cuda_data_ptr<float> loss_work_buffer,
cuda_data_ptr<const float> truth_buffer,
const tensor& subnetwork_output,
tensor& gradient,
double& loss
);
mutable cuda_data_void_ptr buf;
};
// ------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------
#else // if DLIB_USE_CUDA NOT DEFINED
inline void set_device (
int id
)
{
DLIB_CASSERT(id == 0, "dlib::cuda::set_device(id) called with an invalid device id.");
}
inline int get_device (
){ return 0; }
inline int get_num_devices (
) { return 1; }
inline std::string get_device_name (
int device
)
{
DLIB_CASSERT(device == 0, "dlib::cuda::set_device(id) called with an invalid device id.");
return "CUDA_DISABLED";
}
inline void set_current_device_blocking_sync(
) {}
inline bool can_access_peer (int , int )
{ return false; }
inline bool can_access_peer (const tensor& , const tensor& )
{ return false; }
inline void device_synchronize (int ){}
inline void device_synchronize (const tensor& ){}
class enable_peer_access
{
public:
enable_peer_access() = delete;
enable_peer_access(const enable_peer_access&) = delete;
enable_peer_access& operator=(const enable_peer_access&) = delete;
enable_peer_access( int, int ){}
enable_peer_access( const tensor&, const tensor& ) {}
};
#endif // DLIB_USE_CUDA
}
}
#endif // DLIB_DNN_CuDA_H_
|