File size: 139,537 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 |
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNn_CORE_H_
#define DLIB_DNn_CORE_H_
#include "core_abstract.h"
#include "../cuda/tensor.h"
#include <iterator>
#include <memory>
#include <sstream>
#include <type_traits>
#include "../statistics.h"
#include "../rand.h"
#include "../algs.h"
#include <utility>
#include <tuple>
#include <cmath>
#include <vector>
#include "../cuda/tensor_tools.h"
#include <type_traits>
#include "../metaprogramming.h"
#ifdef _MSC_VER
// Tell Visual Studio not to recursively inline functions very much because otherwise it
// takes hours to compile the DNN code sometimes. It's crazy. Hopefully we can remove
// this some day when the visual studio compiler is more efficient.
#pragma inline_depth(2)
#endif
namespace dlib
{
// ----------------------------------------------------------------------------------------
namespace impl
{
template <typename T, typename int_<decltype(&T::get_learning_rate_multiplier)>::type = 0>
double get_learning_rate_multiplier (
const T& obj,
special_
) { return obj.get_learning_rate_multiplier(); }
template <typename T>
double get_learning_rate_multiplier ( const T& , general_) { return 1; }
}
template <typename T>
double get_learning_rate_multiplier(const T& obj) { return impl::get_learning_rate_multiplier(obj, special_()); }
namespace impl
{
template <typename T, typename int_<decltype(&T::set_learning_rate_multiplier)>::type = 0>
void set_learning_rate_multiplier (
T& obj,
special_,
double learning_rate_multiplier
) { obj.set_learning_rate_multiplier(learning_rate_multiplier); }
template <typename T>
void set_learning_rate_multiplier (T& , general_, double) { }
}
template <typename T>
void set_learning_rate_multiplier(
T& obj,
double learning_rate_multiplier
)
{
DLIB_CASSERT(learning_rate_multiplier >= 0);
impl::set_learning_rate_multiplier(obj, special_(), learning_rate_multiplier);
}
// ----------------------------------------------------------------------------------------
namespace impl
{
template <typename T, typename int_<decltype(&T::get_bias_learning_rate_multiplier)>::type = 0>
double get_bias_learning_rate_multiplier (
const T& obj,
special_
) { return obj.get_bias_learning_rate_multiplier(); }
template <typename T>
double get_bias_learning_rate_multiplier ( const T& , general_) { return 1; }
}
template <typename T>
double get_bias_learning_rate_multiplier(const T& obj) { return impl::get_bias_learning_rate_multiplier(obj, special_()); }
namespace impl
{
template <typename T, typename int_<decltype(&T::set_bias_learning_rate_multiplier)>::type = 0>
void set_bias_learning_rate_multiplier (
T& obj,
special_,
double bias_learning_rate_multiplier
) { obj.set_bias_learning_rate_multiplier(bias_learning_rate_multiplier); }
template <typename T>
void set_bias_learning_rate_multiplier (T& , general_, double) { }
}
template <typename T>
void set_bias_learning_rate_multiplier(
T& obj,
double bias_learning_rate_multiplier
)
{
DLIB_CASSERT(bias_learning_rate_multiplier >= 0);
impl::set_bias_learning_rate_multiplier(obj, special_(), bias_learning_rate_multiplier);
}
// ----------------------------------------------------------------------------------------
namespace impl
{
template <typename T, typename int_<decltype(&T::get_weight_decay_multiplier)>::type = 0>
double get_weight_decay_multiplier (
const T& obj,
special_
) { return obj.get_weight_decay_multiplier(); }
template <typename T>
double get_weight_decay_multiplier ( const T& , general_) { return 1; }
}
template <typename T>
double get_weight_decay_multiplier(const T& obj) { return impl::get_weight_decay_multiplier(obj, special_()); }
namespace impl
{
template <typename T, typename int_<decltype(&T::set_weight_decay_multiplier)>::type = 0>
void set_weight_decay_multiplier (
T& obj,
special_,
double weight_decay_multiplier
) { obj.set_weight_decay_multiplier(weight_decay_multiplier); }
template <typename T>
void set_weight_decay_multiplier (T& , general_, double) { }
}
template <typename T>
void set_weight_decay_multiplier(
T& obj,
double weight_decay_multiplier
)
{
DLIB_CASSERT(weight_decay_multiplier >= 0);
impl::set_weight_decay_multiplier(obj, special_(), weight_decay_multiplier);
}
// ----------------------------------------------------------------------------------------
namespace impl
{
template <typename T, typename int_<decltype(&T::get_bias_weight_decay_multiplier)>::type = 0>
double get_bias_weight_decay_multiplier (
const T& obj,
special_
) { return obj.get_bias_weight_decay_multiplier(); }
template <typename T>
double get_bias_weight_decay_multiplier ( const T& , general_) { return 1; }
}
template <typename T>
double get_bias_weight_decay_multiplier(const T& obj) { return impl::get_bias_weight_decay_multiplier(obj, special_()); }
namespace impl
{
template <typename T, typename int_<decltype(&T::set_bias_weight_decay_multiplier)>::type = 0>
void set_bias_weight_decay_multiplier (
T& obj,
special_,
double bias_weight_decay_multiplier
) { obj.set_bias_weight_decay_multiplier(bias_weight_decay_multiplier); }
template <typename T>
void set_bias_weight_decay_multiplier (T& , general_, double) { }
}
template <typename T>
void set_bias_weight_decay_multiplier(
T& obj,
double bias_weight_decay_multiplier
)
{
DLIB_CASSERT(bias_weight_decay_multiplier >= 0);
impl::set_bias_weight_decay_multiplier(obj, special_(), bias_weight_decay_multiplier);
}
// ----------------------------------------------------------------------------------------
namespace impl
{
template <typename T, typename int_<decltype(&T::disable_bias)>::type = 0>
void disable_bias(
T& obj,
special_
) { obj.disable_bias(); }
template <typename T>
void disable_bias( const T& , general_) { }
}
template <typename T>
void disable_bias(
T& obj
)
{
impl::disable_bias(obj, special_());
}
// ----------------------------------------------------------------------------------------
namespace impl
{
// The reason we return an int for this version rather than doing the more straight forward thing (like we do above) is to avoid a bug in visual studio 2015.
template <typename T>
auto call_clean_method_if_exists (
T& obj,
special_
) -> typename int_<decltype(&T::clean)>::type { obj.clean(); return 0; }
template <typename T>
void call_clean_method_if_exists (T& , general_) {}
}
template <typename T>
void call_clean_method_if_exists(T& obj) { impl::call_clean_method_if_exists(obj, special_()); }
/*!
ensures
- calls obj.clean() if obj has a .clean() method.
!*/
// ----------------------------------------------------------------------------------------
namespace impl
{
class repeat_input_layer
{
/*!
None of the declarations in this object are really used. The only reason it
exists is to allow the repeat object to use a special input layer in its
internal networks which will cause add_tag_layer objects that happen to be
right at the input to not create copies of their input tensors. So
introducing the repeat_input_layer object allows us to optimize the
implementation of add_tag_layer for a special case that arises when it's
used in the context of the repeat layer.
!*/
public:
typedef int input_type;
template <typename forward_iterator>
void to_tensor (
forward_iterator ,
forward_iterator ,
resizable_tensor&
) const
{
}
friend void serialize(const repeat_input_layer&, std::ostream&){}
friend void deserialize(repeat_input_layer&, std::istream&){}
friend std::ostream& operator<<(std::ostream& out, const repeat_input_layer&) { return out; }
};
inline std::string tensor_to_str (
const tensor& t,
int& min_length
)
{
if (t.size() == 0)
return "";
std::ostringstream sout;
sout << "output size=(num:"<< t.num_samples() << ", ";
sout << "k:" << t.k() << ",";
while (sout.tellp() < 28) sout << " ";
sout << "nr:" << t.nr() << ",";
while (sout.tellp() < 28+8) sout << " ";
sout << "nc:" << t.nc() << ")";
while (sout.tellp() < min_length) sout << " ";
min_length = sout.tellp();
sout << "\t";
return sout.str();
}
}
// ----------------------------------------------------------------------------------------
// Tell us if T is one of the special layer types (i.e. add_layer, repeat, add_tag_layer, or
// add_skip_layer).
template <typename T> struct is_nonloss_layer_type : std::false_type {};
// Tell us if T is an instance of add_loss_layer.
template <typename T> struct is_loss_layer_type : std::false_type {};
// Tell us if T is an instance of add_layer
template <typename T> struct is_add_layer : std::false_type {};
namespace impl
{
template <size_t... indices, typename Tuple>
auto tuple_subset(
const Tuple& item,
compile_time_integer_list<indices...>
) -> decltype(std::make_tuple(std::get<indices>(item)...))
{
return std::make_tuple(std::get<indices>(item)...);
}
template <typename Head, typename... Tail>
std::tuple<Tail...> basic_tuple_tail(
const std::tuple<Head, Tail...>& item
)
{
return tuple_subset(item, typename make_compile_time_integer_range<sizeof...(Tail)>::type());
}
template <typename T>
std::tuple<T> tuple_flatten(const T& t)
{
return std::make_tuple(t);
}
template <typename... T>
auto tuple_flatten(
const std::tuple<T...>& item
) -> decltype(tuple_flatten(item, typename make_compile_time_integer_range<sizeof...(T)>::type()))
{
return tuple_flatten(item, typename make_compile_time_integer_range<sizeof...(T)>::type());
}
template <size_t... indices, typename... T>
auto tuple_flatten(
const std::tuple<T...>& item,
compile_time_integer_list<indices...>
) -> decltype(std::tuple_cat(tuple_flatten(std::get<indices-1>(item))...))
{
return std::tuple_cat(tuple_flatten(std::get<indices-1>(item))...);
}
template <typename T>
struct tuple_head_helper
{
typedef T type;
static const type& get(const T& item)
{
return item;
}
};
template <typename T, typename... U>
struct tuple_head_helper<std::tuple<T, U...>>
{
typedef typename tuple_head_helper<T>::type type;
static const type& get(const std::tuple<T,U...>& item)
{
return tuple_head_helper<T>::get(std::get<0>(item));
}
};
template <typename T> struct alwaysbool { typedef bool type; };
// one more structure for VS 2015 UP3 support workaround
template <typename T> struct alwaysbool2 { typedef bool type; };
resizable_tensor& rt();
// The significance of a layer's backward method requiring forward's outputs is
// that such as layer can't have an in-place layer stacked on top of it because
// in-place layers overwrite the output of the layer they sit on top of.
template <typename layer_type, typename SUBNET>
constexpr auto backward_requires_forward_output(
layer_type& layer,
SUBNET& sub
) -> typename alwaysbool<decltype(layer.backward(rt(),rt(),sub,rt()))>::type
{
return true;
}
template <typename layer_type, typename SUBNET>
constexpr auto backward_requires_forward_output(
layer_type& layer,
SUBNET& sub
) -> typename alwaysbool<decltype(layer.backward(rt(),sub,rt()))>::type
{
return false;
}
template <typename layer_type, typename SUBNET>
constexpr auto backward_requires_forward_output(
layer_type& layer,
SUBNET& sub
) -> typename alwaysbool<decltype(layer.backward_inplace(rt(),rt(),sub.get_gradient_input(),rt()))>::type
{
return true;
}
template <typename layer_type, typename SUBNET>
constexpr auto backward_requires_forward_output(
layer_type& layer,
SUBNET& sub
) -> typename alwaysbool<decltype(layer.backward_inplace(rt(),sub.get_gradient_input(),rt()))>::type
{
return false;
}
template <typename layer_type, typename SUBNET>
constexpr auto has_inplace_backward(
layer_type& layer,
SUBNET& sub
) -> typename alwaysbool2<decltype(layer.backward(rt(),rt(),sub,rt()))>::type
{
return false;
}
template <typename layer_type, typename SUBNET>
constexpr auto has_inplace_backward(
layer_type& layer,
SUBNET& sub
) -> typename alwaysbool2<decltype(layer.backward(rt(),sub,rt()))>::type
{
return false;
}
template <typename layer_type, typename SUBNET>
constexpr auto has_inplace_backward(
layer_type& layer,
SUBNET& sub
) -> typename alwaysbool2<decltype(layer.backward_inplace(rt(),rt(),sub.get_gradient_input(),rt()))>::type
{
return true;
}
template <typename layer_type, typename SUBNET>
constexpr auto has_inplace_backward(
layer_type& layer,
SUBNET& sub
) -> typename alwaysbool2<decltype(layer.backward_inplace(rt(),sub.get_gradient_input(),rt()))>::type
{
return true;
}
template <typename layer_type, typename SUBNET>
constexpr auto is_inplace_layer(
layer_type& layer,
const SUBNET& sub
) -> typename alwaysbool2<decltype(layer.forward(sub,rt()))>::type
{
return false;
}
template <typename layer_type, typename SUBNET>
constexpr auto is_inplace_layer(
layer_type& layer,
const SUBNET& sub
) -> typename alwaysbool<decltype(layer.forward_inplace(sub.get_output(),rt()))>::type
{
return true;
}
template <typename layer_type, typename SUBNET>
auto call_layer_backward(
layer_type& layer,
const tensor& computed_output,
const tensor& gradient_input,
SUBNET& sub,
tensor& params_grad
) -> decltype(layer.backward(computed_output,gradient_input,sub,params_grad))
{
layer.backward(computed_output,gradient_input,sub,params_grad);
}
template <typename layer_type, typename SUBNET>
auto call_layer_backward(
layer_type& layer,
const tensor& ,
const tensor& gradient_input,
SUBNET& sub,
tensor& params_grad
) -> decltype(layer.backward(gradient_input,sub,params_grad))
{
layer.backward(gradient_input,sub,params_grad);
}
template <typename layer_type, typename SUBNET>
auto call_layer_backward(
layer_type& layer,
const tensor& computed_output,
const tensor& gradient_input,
SUBNET& sub,
tensor& params_grad
) -> decltype(layer.backward_inplace(computed_output,gradient_input,sub.get_gradient_input(),params_grad))
{
layer.backward_inplace(computed_output,gradient_input,sub.get_gradient_input(),params_grad);
}
template <typename layer_type, typename SUBNET>
auto call_layer_backward(
layer_type& layer,
const tensor& ,
const tensor& gradient_input,
SUBNET& sub,
tensor& params_grad
) -> decltype(layer.backward_inplace(gradient_input,sub.get_gradient_input(),params_grad))
{
layer.backward_inplace(gradient_input,sub.get_gradient_input(),params_grad);
}
template <typename layer_type, typename SUBNET>
auto call_layer_forward(
layer_type& layer,
const SUBNET& sub,
tensor& /*data_output*/
) -> decltype(layer.forward(sub,rt()))
{
// This overload of call_layer_forward() is here because this template
// naturally gets instantiated but only on code paths that never get executed.
// So rather than writing a bunch of hard to read template magic around call
// sites we just have this overload that doesn't do anything (and an assert to
// make sure that's the case).
DLIB_CASSERT(false, "This should never happen");
}
template <typename layer_type, typename SUBNET>
auto call_layer_forward(
layer_type& layer,
const SUBNET& sub,
resizable_tensor& data_output
) -> decltype(layer.forward(sub,data_output))
{
layer.forward(sub,data_output);
}
template <typename layer_type, typename SUBNET>
auto call_layer_forward(
layer_type& layer,
const SUBNET& sub,
tensor& data_output
) -> decltype(layer.forward_inplace(sub.get_output(),data_output))
{
layer.forward_inplace(sub.get_output(),data_output);
}
template <typename layer_type, typename SUBNET>
auto call_layer_forward(
layer_type& layer,
const SUBNET& sub,
resizable_tensor& data_output
) -> decltype(layer.forward_inplace(sub.get_output(),data_output))
{
if (!have_same_dimensions(data_output, sub.get_output()))
data_output.copy_size(sub.get_output());
layer.forward_inplace(sub.get_output(),static_cast<tensor&>(data_output));
}
} // end namespace impl
template <typename... T>
typename impl::tuple_head_helper<std::tuple<T...>>::type tuple_head (
const std::tuple<T...>& item
)
{
return impl::tuple_head_helper<std::tuple<T...>>::get(item);
}
template <typename... T>
auto tuple_tail(
const std::tuple<T...>& item
) -> decltype(impl::basic_tuple_tail(impl::tuple_flatten(item)))
{
return impl::basic_tuple_tail(impl::tuple_flatten(item));
}
inline std::tuple<> tuple_tail(
const std::tuple<>& item
)
{
return item;
}
// ----------------------------------------------------------------------------------------
template <typename T>
class sstack
{
public:
typedef T value_type;
sstack() = delete;
sstack (
T* data_,
size_t s
) : data(data_), mysize(s) {}
const T& top() const
{
DLIB_CASSERT(size() != 0, "You can't call top() on an empty stack");
return *data;
}
T& top()
{
DLIB_CASSERT(size() != 0, "You can't call top() on an empty stack");
return *data;
}
size_t size() const { return mysize; }
sstack pop(size_t num=1)
{
DLIB_CASSERT(num <= size(), "You can't pop more things from the stack than it has in it.");
return sstack(data+num, mysize-num);
}
private:
T* data;
size_t mysize;
};
template <typename T>
sstack<T> make_sstack(std::vector<T>& item)
{
return sstack<T>(item.data(), item.size());
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
namespace dimpl
{
template <typename T, bool is_first = true, typename enabled=void>
class subnet_wrapper
{
/*!
WHAT THIS OBJECT REPRESENTS
This is a tool that makes an add_layer or add_loss_layer object
expose only the part of its interface defined by the SUBNET
type in layers_abstract.h. This way, when we pass subnetwork
objects to the layer callbacks those callbacks won't be able to
interact with the subnetworks in a way other than specified
by the SUBNET interface spec.
We also allow the top layer of a subnet_wrapper stack to call the
private_get_output() and private_get_gradient_input() functions. This
way, layers that have had their output/gradient overwritten by in-place
layers can only be accessed from the in-place layers that sit directly
on top of them since those in-place layers are the only layers that
know how to interact with them properly.
!*/
public:
subnet_wrapper(const subnet_wrapper&) = delete;
subnet_wrapper& operator=(const subnet_wrapper&) = delete;
subnet_wrapper(T& l_, unsigned int sef) : l(l_),_sample_expansion_factor(sef) {}
// Not much here because in this case T is one of the input layer types
// that doesn't have anything in it.
typedef T layer_details_type;
const layer_details_type& layer_details() const { return l; }
unsigned int sample_expansion_factor() const { return _sample_expansion_factor; }
private:
T& l;
unsigned int _sample_expansion_factor;
};
template <typename T>
class subnet_wrapper<T,true, typename std::enable_if<is_nonloss_layer_type<T>::value>::type>
{
public:
subnet_wrapper(const subnet_wrapper&) = delete;
subnet_wrapper& operator=(const subnet_wrapper&) = delete;
typedef T wrapped_type;
const static size_t num_computational_layers = T::num_computational_layers;
const static size_t num_layers = T::num_layers;
typedef typename T::layer_details_type layer_details_type;
subnet_wrapper(T& l_, unsigned int = 0) : l(l_),subnetwork(l.subnet(), l.sample_expansion_factor()) {}
const tensor& get_output() const { return l.private_get_output(); }
tensor& get_gradient_input() { return l.private_get_gradient_input(); }
const layer_details_type& layer_details() const { return l.layer_details(); }
const subnet_wrapper<typename T::subnet_type,false>& subnet() const { return subnetwork; }
subnet_wrapper<typename T::subnet_type,false>& subnet() { return subnetwork; }
unsigned int sample_expansion_factor() const { return l.sample_expansion_factor(); }
private:
T& l;
subnet_wrapper<typename T::subnet_type,false> subnetwork;
};
template <typename T>
class subnet_wrapper<T,false, typename std::enable_if<is_nonloss_layer_type<T>::value>::type>
{
public:
subnet_wrapper(const subnet_wrapper&) = delete;
subnet_wrapper& operator=(const subnet_wrapper&) = delete;
typedef T wrapped_type;
const static size_t num_computational_layers = T::num_computational_layers;
const static size_t num_layers = T::num_layers;
typedef typename T::layer_details_type layer_details_type;
subnet_wrapper(T& l_, unsigned int = 0) : l(l_),subnetwork(l.subnet(), l.sample_expansion_factor()) {}
const tensor& get_output() const { return l.get_output(); }
tensor& get_gradient_input() { return l.get_gradient_input(); }
const layer_details_type& layer_details() const { return l.layer_details(); }
const subnet_wrapper<typename T::subnet_type,false>& subnet() const { return subnetwork; }
subnet_wrapper<typename T::subnet_type,false>& subnet() { return subnetwork; }
unsigned int sample_expansion_factor() const { return l.sample_expansion_factor(); }
private:
T& l;
subnet_wrapper<typename T::subnet_type,false> subnetwork;
};
}
// ----------------------------------------------------------------------------------------
template <typename LAYER_DETAILS, typename SUBNET, typename enabled = void>
class add_layer;
template <typename LAYER_DETAILS, typename SUBNET, typename enabled>
void serialize(const add_layer<LAYER_DETAILS,SUBNET,enabled>& item, std::ostream& out);
template <typename LAYER_DETAILS, typename SUBNET, typename enabled>
void deserialize(add_layer<LAYER_DETAILS,SUBNET,enabled>& item, std::istream& in);
template <typename T, typename U>
struct is_nonloss_layer_type<add_layer<T,U>> : std::true_type {};
template <typename LAYER_DETAILS, typename SUBNET>
class add_layer<LAYER_DETAILS,SUBNET,
typename std::enable_if<is_nonloss_layer_type<SUBNET>::value>::type>
{
public:
typedef LAYER_DETAILS layer_details_type;
typedef SUBNET subnet_type;
typedef typename subnet_type::input_type input_type;
const static size_t num_layers = subnet_type::num_layers + 1;
const static size_t num_computational_layers = subnet_type::num_computational_layers + 1;
add_layer(
):
subnetwork(new subnet_type()),
this_layer_setup_called(false),
gradient_input_is_stale(true),
get_output_and_gradient_input_disabled(false)
{
if (this_layer_operates_inplace())
subnetwork->disable_output_and_gradient_getters();
}
add_layer(const add_layer& item)
{
details = item.details;
subnetwork.reset(new subnet_type(*item.subnetwork));
this_layer_setup_called = item.this_layer_setup_called;
gradient_input_is_stale = item.gradient_input_is_stale;
get_output_and_gradient_input_disabled = item.get_output_and_gradient_input_disabled;
x_grad = item.x_grad;
cached_output = item.cached_output;
params_grad = item.params_grad;
temp_tensor = item.temp_tensor;
}
add_layer& operator=(const add_layer& item) { add_layer(item).swap(*this); return *this;}
add_layer(add_layer&& item) : add_layer() { swap(item); }
add_layer& operator=(add_layer&& item) { swap(item); return *this; }
template <typename T, typename U, typename E>
friend class add_layer;
template <typename T, bool is_first, typename E>
friend class dimpl::subnet_wrapper;
template <unsigned long T, typename U, typename E>
friend class add_tag_layer;
template <template<typename> class T, typename U>
friend class add_skip_layer;
template <size_t N, template<typename> class L, typename S>
friend class repeat;
// Allow copying networks from one to another as long as their corresponding
// layers can be constructed from each other.
template <typename T, typename U, typename E>
add_layer(
const add_layer<T,U,E>& item
) :
details(item.layer_details()),
subnetwork(new subnet_type(item.subnet())),
this_layer_setup_called(item.this_layer_setup_called),
gradient_input_is_stale(item.gradient_input_is_stale),
get_output_and_gradient_input_disabled(item.get_output_and_gradient_input_disabled),
x_grad(item.x_grad),
cached_output(item.cached_output)
{
if (this_layer_operates_inplace())
subnetwork->disable_output_and_gradient_getters();
}
template <typename ...T>
add_layer(
const LAYER_DETAILS& layer_det,
T&& ...args
) :
details(layer_det),
subnetwork(new subnet_type(std::forward<T>(args)...)),
this_layer_setup_called(false),
gradient_input_is_stale(true),
get_output_and_gradient_input_disabled(false)
{
if (this_layer_operates_inplace())
subnetwork->disable_output_and_gradient_getters();
}
template <typename T, typename ...U>
struct disable_forwarding_constr
{
const static bool value = std::is_constructible<LAYER_DETAILS,T>::value;
};
template <typename ...T, typename ...U>
struct disable_forwarding_constr<std::tuple<T...>,U...>
{
const static bool value = disable_forwarding_constr<typename std::remove_reference<T>::type...>::value;
};
template <typename T, typename ...U>
struct disable_forwarding_constr<std::tuple<T>,U...>
{
const static bool value = disable_forwarding_constr<typename std::remove_reference<T>::type>::value;
};
template <typename ...U>
struct disable_forwarding_constr<std::tuple<>,U...>
{
const static bool value = true;
};
template <typename ...T>
struct disable_forwarding_constr<add_layer<T...>>
{
const static bool value = true;
};
template <
typename ...T,
typename = typename std::enable_if<!disable_forwarding_constr<typename std::remove_reference<T>::type...>::value>::type
>
add_layer(
T&& ...args
) :
subnetwork(new subnet_type(std::forward<T>(args)...)),
this_layer_setup_called(false),
gradient_input_is_stale(true),
get_output_and_gradient_input_disabled(false)
{
if (this_layer_operates_inplace())
subnetwork->disable_output_and_gradient_getters();
}
template <typename ...T>
add_layer(
LAYER_DETAILS&& layer_det,
T&& ...args
) :
details(std::move(layer_det)),
subnetwork(new subnet_type(std::forward<T>(args)...)),
this_layer_setup_called(false),
gradient_input_is_stale(true),
get_output_and_gradient_input_disabled(false)
{
if (this_layer_operates_inplace())
subnetwork->disable_output_and_gradient_getters();
}
template <typename ...T, typename LD, typename ...U>
add_layer(
const std::tuple<LD,U...>& layer_det,
T&& ...args
) :
details(tuple_head(layer_det)),
subnetwork(new subnet_type(tuple_tail(layer_det),std::forward<T>(args)...)),
this_layer_setup_called(false),
gradient_input_is_stale(true),
get_output_and_gradient_input_disabled(false)
{
if (this_layer_operates_inplace())
subnetwork->disable_output_and_gradient_getters();
}
template <typename ...T, typename LD, typename ...U>
add_layer(
std::tuple<>,
const std::tuple<LD,U...>& layer_det,
T&& ...args
) : add_layer(layer_det,args...) { }
add_layer (
std::tuple<>
) : add_layer() {}
template <typename ...T>
add_layer(
std::tuple<>,
LAYER_DETAILS&& layer_det,
T&& ...args
) : add_layer(layer_det, args...) { }
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
subnetwork->to_tensor(ibegin,iend,data);
}
template <typename forward_iterator>
const tensor& operator() (
forward_iterator ibegin,
forward_iterator iend
)
{
to_tensor(ibegin,iend,temp_tensor);
return forward(temp_tensor);
}
const tensor& operator() (const input_type& x)
{
return (*this)(&x, &x+1);
}
const tensor& forward(const tensor& x)
{
subnetwork->forward(x);
const dimpl::subnet_wrapper<subnet_type> wsub(*subnetwork);
if (!this_layer_setup_called)
{
details.setup(wsub);
this_layer_setup_called = true;
}
if (this_layer_operates_inplace())
impl::call_layer_forward(details, wsub, private_get_output());
else
impl::call_layer_forward(details, wsub, cached_output);
gradient_input_is_stale = true;
return private_get_output();
}
private:
tensor& private_get_output() const
{
if (const_cast<add_layer&>(*this).this_layer_operates_inplace())
return subnetwork->private_get_output();
else
return const_cast<resizable_tensor&>(cached_output);
}
tensor& private_get_gradient_input()
{
if (this_layer_operates_inplace())
{
return subnetwork->private_get_gradient_input();
}
else
{
if (gradient_input_is_stale)
{
gradient_input_is_stale = false;
x_grad.copy_size(private_get_output());
x_grad = 0;
}
return x_grad;
}
}
void disable_output_and_gradient_getters (
) { get_output_and_gradient_input_disabled = true; }
public:
const tensor& get_output() const
{
if (get_output_and_gradient_input_disabled)
throw dlib::error("Accessing this layer's get_output() is disabled because an in-place layer has been stacked on top of it.");
return private_get_output();
}
tensor& get_gradient_input()
{
if (get_output_and_gradient_input_disabled)
throw dlib::error("Accessing this layer's get_gradient_input() is disabled because an in-place layer has been stacked on top of it.");
return private_get_gradient_input();
}
const tensor& get_final_data_gradient(
) const { return subnetwork->get_final_data_gradient(); }
void back_propagate_error(const tensor& x)
{
back_propagate_error(x, private_get_gradient_input());
}
void back_propagate_error(const tensor& x, const tensor& gradient_input)
{
dimpl::subnet_wrapper<subnet_type> wsub(*subnetwork);
params_grad.copy_size(details.get_layer_params());
impl::call_layer_backward(details, private_get_output(),
gradient_input, wsub, static_cast<tensor&>(params_grad));
subnetwork->back_propagate_error(x);
// zero out get_gradient_input()
gradient_input_is_stale = true;
}
template <typename solver_type>
void update_parameters(sstack<solver_type> solvers, double learning_rate)
{
DLIB_CASSERT(solvers.size()>=num_computational_layers);
// Don't try to adjust the parameters if this layer doesn't have any or the
// learning rate is disabled for this layer.
if (params_grad.size() != 0 && get_learning_rate_multiplier(details) != 0)
{
const tensor& step = solvers.top()(learning_rate, details, static_cast<const tensor&>(params_grad));
tt::add(details.get_layer_params(), details.get_layer_params(), step);
}
subnetwork->update_parameters(solvers.pop(), learning_rate);
}
template <typename solver_type>
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
{
update_parameters(make_sstack(solvers), learning_rate);
}
const tensor& get_parameter_gradient(
) const { return params_grad; }
tensor& get_parameter_gradient (
) { return params_grad; }
const subnet_type& subnet() const { return *subnetwork; }
subnet_type& subnet() { return *subnetwork; }
const layer_details_type& layer_details() const { return details; }
layer_details_type& layer_details() { return details; }
unsigned int sample_expansion_factor() const { return subnet().sample_expansion_factor(); }
void clean()
{
x_grad.clear();
cached_output.clear();
params_grad.clear();
temp_tensor.clear();
gradient_input_is_stale = true;
subnetwork->clean();
call_clean_method_if_exists(details);
}
friend void serialize(const add_layer& item, std::ostream& out)
{
int version = 2;
serialize(version, out);
serialize(*item.subnetwork, out);
serialize(item.details, out);
serialize(item.this_layer_setup_called, out);
serialize(item.gradient_input_is_stale, out);
serialize(item.get_output_and_gradient_input_disabled, out);
serialize(item.x_grad, out);
serialize(item.cached_output, out);
serialize(item.params_grad, out);
}
friend void deserialize(add_layer& item, std::istream& in)
{
int version = 0;
deserialize(version, in);
if (!(1 <= version && version <= 2))
throw serialization_error("Unexpected version found while deserializing dlib::add_layer.");
deserialize(*item.subnetwork, in);
deserialize(item.details, in);
deserialize(item.this_layer_setup_called, in);
deserialize(item.gradient_input_is_stale, in);
deserialize(item.get_output_and_gradient_input_disabled, in);
deserialize(item.x_grad, in);
deserialize(item.cached_output, in);
if (version == 2)
deserialize(item.params_grad, in);
}
friend std::ostream& operator<< (std::ostream& out, const add_layer& item)
{
int min_length = 0;
item.print(out, 0, min_length);
return out;
}
void print (std::ostream& out, unsigned long idx, int& min_length) const
{
out << "layer<" << idx << ">\t" << impl::tensor_to_str(private_get_output(), min_length) << layer_details() << "\n";
subnet().print(out, idx+1, min_length);
}
private:
bool this_layer_operates_inplace(
)
{
// This layer can run in-place if it's an in-place capable layer and also if
// the layer it's on top of doesn't need its own output tensor (since in-place
// layers overwrite that tensor)
return impl::is_inplace_layer(details, *subnetwork) && !subnetwork->this_layer_requires_forward_output();
}
bool this_layer_requires_forward_output(
)
{
return impl::backward_requires_forward_output(details, *subnetwork);
}
void swap(add_layer& item)
{
std::swap(subnetwork,item.subnetwork);
std::swap(details, item.details);
std::swap(this_layer_setup_called, item.this_layer_setup_called);
std::swap(gradient_input_is_stale, item.gradient_input_is_stale);
std::swap(get_output_and_gradient_input_disabled, item.get_output_and_gradient_input_disabled);
std::swap(x_grad, item.x_grad);
std::swap(cached_output, item.cached_output);
std::swap(params_grad, item.params_grad);
}
LAYER_DETAILS details;
std::unique_ptr<subnet_type> subnetwork;
bool this_layer_setup_called;
bool gradient_input_is_stale;
bool get_output_and_gradient_input_disabled;
// Note that if this_layer_operates_inplace()==true then x_grad and cached_output
// are not used at all. Instead, this layer uses these variables from the lower
// layer.
resizable_tensor x_grad;
resizable_tensor cached_output;
resizable_tensor params_grad;
// temp_tensor doesn't logically contribute to the state of this object.
// It is here only to prevent it from being reallocated over and over.
resizable_tensor temp_tensor;
};
template <typename T, typename U, typename E>
struct is_add_layer<add_layer<T,U,E>> : std::true_type {};
template <typename T, typename U, typename E>
struct is_add_layer<const add_layer<T,U,E>> : std::true_type {};
template <typename T, typename U, typename E>
struct is_add_layer<add_layer<T,U,E>&> : std::true_type {};
template <typename T, typename U, typename E>
struct is_add_layer<const add_layer<T,U,E>&> : std::true_type {};
// ----------------------------------------------------------------------------------------
// This version of add_layer handles the special case where the subnetwork being given is
// just an input layer object.
template <typename LAYER_DETAILS, typename INPUT_LAYER, typename enabled>
class add_layer
{
public:
typedef LAYER_DETAILS layer_details_type;
typedef INPUT_LAYER subnet_type;
typedef typename INPUT_LAYER::input_type input_type;
const static size_t num_layers = 2;
const static size_t num_computational_layers = 1;
add_layer(
):
this_layer_setup_called(false),
gradient_input_is_stale(true),
get_output_and_gradient_input_disabled(false),
_sample_expansion_factor(0)
{}
add_layer(const add_layer&) = default;
add_layer(add_layer&& item) : add_layer() { swap(item); }
add_layer& operator=(const add_layer&) = default;
add_layer& operator=(add_layer&& item) { swap(item); return *this; }
template <typename T, typename U, typename E>
friend class add_layer;
template <typename T, bool is_first, typename E>
friend class dimpl::subnet_wrapper;
template <unsigned long T, typename U, typename E>
friend class add_tag_layer;
template <template<typename> class T, typename U>
friend class add_skip_layer;
template <size_t N, template<typename> class L, typename S>
friend class repeat;
// Allow copying networks from one to another as long as their corresponding
// layers can be constructed from each other.
template <typename T, typename U, typename E>
add_layer(
const add_layer<T,U,E>& item
):
input_layer(item.subnet()),
details(item.layer_details()),
this_layer_setup_called(item.this_layer_setup_called),
gradient_input_is_stale(item.gradient_input_is_stale),
get_output_and_gradient_input_disabled(false),
_sample_expansion_factor(item._sample_expansion_factor),
x_grad(item.x_grad),
cached_output(item.cached_output),
grad_final(item.grad_final)
{
}
add_layer(
const LAYER_DETAILS& layer_det
) :
details(layer_det),
this_layer_setup_called(false),
gradient_input_is_stale(true),
get_output_and_gradient_input_disabled(false),
_sample_expansion_factor(0)
{}
add_layer(
const INPUT_LAYER& il
) :
input_layer(il),
this_layer_setup_called(false),
gradient_input_is_stale(true),
get_output_and_gradient_input_disabled(false),
_sample_expansion_factor(0)
{}
add_layer(
LAYER_DETAILS&& layer_det
) :
details(std::move(layer_det)),
this_layer_setup_called(false),
gradient_input_is_stale(true),
get_output_and_gradient_input_disabled(false),
_sample_expansion_factor(0)
{}
add_layer(
LAYER_DETAILS layer_det,
INPUT_LAYER il
) :
details(std::move(layer_det)),
input_layer(std::move(il)),
this_layer_setup_called(false),
gradient_input_is_stale(true),
get_output_and_gradient_input_disabled(false),
_sample_expansion_factor(0)
{}
add_layer(
std::tuple<>,
const LAYER_DETAILS& layer_det
) : add_layer(layer_det) {}
add_layer(
std::tuple<>,
LAYER_DETAILS&& layer_det
) : add_layer(layer_det) {}
add_layer(
std::tuple<>,
LAYER_DETAILS layer_det,
INPUT_LAYER il
) : add_layer(layer_det,il) {}
add_layer(
const std::tuple<LAYER_DETAILS>& layer_det
) : add_layer(tuple_head(layer_det)) {}
add_layer(
const std::tuple<LAYER_DETAILS>& layer_det,
INPUT_LAYER il
) : add_layer(tuple_head(layer_det),il) {}
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
input_layer.to_tensor(ibegin, iend, data);
// make sure the input layer's to_tensor() function is implemented properly.
DLIB_CASSERT(data.num_samples() >= std::distance(ibegin,iend),
"The input layer can't produce fewer output tensors than there are inputs.");
DLIB_CASSERT(data.num_samples()%std::distance(ibegin,iend) == 0,
"The number of tensors produced by the input layer must be an integer multiple of the number of input objects.");
_sample_expansion_factor = data.num_samples()/std::distance(ibegin,iend);
data.async_copy_to_device();
}
template <typename forward_iterator>
const tensor& operator() (
forward_iterator ibegin,
forward_iterator iend
)
{
to_tensor(ibegin,iend,temp_tensor);
return forward(temp_tensor);
}
const tensor& operator() (const input_type& x)
{
return (*this)(&x, &x+1);
}
const tensor& forward (const tensor& x)
{
DLIB_CASSERT(sample_expansion_factor() != 0, "You must call to_tensor() before this function can be used.");
DLIB_CASSERT(x.num_samples()%sample_expansion_factor() == 0);
subnet_wrapper wsub(x, grad_final, _sample_expansion_factor);
if (!this_layer_setup_called)
{
details.setup(wsub);
this_layer_setup_called = true;
}
impl::call_layer_forward(details, wsub, cached_output);
gradient_input_is_stale = true;
return private_get_output();
}
private:
tensor& private_get_output() const { return const_cast<resizable_tensor&>(cached_output); }
tensor& private_get_gradient_input()
{
if (gradient_input_is_stale)
{
gradient_input_is_stale = false;
x_grad.copy_size(private_get_output());
x_grad = 0;
}
return x_grad;
}
void disable_output_and_gradient_getters (
) { get_output_and_gradient_input_disabled = true; }
public:
const tensor& get_output() const
{
if (get_output_and_gradient_input_disabled)
throw dlib::error("Accessing this layer's get_output() is disabled because an in-place layer has been stacked on top of it.");
return private_get_output();
}
tensor& get_gradient_input()
{
if (get_output_and_gradient_input_disabled)
throw dlib::error("Accessing this layer's get_gradient_input() is disabled because an in-place layer has been stacked on top of it.");
return private_get_gradient_input();
}
const tensor& get_final_data_gradient(
) const { return grad_final; }
void back_propagate_error(const tensor& x)
{
back_propagate_error(x, private_get_gradient_input());
}
void back_propagate_error(const tensor& x, const tensor& gradient_input)
{
// make sure grad_final is initialized to 0
if (!have_same_dimensions(x, grad_final))
grad_final.copy_size(x);
grad_final = 0;
subnet_wrapper wsub(x, grad_final, _sample_expansion_factor);
params_grad.copy_size(details.get_layer_params());
impl::call_layer_backward(details, private_get_output(),
gradient_input, wsub, static_cast<tensor&>(params_grad));
// zero out get_gradient_input()
gradient_input_is_stale = true;
}
template <typename solver_type>
void update_parameters(sstack<solver_type> solvers, double learning_rate)
{
DLIB_CASSERT(solvers.size()>=num_computational_layers);
// Don't try to adjust the parameters if this layer doesn't have any or the
// learning rate is disabled for this layer.
if (params_grad.size() != 0 && get_learning_rate_multiplier(details) != 0)
{
const tensor& step = solvers.top()(learning_rate, details, static_cast<const tensor&>(params_grad));
tt::add(details.get_layer_params(), details.get_layer_params(), step);
}
}
template <typename solver_type>
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
{
update_parameters(make_sstack(solvers), learning_rate);
}
const tensor& get_parameter_gradient(
) const { return params_grad; }
tensor& get_parameter_gradient (
) { return params_grad; }
const subnet_type& subnet() const { return input_layer; }
subnet_type& subnet() { return input_layer; }
const layer_details_type& layer_details() const { return details; }
layer_details_type& layer_details() { return details; }
unsigned int sample_expansion_factor() const { return _sample_expansion_factor; }
void clean()
{
x_grad.clear();
grad_final.clear();
cached_output.clear();
params_grad.clear();
temp_tensor.clear();
gradient_input_is_stale = true;
call_clean_method_if_exists(details);
}
friend void serialize(const add_layer& item, std::ostream& out)
{
int version = 3;
serialize(version, out);
serialize(item.input_layer, out);
serialize(item.details, out);
serialize(item.this_layer_setup_called, out);
serialize(item.gradient_input_is_stale, out);
serialize(item.get_output_and_gradient_input_disabled, out);
serialize(item.x_grad, out);
serialize(item.cached_output, out);
serialize(item.grad_final, out);
serialize(item._sample_expansion_factor, out);
}
friend void deserialize(add_layer& item, std::istream& in)
{
int version = 0;
deserialize(version, in);
if (!(2 <= version && version <= 3))
throw serialization_error("Unexpected version found while deserializing dlib::add_layer.");
deserialize(item.input_layer, in);
deserialize(item.details, in);
deserialize(item.this_layer_setup_called, in);
deserialize(item.gradient_input_is_stale, in);
deserialize(item.get_output_and_gradient_input_disabled, in);
deserialize(item.x_grad, in);
deserialize(item.cached_output, in);
deserialize(item.grad_final, in);
if (version >= 3)
deserialize(item._sample_expansion_factor, in);
else
item._sample_expansion_factor = 1; // all layer types set this to 1 in older dlib versions, so that's what we put here.
}
friend std::ostream& operator<< (std::ostream& out, const add_layer& item)
{
int min_length = 0;
item.print(out, 0, min_length);
return out;
}
void print (std::ostream& out, unsigned long idx, int& min_length) const
{
out << "layer<" << idx << ">\t" << impl::tensor_to_str(private_get_output(), min_length) << layer_details() << "\n";
// Don't print the repeat_input_layer since it doesn't exist from the user's
// point of view. It's just an artifact of how repeat<> works.
if (!std::is_same<subnet_type, impl::repeat_input_layer>::value)
out << "layer<" << idx+1 << ">\t" << subnet() << "\n";
}
private:
bool this_layer_requires_forward_output(
)
{
subnet_wrapper wsub(grad_final, grad_final, _sample_expansion_factor);
return impl::backward_requires_forward_output(details, wsub);
}
class subnet_wrapper
{
public:
subnet_wrapper(const tensor& x_, resizable_tensor& grad_final_, unsigned int sef) :
x(x_), grad_final(grad_final_), _sample_expansion_factor(sef) {}
subnet_wrapper(const subnet_wrapper&) = delete;
subnet_wrapper& operator=(const subnet_wrapper&) = delete;
unsigned int sample_expansion_factor() const { return _sample_expansion_factor;}
const tensor& get_output() const { return x; }
tensor& get_gradient_input()
{
if (!have_same_dimensions(x, grad_final))
{
grad_final.copy_size(x);
grad_final = 0;
}
return grad_final;
}
private:
const tensor& x;
resizable_tensor& grad_final;
unsigned int _sample_expansion_factor;
};
void swap(add_layer& item)
{
std::swap(input_layer, item.input_layer);
std::swap(details, item.details);
std::swap(this_layer_setup_called, item.this_layer_setup_called);
std::swap(gradient_input_is_stale, item.gradient_input_is_stale);
std::swap(get_output_and_gradient_input_disabled, item.get_output_and_gradient_input_disabled);
std::swap(x_grad, item.x_grad);
std::swap(cached_output, item.cached_output);
std::swap(grad_final, item.grad_final);
std::swap(_sample_expansion_factor, item._sample_expansion_factor);
}
subnet_type input_layer;
LAYER_DETAILS details;
bool this_layer_setup_called;
bool gradient_input_is_stale;
bool get_output_and_gradient_input_disabled;
mutable unsigned int _sample_expansion_factor;
resizable_tensor x_grad;
resizable_tensor cached_output;
resizable_tensor grad_final;
// The following 2 objects don't logically contribute to the state of this class.
// They are only here to prevent them from being reallocated over and over in
// member functions.
resizable_tensor params_grad;
resizable_tensor temp_tensor;
};
// ----------------------------------------------------------------------------------------
template <unsigned long ID, typename SUBNET, typename enabled=void>
class add_tag_layer;
template <template<typename SUBNET> class tag>
struct tag_id
{
const static unsigned long id = tag<impl::repeat_input_layer>::id;
};
template <unsigned long ID, typename SUBNET>
class add_tag_layer<ID,SUBNET,
typename std::enable_if<is_nonloss_layer_type<SUBNET>::value>::type>
{
public:
typedef SUBNET subnet_type;
typedef typename subnet_type::input_type input_type;
typedef int layer_details_type; // not really used anywhere, but required by subnet_wrapper.
const static size_t num_layers = subnet_type::num_layers + 1;
const static size_t num_computational_layers = subnet_type::num_computational_layers;
const static unsigned long id = ID;
add_tag_layer() {};
add_tag_layer(const add_tag_layer&) = default;
add_tag_layer(add_tag_layer&&) = default;
add_tag_layer& operator=(add_tag_layer&&) = default;
add_tag_layer& operator=(const add_tag_layer&) = default;
template <typename T>
add_tag_layer(
const add_tag_layer<ID,T>& item
) : subnetwork(item.subnet())
{}
template <typename ...T>
add_tag_layer(
T ...args
) :
subnetwork(std::move(args)...)
{
}
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
subnetwork.to_tensor(ibegin,iend,data);
}
template <typename forward_iterator>
const tensor& operator() (
forward_iterator ibegin,
forward_iterator iend
)
{
return subnetwork(ibegin,iend);
}
const tensor& operator() (const input_type& x)
{
return subnetwork(x);
}
const tensor& forward(const tensor& x)
{
return subnetwork.forward(x);
}
const tensor& get_output() const { return subnetwork.get_output(); }
tensor& get_gradient_input()
{
return subnetwork.get_gradient_input();
}
const tensor& get_final_data_gradient(
) const { return subnetwork.get_final_data_gradient(); }
void back_propagate_error(const tensor& x)
{
subnetwork.back_propagate_error(x);
}
void back_propagate_error(const tensor& x, const tensor& gradient_input)
{
subnetwork.back_propagate_error(x,gradient_input);
}
template <typename solver_type>
void update_parameters(sstack<solver_type> solvers, double learning_rate)
{
subnetwork.update_parameters(solvers, learning_rate);
}
template <typename solver_type>
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
{
update_parameters(make_sstack(solvers), learning_rate);
}
const tensor& get_parameter_gradient(
) const { return params_grad; }
tensor& get_parameter_gradient (
) { return params_grad; }
const subnet_type& subnet() const { return subnetwork; }
subnet_type& subnet() { return subnetwork; }
unsigned int sample_expansion_factor() const { return subnet().sample_expansion_factor(); }
void clean()
{
subnetwork.clean();
}
friend void serialize(const add_tag_layer& item, std::ostream& out)
{
int version = 1;
serialize(version, out);
serialize(item.subnetwork, out);
}
friend void deserialize(add_tag_layer& item, std::istream& in)
{
int version = 0;
deserialize(version, in);
if (version != 1)
throw serialization_error("Unexpected version found while deserializing dlib::add_tag_layer.");
deserialize(item.subnetwork, in);
}
friend std::ostream& operator<< (std::ostream& out, const add_tag_layer& item)
{
int min_length = 0;
item.print(out, 0, min_length);
return out;
}
void print (std::ostream& out, unsigned long idx, int& min_length) const
{
out << "layer<" << idx << ">\t" << impl::tensor_to_str(private_get_output(), min_length) << "tag" << ID << "\n";
subnet().print(out, idx+1, min_length);
}
private:
template <typename T, typename U, typename E>
friend class add_layer;
template <typename T, bool is_first, typename E>
friend class dimpl::subnet_wrapper;
template <unsigned long T, typename U, typename E>
friend class add_tag_layer;
template <template<typename> class T, typename U>
friend class add_skip_layer;
template <size_t N, template<typename> class L, typename S>
friend class repeat;
// You wouldn't put a tag on a layer if you didn't want to access its forward
// outputs. So this is always true.
bool this_layer_requires_forward_output(
) { return true; }
void disable_output_and_gradient_getters (
)
{
// This should never happen because only inplace layers call
// disable_output_and_gradient_getters(), however, putting a tag layer right
// before an inplace layer basically means you don't want the following layer
// to operate in place. So the inplace layer should turn itself into an
// out-of-place layer and not call disable_output_and_gradient_getters().
DLIB_CASSERT(false,"This should never happen");
}
tensor& private_get_output() const
{ return subnetwork.private_get_output(); }
tensor& private_get_gradient_input()
{ return subnetwork.private_get_gradient_input(); }
subnet_type subnetwork;
// This member doesn't logically contribute to the state of the object since it is
// always empty. It's just here so we can have the get_parameter_gradient() methods
// which have to return something. So they return this empty tensor.
resizable_tensor params_grad;
};
// ----------------------------------------------------------------------------------------
template <typename ...T>
struct decorator_repeat_group
{
decorator_repeat_group(
T&& ...args
) : data(std::forward<T>(args)...) {}
std::tuple<T...> data;
};
template <typename ...T>
decorator_repeat_group<T...> repeat_group (
T&& ...args
)
{
return decorator_repeat_group<T...>(std::forward<T>(args)...);
}
template <
size_t num,
template<typename> class REPEATED_LAYER,
typename SUBNET
>
class repeat
{
static_assert(num > 0, "You can't have a layer repeated 0 times.");
public:
typedef SUBNET subnet_type;
typedef typename SUBNET::input_type input_type;
typedef int layer_details_type; // not really used anywhere, but required by subnet_wrapper.
const static size_t comp_layers_in_each_group = (REPEATED_LAYER<SUBNET>::num_computational_layers-SUBNET::num_computational_layers);
const static size_t comp_layers_in_repeated_group = comp_layers_in_each_group*num;
const static size_t num_computational_layers = comp_layers_in_repeated_group + SUBNET::num_computational_layers;
const static size_t layers_in_each_group = (REPEATED_LAYER<SUBNET>::num_layers-SUBNET::num_layers);
const static size_t layers_in_repeated_group = layers_in_each_group*num;
const static size_t num_layers = subnet_type::num_layers + layers_in_repeated_group;
typedef REPEATED_LAYER<impl::repeat_input_layer> repeated_layer_type;
repeat(
) :
details(num)
{
}
size_t num_repetitions (
) const { return num; }
const repeated_layer_type& get_repeated_layer (
size_t i
) const
{
DLIB_CASSERT(i < num_repetitions());
return details[i];
}
repeated_layer_type& get_repeated_layer (
size_t i
)
{
DLIB_CASSERT(i < num_repetitions());
return details[i];
}
repeat(const repeat&) = default;
repeat(repeat&&) = default;
repeat& operator=(repeat&&) = default;
repeat& operator=(const repeat&) = default;
template <template<typename> class T, typename U>
repeat(
const repeat<num,T,U>& item
) :
subnetwork(item.subnetwork)
{
for (auto&& d : item.details)
details.emplace_back(d);
}
template <typename T, typename ...U>
repeat(
T arg1,
U ...args2
):
details(num, std::move(arg1)),
subnetwork(std::move(args2)...)
{
}
template <typename ...T, typename ...U>
repeat(
decorator_repeat_group<T...>&& arg1,
U ...args2
):
details(num, arg1.data),
subnetwork(std::move(args2)...)
{
}
template <typename T, typename ...U>
repeat(
std::tuple<>,
T arg1,
U ...args2
):
details(num, std::move(arg1)),
subnetwork(std::move(args2)...)
{
}
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
subnetwork.to_tensor(ibegin,iend,data);
// call to_tensor on the networks in details just to populate the
// _sample_expansion_factor values in those networks. Other than that this
// call is a noop.
for (auto& d : details)
d.to_tensor(ibegin, iend, data);
}
template <typename forward_iterator>
const tensor& operator() (
forward_iterator ibegin,
forward_iterator iend
)
{
to_tensor(ibegin,iend,temp_tensor);
return forward(temp_tensor);
}
const tensor& operator() (const input_type& x)
{
return (*this)(&x, &x+1);
}
const tensor& forward(const tensor& x)
{
subnetwork.forward(x);
details[details.size()-1].forward(subnetwork.get_output());
for (long i = details.size()-2; i >= 0; --i)
details[i].forward(details[i+1].get_output());
return private_get_output();
}
private:
tensor& private_get_output() const
{
return details[0].private_get_output();
}
tensor& private_get_gradient_input()
{
return details[0].private_get_gradient_input();
}
public:
const tensor& get_output() const
{
return details[0].get_output();
}
tensor& get_gradient_input()
{
return details[0].get_gradient_input();
}
const tensor& get_final_data_gradient(
) const { return subnetwork.get_final_data_gradient(); }
const tensor& get_parameter_gradient(
) const { return details[0].get_parameter_gradient(); }
tensor& get_parameter_gradient (
) { return details[0].get_parameter_gradient(); }
void back_propagate_error(const tensor& x)
{
back_propagate_error(x, private_get_gradient_input());
}
void back_propagate_error(const tensor& x, const tensor& gradient_input)
{
if (details.size() > 1)
{
details[0].back_propagate_error(details[1].get_output(), gradient_input);
for (size_t i = 1; i < details.size(); ++i)
{
if (i+1 < details.size())
details[i].back_propagate_error(details[i+1].get_output(), details[i-1].get_final_data_gradient());
else
details[i].back_propagate_error(subnetwork.get_output(), details[i-1].get_final_data_gradient());
}
}
else
{
details[0].back_propagate_error(subnetwork.get_output(), gradient_input);
}
subnetwork.back_propagate_error(x, details.back().get_final_data_gradient());
}
template <typename solver_type>
void update_parameters(sstack<solver_type> solvers, double learning_rate)
{
for (size_t i = 0; i < details.size(); ++i)
details[i].update_parameters(solvers.pop(comp_layers_in_each_group*i),learning_rate);
subnetwork.update_parameters(solvers.pop(comp_layers_in_each_group*details.size()),learning_rate);
}
template <typename solver_type>
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
{
update_parameters(make_sstack(solvers), learning_rate);
}
const subnet_type& subnet() const { return subnetwork; }
subnet_type& subnet() { return subnetwork; }
unsigned int sample_expansion_factor() const { return subnet().sample_expansion_factor(); }
void clean()
{
temp_tensor.clear();
subnetwork.clean();
for (auto&& d : details)
d.clean();
}
friend void serialize(const repeat& item, std::ostream& out)
{
int version = 1;
serialize(version, out);
serialize(item.details, out);
serialize(item.subnetwork, out);
}
friend void deserialize(repeat& item, std::istream& in)
{
int version = 0;
deserialize(version, in);
if (version != 1)
throw serialization_error("Unexpected version found while deserializing dlib::repeat.");
deserialize(item.details, in);
deserialize(item.subnetwork, in);
}
friend std::ostream& operator<< (std::ostream& out, const repeat& item)
{
int min_length = 0;
item.print(out, 0, min_length);
return out;
}
void print (std::ostream& out, unsigned long idx, int& min_length) const
{
for (size_t i = 0; i < num_repetitions(); ++i)
{
get_repeated_layer(i).print(out, idx, min_length);
idx += layers_in_each_group;
}
subnet().print(out, idx, min_length);
}
private:
template <typename T, typename U, typename E>
friend class add_layer;
template <typename T, bool is_first, typename E>
friend class dimpl::subnet_wrapper;
template <unsigned long T, typename U, typename E>
friend class add_tag_layer;
template <template<typename> class T, typename U>
friend class add_skip_layer;
template <size_t N, template<typename> class L, typename S>
friend class repeat;
bool this_layer_requires_forward_output(
)
{
return details[0].this_layer_requires_forward_output();
}
void disable_output_and_gradient_getters (
)
{
details[0].disable_output_and_gradient_getters();
}
std::vector<repeated_layer_type> details;
subnet_type subnetwork;
// temp_tensor doesn't logically contribute to the state of this class.
// It is here only to void needing to reallocate it over and over.
resizable_tensor temp_tensor;
};
template <
size_t num,
template<typename> class REPEATED_LAYER,
typename SUBNET
>
struct is_nonloss_layer_type<repeat<num,REPEATED_LAYER,SUBNET>> : std::true_type {};
// ----------------------------------------------------------------------------------------
// This version of add_tag_layer handles the special case where the subnetwork being given
// is just an input layer object.
template <unsigned long ID, typename INPUT_LAYER, typename enabled>
class add_tag_layer
{
public:
typedef INPUT_LAYER subnet_type;
typedef typename subnet_type::input_type input_type;
typedef int layer_details_type; // not really used anywhere, but required by subnet_wrapper.
const static size_t num_computational_layers = 0;
const static size_t num_layers = 2;
const static unsigned long id = ID;
add_tag_layer():cached_output_ptr(nullptr),gradient_input_is_stale(true),_sample_expansion_factor(0) {}
add_tag_layer(const add_tag_layer&) = default;
add_tag_layer& operator=(const add_tag_layer&) = default;
add_tag_layer(add_tag_layer&& item) : add_tag_layer() { swap(item); }
add_tag_layer& operator=(add_tag_layer&& item) { swap(item); return *this; }
template <typename T, typename E>
add_tag_layer(
const add_tag_layer<ID,T,E>& item
) : input_layer(item.subnet()),
cached_output(item.cached_output),
cached_output_ptr(nullptr),
grad_final(item.grad_final),
gradient_input_is_stale(item.gradient_input_is_stale),
_sample_expansion_factor(0)
{}
template <typename ...T>
add_tag_layer(
T ...args
) :
input_layer(std::move(args)...),
cached_output_ptr(nullptr),
gradient_input_is_stale(true),
_sample_expansion_factor(0)
{
}
add_tag_layer (
std::tuple<>
) :
cached_output_ptr(nullptr),
gradient_input_is_stale(true),
_sample_expansion_factor(0)
{}
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
input_layer.to_tensor(ibegin,iend,data);
// make sure the input layer's to_tensor() function is implemented properly.
DLIB_CASSERT(data.num_samples() >= std::distance(ibegin,iend),
"The input layer can't produce fewer output tensors than there are inputs.");
DLIB_CASSERT(data.num_samples()%std::distance(ibegin,iend) == 0,
"The number of tensors produced by the input layer must be an integer multiple of the number of input objects.");
_sample_expansion_factor = data.num_samples()/std::distance(ibegin,iend);
data.async_copy_to_device();
}
unsigned int sample_expansion_factor() const { return _sample_expansion_factor; }
template <typename forward_iterator>
const tensor& operator() (
forward_iterator ibegin,
forward_iterator iend
)
{
input_layer.to_tensor(ibegin,iend,cached_output);
cached_output_ptr = nullptr;
return get_output();
}
const tensor& operator() (const input_type& x)
{
return (*this)(&x, &x+1);
}
const tensor& forward(const tensor& x)
{
// If this tag is the first layer in one of the sub networks inside a repeat
// layer then we don't want it to be creating copies of x. This is because, we
// can just hold a pointer to x since the way repeat is constructed guarantees
// that x will have a lifetime larger than this pointer.
if (is_same_type<INPUT_LAYER, impl::repeat_input_layer>::value)
cached_output_ptr = const_cast<tensor*>(&x);
else
cached_output = x;
gradient_input_is_stale = true;
return get_output();
}
const tensor& get_output() const
{
if (cached_output_ptr)
return *cached_output_ptr;
else
return cached_output;
}
const tensor& get_final_data_gradient(
) const { return grad_final; }
tensor& get_gradient_input()
{
if (!have_same_dimensions(get_output(), grad_final) ||
gradient_input_is_stale)
{
grad_final.copy_size(get_output());
grad_final = 0;
gradient_input_is_stale = false;
}
return grad_final;
}
void back_propagate_error(const tensor& /*x*/)
{
// nothing to do
}
void back_propagate_error(const tensor& /*x*/, const tensor& /*gradient_input*/)
{
// nothing to do
}
template <typename solver_type>
void update_parameters(sstack<solver_type> /*solvers*/, double /*learning_rate*/)
{
// nothing to do
}
template <typename solver_type>
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
{
update_parameters(make_sstack(solvers), learning_rate);
}
const subnet_type& subnet() const { return input_layer; }
subnet_type& subnet() { return input_layer; }
void clean()
{
grad_final.clear();
cached_output.clear();
cached_output_ptr = 0;
}
friend void serialize(const add_tag_layer& item, std::ostream& out)
{
int version = 2;
serialize(version, out);
serialize(item.input_layer, out);
serialize(item.cached_output, out);
serialize(item.grad_final, out);
serialize(item.gradient_input_is_stale, out);
serialize(item._sample_expansion_factor, out);
}
friend void deserialize(add_tag_layer& item, std::istream& in)
{
int version = 0;
deserialize(version, in);
if (!(1 <= version && version <= 2))
throw serialization_error("Unexpected version found while deserializing dlib::add_tag_layer.");
deserialize(item.input_layer, in);
deserialize(item.cached_output, in);
deserialize(item.grad_final, in);
deserialize(item.gradient_input_is_stale, in);
item.cached_output_ptr = nullptr;
if (version >= 2)
deserialize(item._sample_expansion_factor, in);
else
item._sample_expansion_factor = 1; // all layer types set this to 1 in older dlib versions, so that's what we put here.
}
friend std::ostream& operator<< (std::ostream& out, const add_tag_layer& item)
{
int min_length = 0;
item.print(out, 0, min_length);
return out;
}
void print (std::ostream& out, unsigned long idx, int& min_length) const
{
out << "layer<"<<idx << ">\t"<<impl::tensor_to_str(private_get_output(), min_length)<< "tag" << ID << "\n";
// Don't print the repeat_input_layer since it doesn't exist from the user's
// point of view. It's just an artifact of how repeat<> works.
if (!std::is_same<subnet_type, impl::repeat_input_layer>::value)
out << "layer<"<< idx+1 << ">\t" << subnet() << "\n";
}
private:
template <typename T, typename U, typename E>
friend class add_layer;
template <typename T, bool is_first, typename E>
friend class dimpl::subnet_wrapper;
template <unsigned long T, typename U, typename E>
friend class add_tag_layer;
template <template<typename> class T, typename U>
friend class add_skip_layer;
template <size_t N, template<typename> class L, typename S>
friend class repeat;
// You woudln't put a tag on a layer if you didn't want to access its forward
// outputs. So this is always true.
bool this_layer_requires_forward_output(
) { return true; }
void disable_output_and_gradient_getters (
)
{
// This should never happen because only inplace layers call
// disable_output_and_gradient_getters(), however, putting a tag layer right
// before an inplace layer basically means you don't want the following layer
// to operate in place. So the inplace layer should turn itself into an
// out-of-place layer and not call disable_output_and_gradient_getters().
DLIB_CASSERT(false,"This should never happen");
}
tensor& private_get_output() const
{ return const_cast<tensor&>(get_output()); }
tensor& private_get_gradient_input()
{ return get_gradient_input(); }
void swap(add_tag_layer& item)
{
std::swap(input_layer, item.input_layer);
std::swap(cached_output, item.cached_output);
std::swap(cached_output_ptr, item.cached_output_ptr);
std::swap(grad_final, item.grad_final);
std::swap(gradient_input_is_stale, item.gradient_input_is_stale);
std::swap(_sample_expansion_factor, item._sample_expansion_factor);
}
subnet_type input_layer;
resizable_tensor cached_output;
tensor* cached_output_ptr;
resizable_tensor grad_final;
bool gradient_input_is_stale;
mutable unsigned int _sample_expansion_factor;
};
template <unsigned long ID, typename U, typename E>
struct is_nonloss_layer_type<add_tag_layer<ID,U,E>> : std::true_type {};
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <typename LOSS_DETAILS, typename SUBNET>
class add_loss_layer;
class no_label_type
{
private:
// We don't want anyone making these no_label_type objects. They are here only to
// allow add_loss_layer::training_label_type and dnn_trainer::training_label_type
// to exist which avoids needing to overload add_loss_layer and dnn_trainer for
// supervised an unsupervised losses. It also can be a type to use in template
// metaprogramming to indicate "no label". So here we make the constructor private
// with the exception that add_loss_layer objects can make it (again, just to
// simplify add_loss_layer's implementation).
no_label_type(){};
template <typename LOSS_DETAILS, typename SUBNET> friend class add_loss_layer;
template < typename net_type, typename solver_type > friend class dnn_trainer;
};
// ----------------------------------------------------------------------------------------
template <typename LOSS_DETAILS, typename SUBNET>
class add_loss_layer
{
template <typename T, typename enabled=void>
struct get_loss_layer_training_label_type
{
typedef no_label_type type;
};
template <typename T>
struct get_loss_layer_training_label_type<T,typename std::enable_if<sizeof(typename T::training_label_type)!=0>::type>
{
typedef typename T::training_label_type type;
};
template <typename T, typename enabled=void>
struct get_loss_layer_output_label_type
{
typedef no_label_type type;
};
template <typename T>
struct get_loss_layer_output_label_type<T,typename std::enable_if<sizeof(typename T::output_label_type)!=0>::type>
{
typedef typename T::output_label_type type;
};
public:
typedef LOSS_DETAILS loss_details_type;
typedef SUBNET subnet_type;
typedef typename subnet_type::input_type input_type;
const static size_t num_layers = subnet_type::num_layers + 1;
// Note that the loss layer doesn't count as an additional computational layer.
const static size_t num_computational_layers = subnet_type::num_computational_layers;
typedef typename get_loss_layer_training_label_type<LOSS_DETAILS>::type training_label_type;
typedef typename get_loss_layer_output_label_type<LOSS_DETAILS>::type output_label_type;
static_assert(is_nonloss_layer_type<SUBNET>::value,
"SUBNET must be of type add_layer, add_skip_layer, or add_tag_layer.");
add_loss_layer() {};
add_loss_layer(const add_loss_layer&) = default;
add_loss_layer& operator=(const add_loss_layer&) = default;
add_loss_layer(add_loss_layer&& item) : add_loss_layer() { swap(item); }
add_loss_layer& operator=(add_loss_layer&& item) { swap(item); return *this; }
template <typename T, typename U>
add_loss_layer(
const add_loss_layer<T,U>& item
) :
loss(item.loss_details()),
subnetwork(item.subnet())
{}
template <typename ...T>
add_loss_layer(
const LOSS_DETAILS& layer_det,
T&& ...args
) :
loss(layer_det),
subnetwork(std::forward<T>(args)...)
{
}
template <typename ...T>
add_loss_layer(
LOSS_DETAILS&& layer_det,
T&& ...args
) :
loss(std::move(layer_det)),
subnetwork(std::forward<T>(args)...)
{
}
template <typename T, typename ...U>
struct disable_forwarding_constr
{
const static bool value = std::is_constructible<LOSS_DETAILS,T>::value;
};
template <typename ...T>
struct disable_forwarding_constr<add_loss_layer<T...>>
{
const static bool value = true;
};
template <
typename ...T,
typename = typename std::enable_if<!disable_forwarding_constr<typename std::remove_reference<T>::type...>::value>::type
>
add_loss_layer(
T&& ...args
) :
subnetwork(std::forward<T>(args)...)
{
}
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
subnetwork.to_tensor(ibegin,iend,data);
}
unsigned int sample_expansion_factor() const { return subnet().sample_expansion_factor(); }
template <typename output_iterator>
void operator() (
const tensor& x,
output_iterator obegin
)
{
subnetwork.forward(x);
const dimpl::subnet_wrapper<subnet_type> wsub(subnetwork);
loss.to_label(x, wsub, obegin);
}
template <typename forward_iterator, typename output_iterator>
void operator() (
forward_iterator ibegin,
forward_iterator iend,
output_iterator obegin
)
{
to_tensor(ibegin,iend,temp_tensor);
(*this)(temp_tensor, obegin);
}
const output_label_type& operator() (const input_type& x)
{
(*this)(&x, &x+1, &temp_label);
return temp_label;
}
template <typename ...T>
const output_label_type& process (const input_type& x, T&& ...args)
{
to_tensor(&x,&x+1,temp_tensor);
subnetwork.forward(temp_tensor);
const dimpl::subnet_wrapper<subnet_type> wsub(subnetwork);
loss.to_label(temp_tensor, wsub, &temp_label, std::forward<T>(args)...);
return temp_label;
}
template <typename iterable_type, typename ...T>
std::vector<output_label_type> process_batch (const iterable_type& data, size_t batch_size, T&& ...args)
{
std::vector<output_label_type> results(std::distance(data.begin(), data.end()));
auto o = results.begin();
auto i = data.begin();
auto num_remaining = results.size();
while(num_remaining != 0)
{
auto inc = std::min(batch_size, num_remaining);
to_tensor(i,i+inc,temp_tensor);
subnetwork.forward(temp_tensor);
const dimpl::subnet_wrapper<subnet_type> wsub(subnetwork);
loss.to_label(temp_tensor, wsub, o, std::forward<T>(args)...);
i += inc;
o += inc;
num_remaining -= inc;
}
return results;
}
void back_propagate_error(const tensor& x)
{
subnet().back_propagate_error(x);
}
void back_propagate_error(const tensor& x, const tensor& gradient_input)
{
subnet().back_propagate_error(x, gradient_input);
}
const tensor& get_final_data_gradient(
) const
{
return subnet().get_final_data_gradient();
}
const tensor& forward(const tensor& x)
{
return subnet().forward(x);
}
template <typename iterable_type>
std::vector<output_label_type> operator() (
const iterable_type& data,
size_t batch_size = 128
)
{
std::vector<output_label_type> results(std::distance(data.begin(), data.end()));
auto o = results.begin();
auto i = data.begin();
auto num_remaining = results.size();
while(num_remaining != 0)
{
auto inc = std::min(batch_size, num_remaining);
(*this)(i, i+inc, o);
i += inc;
o += inc;
num_remaining -= inc;
}
return results;
}
template <typename label_iterator>
double compute_loss (
const tensor& x,
label_iterator lbegin
)
{
subnetwork.forward(x);
dimpl::subnet_wrapper<subnet_type> wsub(subnetwork);
return loss.compute_loss_value_and_gradient(x, lbegin, wsub);
}
template <typename forward_iterator, typename label_iterator>
double compute_loss (
forward_iterator ibegin,
forward_iterator iend,
label_iterator lbegin
)
{
to_tensor(ibegin,iend,temp_tensor);
return compute_loss(temp_tensor, lbegin);
}
double compute_loss (
const tensor& x
)
{
subnetwork.forward(x);
dimpl::subnet_wrapper<subnet_type> wsub(subnetwork);
return loss.compute_loss_value_and_gradient(x, wsub);
}
template <typename forward_iterator>
double compute_loss (
forward_iterator ibegin,
forward_iterator iend
)
{
to_tensor(ibegin,iend,temp_tensor);
return compute_loss(temp_tensor);
}
template <typename label_iterator>
double compute_parameter_gradients (
const tensor& x,
label_iterator lbegin
)
{
subnetwork.forward(x);
dimpl::subnet_wrapper<subnet_type> wsub(subnetwork);
double l = loss.compute_loss_value_and_gradient(x, lbegin, wsub);
subnetwork.back_propagate_error(x);
return l;
}
template <typename forward_iterator, typename label_iterator>
double compute_parameter_gradients (
forward_iterator ibegin,
forward_iterator iend,
label_iterator lbegin
)
{
to_tensor(ibegin,iend,temp_tensor);
return compute_parameter_gradients(temp_tensor, lbegin);
}
double compute_parameter_gradients (
const tensor& x
)
{
subnetwork.forward(x);
dimpl::subnet_wrapper<subnet_type> wsub(subnetwork);
double l = loss.compute_loss_value_and_gradient(x, wsub);
subnetwork.back_propagate_error(x);
return l;
}
template <typename forward_iterator>
double compute_parameter_gradients (
forward_iterator ibegin,
forward_iterator iend
)
{
to_tensor(ibegin,iend,temp_tensor);
return compute_parameter_gradients(temp_tensor);
}
template <typename solver_type>
void update_parameters (
sstack<solver_type> solvers,
double learning_rate
)
{
subnetwork.update_parameters(solvers, learning_rate);
}
template <typename solver_type>
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
{
update_parameters(make_sstack(solvers), learning_rate);
}
const subnet_type& subnet() const { return subnetwork; }
subnet_type& subnet() { return subnetwork; }
const loss_details_type& loss_details() const { return loss; }
loss_details_type& loss_details() { return loss; }
void clean (
)
{
temp_tensor.clear();
subnetwork.clean();
}
template <typename T, typename U>
friend void serialize(const add_loss_layer<T,U>& item, std::ostream& out);
template <typename T, typename U>
friend void deserialize(add_loss_layer<T,U>& item, std::istream& in);
friend std::ostream& operator<< (std::ostream& out, const add_loss_layer& item)
{
int min_length = 0;
item.print(out, 0, min_length);
return out;
}
void print (std::ostream& out, unsigned long idx, int& min_length) const
{
out << "layer<" << idx << ">\t" << loss_details() << "\n";
subnet().print(out, idx+1, min_length);
}
private:
void swap(add_loss_layer& item)
{
std::swap(loss, item.loss);
std::swap(subnetwork, item.subnetwork);
}
loss_details_type loss;
subnet_type subnetwork;
// These two objects don't logically contribute to the state of this object. They
// are here to prevent them from being reallocated over and over.
output_label_type temp_label;
resizable_tensor temp_tensor;
};
template <typename LOSS_DETAILS, typename SUBNET>
void serialize(const add_loss_layer<LOSS_DETAILS,SUBNET>& item, std::ostream& out)
{
int version = 1;
serialize(version, out);
serialize(item.loss, out);
serialize(item.subnetwork, out);
}
template <typename LOSS_DETAILS, typename SUBNET>
void deserialize(add_loss_layer<LOSS_DETAILS,SUBNET>& item, std::istream& in)
{
int version = 0;
deserialize(version, in);
if (version != 1)
throw serialization_error("Unexpected version found while deserializing dlib::add_loss_layer.");
deserialize(item.loss, in);
deserialize(item.subnetwork, in);
}
template <typename T, typename U>
struct is_loss_layer_type<add_loss_layer<T,U>> : std::true_type {};
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
namespace impl
{
template <unsigned int i, typename T, typename enabled = void>
struct layer_helper
{
static_assert(i < T::num_layers, "Call to layer() attempted to access non-existing layer in neural network.");
static T& makeT();
// If you get error here mentioning lack of member "subnet" in "dlib::input<...>",
// then likely your "dlib::layer<...>" invocation wasn't able to find requested layer.
// This could happen for instance when trying to use skip layer for non-existing tag.
using next_type = typename std::remove_reference<decltype(makeT().subnet())>::type;
using type = typename layer_helper<i-1,next_type>::type;
static type& layer(T& n)
{
return layer_helper<i-1,next_type>::layer(n.subnet());
}
};
template <
unsigned int i,
size_t N, template<typename> class L, typename S
>
struct layer_helper<i,repeat<N,L,S>, typename std::enable_if<(i!=0&&i>=repeat<N,L,S>::layers_in_repeated_group)>::type>
{
const static size_t layers_in_repeated_group = repeat<N,L,S>::layers_in_repeated_group;
static repeat<N,L,S>& makeT();
using next_type = typename std::remove_reference<decltype(makeT().subnet())>::type;
using type = typename layer_helper<i-layers_in_repeated_group,next_type>::type;
static type& layer(repeat<N,L,S>& n)
{
return layer_helper<i-layers_in_repeated_group,next_type>::layer(n.subnet());
}
};
template <
unsigned int i,
size_t N, template<typename> class L, typename S
>
struct layer_helper<i,repeat<N,L,S>, typename std::enable_if<(i!=0&&i<repeat<N,L,S>::layers_in_repeated_group)>::type>
{
const static size_t layers_in_each_group = repeat<N,L,S>::layers_in_each_group;
typedef typename repeat<N,L,S>::repeated_layer_type repeated_layer_type;
using next_type = repeated_layer_type;
using type = typename layer_helper<i%layers_in_each_group,next_type>::type;
static type& layer(repeat<N,L,S>& n)
{
return layer_helper<i%layers_in_each_group,next_type>::layer(n.get_repeated_layer(i/layers_in_each_group));
}
};
template <
size_t N, template<typename> class L, typename S
>
struct layer_helper<0,repeat<N,L,S>, void>
{
typedef typename repeat<N,L,S>::repeated_layer_type repeated_layer_type;
using type = repeated_layer_type;
static type& layer(repeat<N,L,S>& n)
{
return n.get_repeated_layer(0);
}
};
template <
unsigned int i,
size_t N, template<typename> class L, typename S
>
struct layer_helper<i,const repeat<N,L,S>, typename std::enable_if<(i!=0&&i>=repeat<N,L,S>::layers_in_repeated_group)>::type>
{
const static size_t layers_in_repeated_group = repeat<N,L,S>::layers_in_repeated_group;
static const repeat<N,L,S>& makeT();
using next_type = const typename std::remove_reference<decltype(makeT().subnet())>::type;
using type = const typename layer_helper<i-layers_in_repeated_group,next_type>::type;
static type& layer(const repeat<N,L,S>& n)
{
return layer_helper<i-layers_in_repeated_group,next_type>::layer(n.subnet());
}
};
template <
unsigned int i,
size_t N, template<typename> class L, typename S
>
struct layer_helper<i,const repeat<N,L,S>, typename std::enable_if<(i!=0&&i<repeat<N,L,S>::layers_in_repeated_group)>::type>
{
const static size_t layers_in_each_group = repeat<N,L,S>::layers_in_each_group;
typedef typename repeat<N,L,S>::repeated_layer_type repeated_layer_type;
using next_type = const repeated_layer_type;
using type = const typename layer_helper<i%layers_in_each_group,next_type>::type;
static type& layer(const repeat<N,L,S>& n)
{
return layer_helper<i%layers_in_each_group,next_type>::layer(n.get_repeated_layer(i/layers_in_each_group));
}
};
template <
size_t N, template<typename> class L, typename S
>
struct layer_helper<0,const repeat<N,L,S>, void>
{
typedef typename repeat<N,L,S>::repeated_layer_type repeated_layer_type;
using type = const repeated_layer_type;
static type& layer(const repeat<N,L,S>& n)
{
return n.get_repeated_layer(0);
}
};
template <typename T>
struct layer_helper<0,T,void>
{
using type = T;
static type& layer(T& n)
{
return n;
}
};
template <template<typename> class Match, typename T, unsigned int i, typename enabled = void>
struct layer_helper_match
{
static T& makeT();
using next_type = typename std::remove_reference<decltype(makeT().subnet())>::type;
using type = typename layer_helper_match<Match,next_type,i>::type;
static type& layer(T& n)
{
return layer_helper_match<Match,next_type,i>::layer(n.subnet());
}
};
// This overload catches add_layer and add_loss_layer templates.
template <template<typename> class Match, typename T, unsigned int i>
struct layer_helper_match<Match,T,i,
typename std::enable_if<std::is_same<const T,const Match<typename T::subnet_type>>::value>::type>
{
using type = typename layer_helper<i,T>::type;
static type& layer(T& n)
{
return layer_helper<i,T>::layer(n);
}
};
// This overload catches input templates.
template <template<typename> class Match, typename T, unsigned int i>
struct layer_helper_match<Match,T,i,
typename std::enable_if<std::is_same<const T,const Match<typename T::input_type>>::value>::type>
{
using type = typename layer_helper<i,T>::type;
static type& layer(T& n)
{
return layer_helper<i,T>::layer(n);
}
};
// This overload catches subnet_wrapper templates.
template <template<typename> class Match, typename T, unsigned int i>
struct layer_helper_match<Match,T,i,
typename std::enable_if<std::is_same<const typename T::wrapped_type,
const Match<typename T::wrapped_type::subnet_type>>::value>::type>
{
using type = typename layer_helper<i,T>::type;
static type& layer(T& n)
{
return layer_helper<i,T>::layer(n);
}
};
}
template <unsigned int i, typename T>
typename impl::layer_helper<i,T>::type& layer (T& n)
{
return impl::layer_helper<i,T>::layer(n);
}
template <template<typename> class Match, typename T>
typename impl::layer_helper_match<Match,T,0>::type& layer (T& n)
{
return impl::layer_helper_match<Match,T,0>::layer(n);
}
template <template<typename> class Match, unsigned int i, typename T>
typename impl::layer_helper_match<Match,T,i>::type& layer (T& n)
{
return impl::layer_helper_match<Match,T,i>::layer(n);
}
// ----------------------------------------------------------------------------------------
namespace dimpl
{
template <typename T>
T& get_input_details (
T& net
)
{
return net;
}
template <typename T, bool is_first, typename enabled>
auto get_input_details (
dimpl::subnet_wrapper<T,is_first,enabled>& net
) -> decltype(net.layer_details())&
{
return net.layer_details();
}
template <typename T, bool is_first, typename enabled>
auto get_input_details (
const dimpl::subnet_wrapper<T,is_first,enabled>& net
) -> decltype(net.layer_details())&
{
return net.layer_details();
}
}
template <typename net_type>
auto input_layer (
net_type& net
) -> decltype(dimpl::get_input_details(layer<net_type::num_layers-1>(net)))&
{
// Calling input_layer() on a subnet_wrapper is a little funny since the behavior of
// .subnet() returns another subnet_wrapper rather than an input details object as it
// does in add_layer.
return dimpl::get_input_details(layer<net_type::num_layers-1>(net));
}
// ----------------------------------------------------------------------------------------
template <template<typename> class TAG_TYPE, typename SUBNET>
class add_skip_layer
{
public:
typedef SUBNET subnet_type;
typedef typename subnet_type::input_type input_type;
typedef int layer_details_type; // not really used anywhere, but required by subnet_wrapper.
const static size_t num_layers = subnet_type::num_layers + 1;
const static size_t num_computational_layers = subnet_type::num_computational_layers;
const static unsigned long id = tag_id<TAG_TYPE>::id;
add_skip_layer() {};
add_skip_layer(const add_skip_layer&) = default;
add_skip_layer(add_skip_layer&&) = default;
add_skip_layer& operator=(add_skip_layer&&) = default;
add_skip_layer& operator=(const add_skip_layer&) = default;
template <typename T>
add_skip_layer(
const add_skip_layer<TAG_TYPE,T>& item
) : subnetwork(item.subnet())
{}
template <typename ...T>
add_skip_layer(
T ...args
) :
subnetwork(std::move(args)...)
{
}
template <typename forward_iterator>
void to_tensor (
forward_iterator ibegin,
forward_iterator iend,
resizable_tensor& data
) const
{
subnetwork.to_tensor(ibegin,iend,data);
}
template <typename forward_iterator>
const tensor& operator() (
forward_iterator ibegin,
forward_iterator iend
)
{
subnetwork(ibegin,iend);
return layer<TAG_TYPE>(subnetwork).get_output();
}
const tensor& operator() (const input_type& x)
{
subnetwork(x);
return layer<TAG_TYPE>(subnetwork).get_output();
}
const tensor& forward(const tensor& x)
{
subnetwork.forward(x);
return layer<TAG_TYPE>(subnetwork).get_output();
}
const tensor& get_output() const
{
return layer<TAG_TYPE>(subnetwork).get_output();
}
tensor& get_gradient_input()
{
return layer<TAG_TYPE>(subnetwork).get_gradient_input();
}
const tensor& get_final_data_gradient(
) const
{
return subnetwork.get_final_data_gradient();
}
void back_propagate_error(const tensor& x)
{
subnetwork.back_propagate_error(x);
}
template <typename solver_type>
void update_parameters(sstack<solver_type> solvers, double learning_rate)
{
subnetwork.update_parameters(solvers, learning_rate);
}
template <typename solver_type>
void update_parameters(std::vector<solver_type>& solvers, double learning_rate)
{
update_parameters(make_sstack(solvers), learning_rate);
}
const tensor& get_parameter_gradient(
) const { return params_grad; }
tensor& get_parameter_gradient (
) { return params_grad; }
const subnet_type& subnet() const
{
return subnetwork;
}
subnet_type& subnet()
{
return subnetwork;
}
unsigned int sample_expansion_factor() const { return subnet().sample_expansion_factor(); }
void clean()
{
subnetwork.clean();
}
friend void serialize(const add_skip_layer& item, std::ostream& out)
{
int version = 1;
serialize(version, out);
serialize(item.subnetwork, out);
}
friend void deserialize(add_skip_layer& item, std::istream& in)
{
int version = 0;
deserialize(version, in);
if (version != 1)
throw serialization_error("Unexpected version found while deserializing dlib::add_skip_layer.");
deserialize(item.subnetwork, in);
}
friend std::ostream& operator<< (std::ostream& out, const add_skip_layer& item)
{
int min_length = 0;
item.print(out, 0, min_length);
return out;
}
void print (std::ostream& out, unsigned long idx, int& min_length) const
{
out << "layer<" << idx << ">\t"<<impl::tensor_to_str(private_get_output(), min_length) <<"skip"<<id<<"\n";
subnet().print(out, idx+1, min_length);
}
private:
template <typename T, typename U, typename E>
friend class add_layer;
template <typename T, bool is_first, typename E>
friend class dimpl::subnet_wrapper;
template <unsigned long T, typename U, typename E>
friend class add_tag_layer;
template <template<typename> class T, typename U>
friend class add_skip_layer;
template <size_t N, template<typename> class L, typename S>
friend class repeat;
bool this_layer_requires_forward_output(
) { return layer<TAG_TYPE>(subnetwork).this_layer_requires_forward_output(); }
void disable_output_and_gradient_getters (
) { layer<TAG_TYPE>(subnetwork).disable_output_and_gradient_getters(); }
tensor& private_get_output() const
{ return layer<TAG_TYPE>(subnetwork).private_get_output(); }
tensor& private_get_gradient_input()
{ return layer<TAG_TYPE>(subnetwork).private_get_gradient_input(); }
subnet_type subnetwork;
// This member doesn't logically contribute to the state of the object since it is
// always empty. It's just here so we can have the get_parameter_gradient() methods
// which have to return something. So they return this empty tensor.
resizable_tensor params_grad;
};
template <template<typename> class T, typename U>
struct is_nonloss_layer_type<add_skip_layer<T,U>> : std::true_type {};
template <typename SUBNET> using tag1 = add_tag_layer< 1, SUBNET>;
template <typename SUBNET> using tag2 = add_tag_layer< 2, SUBNET>;
template <typename SUBNET> using tag3 = add_tag_layer< 3, SUBNET>;
template <typename SUBNET> using tag4 = add_tag_layer< 4, SUBNET>;
template <typename SUBNET> using tag5 = add_tag_layer< 5, SUBNET>;
template <typename SUBNET> using tag6 = add_tag_layer< 6, SUBNET>;
template <typename SUBNET> using tag7 = add_tag_layer< 7, SUBNET>;
template <typename SUBNET> using tag8 = add_tag_layer< 8, SUBNET>;
template <typename SUBNET> using tag9 = add_tag_layer< 9, SUBNET>;
template <typename SUBNET> using tag10 = add_tag_layer<10, SUBNET>;
template <typename SUBNET> using skip1 = add_skip_layer< tag1, SUBNET>;
template <typename SUBNET> using skip2 = add_skip_layer< tag2, SUBNET>;
template <typename SUBNET> using skip3 = add_skip_layer< tag3, SUBNET>;
template <typename SUBNET> using skip4 = add_skip_layer< tag4, SUBNET>;
template <typename SUBNET> using skip5 = add_skip_layer< tag5, SUBNET>;
template <typename SUBNET> using skip6 = add_skip_layer< tag6, SUBNET>;
template <typename SUBNET> using skip7 = add_skip_layer< tag7, SUBNET>;
template <typename SUBNET> using skip8 = add_skip_layer< tag8, SUBNET>;
template <typename SUBNET> using skip9 = add_skip_layer< tag9, SUBNET>;
template <typename SUBNET> using skip10 = add_skip_layer<tag10, SUBNET>;
// ----------------------------------------------------------------------------------------
namespace timpl
{
inline void fill_with_gassuan_random_numbers (
tensor& t,
dlib::rand& rnd,
double sigma = 1
)
{
float* data = t.host();
for (size_t i = 0; i < t.size(); ++i)
data[i] = rnd.get_random_gaussian()*sigma;
}
class test_layer_subnet
{
public:
test_layer_subnet (
dlib::rand& rnd_
) : rnd(rnd_)
{
// Output and gradient_input have to have the same dimensions in each
// layer.
const long num_samples = rnd.get_random_32bit_number()%4+3;
const long k = rnd.get_random_32bit_number()%4+2;
const long nr = rnd.get_random_32bit_number()%4+2;
const long nc = rnd.get_random_32bit_number()%4+2;
output.set_size(num_samples, k, nr, nc);
gradient_input.set_size(num_samples, k, nr, nc);
// Use a non-zero initial gradient to make sure the layers add to it
// rather than assign and blow away the initial value.
fill_with_gassuan_random_numbers(gradient_input, rnd, 0.01);
fill_with_gassuan_random_numbers(output, rnd);
}
tensor& get_mutable_output() { return output; }
const tensor& get_output() const { return output; }
const tensor& private_get_output() const { return get_output(); }
const test_layer_subnet& subnet() const { init_sub(); return *subnetwork; }
tensor& get_gradient_input() { return gradient_input; }
tensor& private_get_gradient_input() { return get_gradient_input(); }
test_layer_subnet& subnet() { init_sub(); return *subnetwork; }
unsigned long count_outputs() const
{
if (subnetwork)
return subnetwork->count_outputs() + output.size();
else
return output.size();
}
float& get_output_element(unsigned long i)
{
if (i < output.size())
return output.host()[i];
else
return subnet().get_output_element(i-output.size());
}
float get_gradient_input_element(unsigned long i) const
{
if (i < gradient_input.size())
return gradient_input.host()[i];
else
return subnet().get_gradient_input_element(i-gradient_input.size());
}
private:
// We lazily initialize sub-layers as needed when someone tries to call
// subnet()
void init_sub() const
{
if (!subnetwork)
subnetwork.reset(new test_layer_subnet(rnd));
}
dlib::rand& rnd;
mutable std::unique_ptr<test_layer_subnet> subnetwork;
resizable_tensor output;
resizable_tensor gradient_input;
};
}
struct layer_test_results
{
layer_test_results() : was_good(true) {}
explicit layer_test_results(const std::string& l) : log(l),was_good(false) {}
std::string log;
bool was_good;
operator bool() const { return was_good; }
};
inline std::ostream& operator<< (std::ostream& out, const layer_test_results& item)
{
out << item.log;
return out;
}
template <
typename layer_details_type
>
layer_test_results impl_test_layer (
layer_details_type l,
const float base_eps
)
{
using namespace timpl;
// Do some setup
running_stats<double> rs_data, rs_params;
dlib::rand rnd;
std::ostringstream sout;
for (int iter = 0; iter < 10; ++iter)
{
test_layer_subnet subnetwork(rnd);
resizable_tensor output, out2, out3;
// Run setup() and forward() as well to make sure any calls to subnet() have
// happened before we start assuming we know how many data elements there are
// (since we do a lazy layer creation thing based on calls to subnet() inside
// test_layer_subnet).
l.setup(subnetwork);
impl::call_layer_forward(l, subnetwork, output);
resizable_tensor input_grad;
input_grad.copy_size(output);
fill_with_gassuan_random_numbers(input_grad, rnd);
// The f() we are computing gradients of is this thing. It's value at the current
// parameter and data values is:
//sout << "f(data,params): " << dot(output, input_grad) << std::endl;
// We are going to save a copy of the subnetwork.get_gradient_input() data before we do
// backpropagation since the backward() function is supposed to *add* to the
// gradients rather than overwrite them. We will use this saved data to check if
// that is the case.
const unsigned long num_data_inputs = subnetwork.count_outputs();
std::vector<float> initial_gradient_input(num_data_inputs);
for (unsigned long i = 0; i < num_data_inputs; ++i)
initial_gradient_input[i] = subnetwork.get_gradient_input_element(i);
// Now tell the layer to compute all the gradients. In the rest of this function
// we will just be checking that these gradients were computed correctly by
// comparing them to a central differences approximation.
resizable_tensor params_grad;
params_grad.copy_size(l.get_layer_params());
// But first, set the params grad to something crazy so that it's very obvious if
// it doesn't get fully assigned.
params_grad = std::numeric_limits<float>::infinity();
impl::call_layer_backward(l, output, input_grad, subnetwork, params_grad);
static_assert(impl::is_inplace_layer(l, subnetwork) == impl::has_inplace_backward(l, subnetwork),
"Layer not defined correctly. forward and backward methods must either both be in-place or both out-of-place. ");
// Make sure the outputs of forward() and backward() are the same when they are run
// in in-place mode.
if (impl::is_inplace_layer(l, subnetwork))
{
test_layer_subnet subnetwork2(rnd);
layer_details_type ll(l);
ll.setup(subnetwork2);
resizable_tensor ip_out;
impl::call_layer_forward(ll, subnetwork2, ip_out);
impl::call_layer_forward(ll, subnetwork2, subnetwork2.get_mutable_output());
const auto forward_error = max(abs(mat(ip_out) - mat(subnetwork2.get_output())));
if (forward_error > 0.00001)
{
using namespace std;
sout << "This layer is supposed to support in-place computations but the output of forward_inplace()\n";
sout << "changes when invoked in-place vs. out-of-place. The error was: " << forward_error << endl;
return layer_test_results(sout.str());
}
resizable_tensor params_grad;
params_grad.copy_size(ll.get_layer_params());
params_grad = std::numeric_limits<float>::infinity();
resizable_tensor input_grad;
input_grad.copy_size(ip_out);
fill_with_gassuan_random_numbers(input_grad, rnd);
resizable_tensor params_grad1, params_grad2, data_grad1, data_grad2;
params_grad1 = params_grad;
params_grad2 = params_grad;
// Now call backward() and make sure it works as well. Recall that when an
// in-place layer works in-place it assigns to it's outputs but when it's
// not running in-place it adds. So we initialize to a non-zero value to
// check that this is the behavior that really executes.
subnetwork2.get_gradient_input() = 9;
impl::call_layer_backward(ll, ip_out, input_grad, subnetwork2, params_grad1);
data_grad1 = subnetwork2.get_gradient_input();
subnetwork2.get_gradient_input() = mat(input_grad);
impl::call_layer_backward(ll, ip_out, subnetwork2.get_gradient_input(), subnetwork2, params_grad2);
data_grad2 = subnetwork2.get_gradient_input();
if (params_grad.size() != 0)
{
const auto backward_param_error = max(abs(mat(params_grad1) - mat(params_grad2)));
if (backward_param_error > 0.00001)
{
using namespace std;
sout << "This layer is supposed to support in-place computations but the output of backward_inplace()\n";
sout << "changes when invoked in-place vs. out-of-place. The error was: " << backward_param_error << endl;
return layer_test_results(sout.str());
}
}
const auto backward_data_error = max(abs(mat(data_grad1)-9 - mat(data_grad2)));
if (backward_data_error > 0.00001)
{
using namespace std;
sout << "This layer is supposed to support in-place computations but the output of backward_inplace()\n";
sout << "changes when invoked in-place vs. out-of-place. The error was: " << backward_data_error << endl;
return layer_test_results(sout.str());
}
}
// ==================================================================
// first validate the way the parameter gradients are computed
for (unsigned long i = 0; i < params_grad.size(); ++i)
{
layer_details_type l1(l);
float eps = l1.get_layer_params().host()[i]*base_eps;
if (eps == 0)
eps = base_eps;
const float oldval = l1.get_layer_params().host()[i];
l1.get_layer_params().host()[i] = oldval+eps;
impl::call_layer_forward(l1, subnetwork, out2);
l1.get_layer_params().host()[i] = oldval-eps;
impl::call_layer_forward(l1, subnetwork, out3);
l1.get_layer_params().host()[i] = oldval;
// Compute a reference derivative via a central differences approximation and
// compare it to the one output by the layer and make sure they match.
double reference_derivative = (dot(out2,input_grad)-dot(out3, input_grad))/(2*eps);
double output_derivative = params_grad.host()[i];
double relative_error;
if (reference_derivative*output_derivative != 0)
relative_error = (reference_derivative - output_derivative)/(reference_derivative);
else
relative_error = (reference_derivative - output_derivative);
double absolute_error = (reference_derivative - output_derivative);
rs_params.add(std::abs(relative_error));
if (std::abs(relative_error) > 0.05 && std::abs(absolute_error) > 0.006)
{
using namespace std;
sout << "Gradient error in parameter #" << i <<". Relative error: "<< relative_error << endl;
sout << "expected derivative: " << reference_derivative << endl;
sout << "output derivative: " << output_derivative << endl;
sout << "iteration: " << iter << endl;
return layer_test_results(sout.str());
}
}
// ==================================================================
// now validate the data gradients
for (unsigned long i = 0; i < num_data_inputs; ++i)
{
const float oldval = subnetwork.get_output_element(i);
float eps = oldval*base_eps;
if (eps == 0)
eps = base_eps;
subnetwork.get_output_element(i) = oldval+eps;
impl::call_layer_forward(l, subnetwork, out2);
subnetwork.get_output_element(i) = oldval-eps;
impl::call_layer_forward(l, subnetwork, out3);
subnetwork.get_output_element(i) = oldval;
// Compute a reference derivative via a central differences approximation and
// compare it to the one output by the layer and make sure they match.
double reference_derivative = (dot(out2,input_grad)-dot(out3, input_grad))/(2*eps);
double output_derivative = subnetwork.get_gradient_input_element(i);
output_derivative -= initial_gradient_input[i];
double relative_error;
if (reference_derivative*output_derivative != 0)
relative_error = (reference_derivative - output_derivative)/(reference_derivative);
else
relative_error = (reference_derivative - output_derivative);
double absolute_error = (reference_derivative - output_derivative);
rs_data.add(std::abs(relative_error));
if (std::abs(relative_error) > 0.05 && std::abs(absolute_error) > 0.006)
{
using namespace std;
sout << "Gradient error in data variable #" << i <<". Relative error: "<< relative_error << endl;
sout << "expected derivative: " << reference_derivative << endl;
sout << "output derivative: " << output_derivative << endl;
sout << "iteration: " << iter << endl;
return layer_test_results(sout.str());
}
}
} // end for (int iter = 0; iter < 10; ++iter)
if (rs_params.mean() > 0.003)
{
using namespace std;
sout << "Average parameter gradient error is somewhat large at: "<< rs_params.mean() << endl;
return layer_test_results(sout.str());
}
if (rs_data.mean() > 0.003)
{
using namespace std;
sout << "Average data gradient error is somewhat large at: "<< rs_data.mean() << endl;
return layer_test_results(sout.str());
}
return layer_test_results();
}
template <
typename layer_details_type
>
layer_test_results test_layer (
layer_details_type l
)
{
// Try a few different derivative step sizes to see if any work.
for (float base_eps = 0.0001; base_eps < 0.1; base_eps *= 2)
{
auto result = impl_test_layer(l, base_eps);
if (result)
return result;
}
// However, if none of the step sizes worked then try this one and probably result
// in returning an error.
return impl_test_layer(l, 0.01);
}
// ----------------------------------------------------------------------------------------
namespace impl
{
template <size_t i, size_t num>
struct vl_loop
{
template <
typename net_type,
typename visitor
>
static void visit(
net_type& net,
visitor&& v
)
{
// Call whatever version of the visitor the user provided.
call_if_valid(v, i, layer<i>(net));
call_if_valid(v, layer<i>(net));
vl_loop<i+1, num>::visit(net,v);
}
};
template <size_t num>
struct vl_loop<num,num>
{
template <
typename net_type,
typename visitor
>
static void visit(
net_type&,
visitor&&
)
{
// Base case of recursion. Don't do anything.
}
};
template <size_t i, size_t num>
struct vl_loop_backwards
{
template <
typename net_type,
typename visitor
>
static void visit(
net_type& net,
visitor&& v
)
{
vl_loop_backwards<i+1, num>::visit(net,v);
// Call whatever version of the visitor the user provided.
call_if_valid(v, i, layer<i>(net));
call_if_valid(v, layer<i>(net));
}
};
template <size_t num>
struct vl_loop_backwards<num,num>
{
template <
typename net_type,
typename visitor
>
static void visit(
net_type&,
visitor&&
)
{
// Base case of recursion. Don't do anything.
}
};
}
template <
typename net_type,
typename visitor
>
void visit_layers(
net_type& net,
visitor v
)
{
impl::vl_loop<0, net_type::num_layers>::visit(net, v);
}
template <
typename net_type,
typename visitor
>
void visit_layers_backwards(
net_type& net,
visitor v
)
{
impl::vl_loop_backwards<0, net_type::num_layers>::visit(net, v);
}
template <
size_t begin,
size_t end,
typename net_type,
typename visitor
>
void visit_layers_range(
net_type& net,
visitor v
)
{
static_assert(begin <= end, "Invalid range");
static_assert(end <= net_type::num_layers, "Invalid range");
impl::vl_loop<begin,end>::visit(net, v);
}
template <
size_t begin,
size_t end,
typename net_type,
typename visitor
>
void visit_layers_backwards_range(
net_type& net,
visitor v
)
{
static_assert(begin <= end, "Invalid range");
static_assert(end <= net_type::num_layers, "Invalid range");
impl::vl_loop_backwards<begin,end>::visit(net, v);
}
// ----------------------------------------------------------------------------------------
namespace impl
{
template <size_t i, unsigned long tag_id>
struct vl_until_tag
{
template <
typename net_type,
typename next_net_type,
typename visitor
>
static void visit(
net_type& net,
next_net_type& next_net,
visitor&& v
)
{
call_if_valid(v, next_net);
vl_until_tag<i+1,tag_id>::visit(net,layer<i+1>(net),v);
}
template <
typename net_type,
typename SUBNET,
typename visitor
>
static void visit(
net_type& net,
const add_tag_layer<tag_id,SUBNET>& next_net,
visitor&& v
)
{
call_if_valid(v, next_net);
}
template <
typename net_type,
typename SUBNET,
typename visitor
>
static void visit(
net_type& net,
add_tag_layer<tag_id,SUBNET>& next_net,
visitor&& v
)
{
call_if_valid(v, next_net);
}
};
}
template <
unsigned long tag_id,
typename net_type,
typename visitor
>
void visit_layers_until_tag(
net_type& net,
visitor v
)
{
impl::vl_until_tag<0,tag_id>::visit(net, net, v);
}
// ----------------------------------------------------------------------------------------
namespace impl
{
template <
typename visitor
>
class visitor_computational_layer
{
public:
explicit visitor_computational_layer(visitor& v) : v_(v) {}
template <typename layer>
void do_visit(size_t idx, layer& l) const
{
// Call whatever version of the visitor the user provided.
call_if_valid(v_, idx, l.layer_details());
call_if_valid(v_, l.layer_details());
}
// const case
template <typename T, typename U, typename E>
void operator()(size_t idx, const add_layer<T,U,E>& l) const { do_visit(idx, l); }
// non-const cast
template <typename T, typename U, typename E>
void operator()(size_t idx, add_layer<T,U,E>& l) const { do_visit(idx, l); }
private:
visitor& v_;
};
}
template <
typename net_type,
typename visitor
>
void visit_computational_layers(
net_type& net,
visitor v
)
{
visit_layers(net, impl::visitor_computational_layer<visitor>(v));
}
template <
size_t begin,
size_t end,
typename net_type,
typename visitor
>
void visit_computational_layers_range(
net_type& net,
visitor v
)
{
visit_layers_range<begin,end>(net, impl::visitor_computational_layer<visitor>(v));
}
// ----------------------------------------------------------------------------------------
namespace impl
{
template <
typename visitor
>
class visit_layer_parameters
{
public:
explicit visit_layer_parameters(visitor& v) : v_(v) {}
template <typename layer>
void operator()(layer& l)
{
// Call whatever version of the visitor the user provided.
const bool visitor_called = call_if_valid(v_, computational_layer_idx, l.get_layer_params()) ||
call_if_valid(v_, l.get_layer_params());
DLIB_CASSERT(visitor_called, "A visitor function with an incorrect signature was given to visit_layer_parameters()");
++computational_layer_idx;
}
private:
size_t computational_layer_idx = 0;
visitor& v_;
};
}
template <
typename net_type,
typename visitor
>
void visit_layer_parameters(
net_type& net,
visitor v
)
{
visit_computational_layers(net, impl::visit_layer_parameters<visitor>(v));
}
// ----------------------------------------------------------------------------------------
namespace impl
{
template <
typename visitor
>
class visit_layer_parameter_gradients
{
public:
explicit visit_layer_parameter_gradients(visitor& v) : v_(v) {}
template <typename layer>
void do_visit(layer& l)
{
// Call whatever version of the visitor the user provided.
const bool visitor_called = call_if_valid(v_, computational_layer_idx, l.get_parameter_gradient()) ||
call_if_valid(v_, l.get_parameter_gradient());
DLIB_CASSERT(visitor_called, "A visitor function with an incorrect signature was given to visit_layer_parameter_gradients()");
++computational_layer_idx;
}
// const version
template <typename T, typename U, typename E>
void operator()(const add_layer<T,U,E>& l) { do_visit(l); }
// non-const version
template <typename T, typename U, typename E>
void operator()(add_layer<T,U,E>& l) { do_visit(l); }
private:
size_t computational_layer_idx = 0;
visitor& v_;
};
}
template <
typename net_type,
typename visitor
>
void visit_layer_parameter_gradients(
net_type& net,
visitor v
)
{
visit_layers(net, impl::visit_layer_parameter_gradients<visitor>(v));
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_DNn_CORE_H_
|