File size: 31,667 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 |
// Copyright (C) 2003 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_POINT_TrANSFORMS_H_
#define DLIB_POINT_TrANSFORMS_H_
#include "point_transforms_abstract.h"
#include "../algs.h"
#include "vector.h"
#include "../matrix.h"
#include "../matrix/matrix_la.h"
#include "../optimization/optimization.h"
#include "rectangle.h"
#include "drectangle.h"
#include <vector>
#include <cmath>
namespace dlib
{
// ----------------------------------------------------------------------------------------
class point_rotator
{
public:
point_rotator (
)
{
sin_angle = 0;
cos_angle = 1;
}
point_rotator (
const double& angle
)
{
sin_angle = std::sin(angle);
cos_angle = std::cos(angle);
}
template <typename T>
const dlib::vector<T,2> operator() (
const dlib::vector<T,2>& p
) const
{
double x = cos_angle*p.x() - sin_angle*p.y();
double y = sin_angle*p.x() + cos_angle*p.y();
return dlib::vector<double,2>(x,y);
}
const matrix<double,2,2> get_m(
) const
{
matrix<double,2,2> temp;
temp = cos_angle, -sin_angle,
sin_angle, cos_angle;
return temp;
}
inline friend void serialize (const point_rotator& item, std::ostream& out)
{
serialize(item.sin_angle, out);
serialize(item.cos_angle, out);
}
inline friend void deserialize (point_rotator& item, std::istream& in)
{
deserialize(item.sin_angle, in);
deserialize(item.cos_angle, in);
}
private:
double sin_angle;
double cos_angle;
};
// ----------------------------------------------------------------------------------------
class point_transform
{
public:
point_transform (
)
{
sin_angle = 0;
cos_angle = 1;
translate.x() = 0;
translate.y() = 0;
}
point_transform (
const double& angle,
const dlib::vector<double,2>& translate_
)
{
sin_angle = std::sin(angle);
cos_angle = std::cos(angle);
translate = translate_;
}
template <typename T>
const dlib::vector<T,2> operator() (
const dlib::vector<T,2>& p
) const
{
double x = cos_angle*p.x() - sin_angle*p.y();
double y = sin_angle*p.x() + cos_angle*p.y();
return dlib::vector<double,2>(x,y) + translate;
}
const matrix<double,2,2> get_m(
) const
{
matrix<double,2,2> temp;
temp = cos_angle, -sin_angle,
sin_angle, cos_angle;
return temp;
}
const dlib::vector<double,2> get_b(
) const { return translate; }
inline friend void serialize (const point_transform& item, std::ostream& out)
{
serialize(item.sin_angle, out);
serialize(item.cos_angle, out);
serialize(item.translate, out);
}
inline friend void deserialize (point_transform& item, std::istream& in)
{
deserialize(item.sin_angle, in);
deserialize(item.cos_angle, in);
deserialize(item.translate, in);
}
private:
double sin_angle;
double cos_angle;
dlib::vector<double,2> translate;
};
// ----------------------------------------------------------------------------------------
class point_transform_affine
{
public:
point_transform_affine (
)
{
m = identity_matrix<double>(2);
b.x() = 0;
b.y() = 0;
}
point_transform_affine (
const matrix<double,2,2>& m_,
const dlib::vector<double,2>& b_
) :m(m_), b(b_)
{
}
const dlib::vector<double,2> operator() (
const dlib::vector<double,2>& p
) const
{
return m*p + b;
}
const matrix<double,2,2>& get_m(
) const { return m; }
const dlib::vector<double,2>& get_b(
) const { return b; }
inline friend void serialize (const point_transform_affine& item, std::ostream& out)
{
serialize(item.m, out);
serialize(item.b, out);
}
inline friend void deserialize (point_transform_affine& item, std::istream& in)
{
deserialize(item.m, in);
deserialize(item.b, in);
}
private:
matrix<double,2,2> m;
dlib::vector<double,2> b;
};
// ----------------------------------------------------------------------------------------
class rectangle_transform
{
public:
rectangle_transform (
)
{
}
rectangle_transform (
const point_transform_affine& tform_
) :tform(tform_)
{
}
drectangle operator() (
const drectangle& r
) const
{
dpoint tl = r.tl_corner();
dpoint tr = r.tr_corner();
dpoint bl = r.bl_corner();
dpoint br = r.br_corner();
// The new rectangle would ideally have this area if we could actually rotate
// the box. Note the 1+ is because that's how the rectangles calculate their
// width and height.
double new_area = (1+length(tform(tl)-tform(tr)))*(1+length(tform(tl)-tform(bl)));
// But if we rotate the corners of the rectangle and then find the rectangle
// that contains them we get this, which might have a much larger area than we
// want.
drectangle temp;
temp += tform(tl);
temp += tform(tr);
temp += tform(bl);
temp += tform(br);
// so we adjust the area to match the target area and have the same center as
// the above box.
double scale = std::sqrt(new_area/temp.area());
return centered_rect(center(temp), std::round(temp.width()*scale), std::round(temp.height()*scale));
}
rectangle operator() (
const rectangle& r
) const
{
return (*this)(drectangle(r));
}
const point_transform_affine& get_tform(
) const { return tform; }
inline friend void serialize (const rectangle_transform& item, std::ostream& out)
{
serialize(item.tform, out);
}
inline friend void deserialize (rectangle_transform& item, std::istream& in)
{
deserialize(item.tform, in);
}
private:
point_transform_affine tform;
};
// ----------------------------------------------------------------------------------------
inline point_transform_affine operator* (
const point_transform_affine& lhs,
const point_transform_affine& rhs
)
{
return point_transform_affine(lhs.get_m()*rhs.get_m(), lhs.get_m()*rhs.get_b()+lhs.get_b());
}
// ----------------------------------------------------------------------------------------
inline point_transform_affine inv (
const point_transform_affine& trans
)
{
matrix<double,2,2> im = inv(trans.get_m());
return point_transform_affine(im, -im*trans.get_b());
}
// ----------------------------------------------------------------------------------------
template <typename T>
point_transform_affine find_affine_transform (
const std::vector<dlib::vector<T,2> >& from_points,
const std::vector<dlib::vector<T,2> >& to_points
)
{
// make sure requires clause is not broken
DLIB_ASSERT(from_points.size() == to_points.size() &&
from_points.size() >= 3,
"\t point_transform_affine find_affine_transform(from_points, to_points)"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t from_points.size(): " << from_points.size()
<< "\n\t to_points.size(): " << to_points.size()
);
matrix<double,3,0> P(3, from_points.size());
matrix<double,2,0> Q(2, from_points.size());
for (unsigned long i = 0; i < from_points.size(); ++i)
{
P(0,i) = from_points[i].x();
P(1,i) = from_points[i].y();
P(2,i) = 1;
Q(0,i) = to_points[i].x();
Q(1,i) = to_points[i].y();
}
const matrix<double,2,3> m = Q*pinv(P);
return point_transform_affine(subm(m,0,0,2,2), colm(m,2));
}
// ----------------------------------------------------------------------------------------
template <typename T>
point_transform_affine find_similarity_transform (
const std::vector<dlib::vector<T,2> >& from_points,
const std::vector<dlib::vector<T,2> >& to_points
)
{
// make sure requires clause is not broken
DLIB_ASSERT(from_points.size() == to_points.size() &&
from_points.size() >= 2,
"\t point_transform_affine find_similarity_transform(from_points, to_points)"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t from_points.size(): " << from_points.size()
<< "\n\t to_points.size(): " << to_points.size()
);
// We use the formulas from the paper: Least-squares estimation of transformation
// parameters between two point patterns by Umeyama. They are equations 34 through
// 43.
dlib::vector<double,2> mean_from, mean_to;
double sigma_from = 0, sigma_to = 0;
matrix<double,2,2> cov;
cov = 0;
for (unsigned long i = 0; i < from_points.size(); ++i)
{
mean_from += from_points[i];
mean_to += to_points[i];
}
mean_from /= from_points.size();
mean_to /= from_points.size();
for (unsigned long i = 0; i < from_points.size(); ++i)
{
sigma_from += length_squared(from_points[i] - mean_from);
sigma_to += length_squared(to_points[i] - mean_to);
cov += (to_points[i] - mean_to)*trans(from_points[i] - mean_from);
}
sigma_from /= from_points.size();
sigma_to /= from_points.size();
cov /= from_points.size();
matrix<double,2,2> u, v, s, d;
svd(cov, u,d,v);
s = identity_matrix(cov);
if (det(cov) < 0 || (det(cov) == 0 && det(u)*det(v)<0))
{
if (d(1,1) < d(0,0))
s(1,1) = -1;
else
s(0,0) = -1;
}
matrix<double,2,2> r = u*s*trans(v);
double c = 1;
if (sigma_from != 0)
c = 1.0/sigma_from * trace(d*s);
vector<double,2> t = mean_to - c*r*mean_from;
return point_transform_affine(c*r, t);
}
// ----------------------------------------------------------------------------------------
class point_transform_projective
{
public:
point_transform_projective (
)
{
m = identity_matrix<double>(3);
}
point_transform_projective (
const matrix<double,3,3>& m_
) :m(m_)
{
}
point_transform_projective (
const point_transform_affine& tran
)
{
set_subm(m, 0,0, 2,2) = tran.get_m();
set_subm(m, 0,2, 2,1) = tran.get_b();
m(2,0) = 0;
m(2,1) = 0;
m(2,2) = 1;
}
const dlib::vector<double,2> operator() (
const dlib::vector<double,2>& p
) const
{
dlib::vector<double,3> temp(p);
temp.z() = 1;
temp = m*temp;
if (temp.z() != 0)
temp = temp/temp.z();
return temp;
}
const matrix<double,3,3>& get_m(
) const { return m; }
inline friend void serialize (const point_transform_projective& item, std::ostream& out)
{
serialize(item.m, out);
}
inline friend void deserialize (point_transform_projective& item, std::istream& in)
{
deserialize(item.m, in);
}
private:
matrix<double,3,3> m;
};
// ----------------------------------------------------------------------------------------
inline point_transform_projective operator* (
const point_transform_projective& lhs,
const point_transform_projective& rhs
)
{
return point_transform_projective(lhs.get_m()*rhs.get_m());
}
// ----------------------------------------------------------------------------------------
inline point_transform_projective inv (
const point_transform_projective& trans
)
{
return point_transform_projective(inv(trans.get_m()));
}
// ----------------------------------------------------------------------------------------
namespace impl_proj
{
inline point_transform_projective find_projective_transform_basic (
const std::vector<dlib::vector<double,2> >& from_points,
const std::vector<dlib::vector<double,2> >& to_points
)
/*!
ensures
- Uses the system of equations approach to finding a projective transform.
This is "Method 3" from Estimating Projective Transformation Matrix by
Zhengyou Zhang.
- It should be emphasized that the find_projective_transform_basic()
routine, which uses the most popular method for finding projective
transformations, doesn't really work well when the minimum error solution
doesn't have zero error. In this case, it can deviate by a large amount
from the proper minimum mean squared error transformation. Therefore,
our overall strategy will be to use the solution from
find_projective_transform_basic() as a starting point for a BFGS based
non-linear optimizer which will optimize the correct mean squared error
criterion.
A great essay on this subject is Homography Estimation by Elan Dubrofsky.
!*/
{
// make sure requires clause is not broken
DLIB_ASSERT(from_points.size() == to_points.size() &&
from_points.size() >= 4,
"\t point_transform_projective find_projective_transform_basic(from_points, to_points)"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t from_points.size(): " << from_points.size()
<< "\n\t to_points.size(): " << to_points.size()
);
matrix<double,9,9> accum, u, v;
matrix<double,9,1> w;
matrix<double,2,9> B;
accum = 0;
B = 0;
for (unsigned long i = 0; i < from_points.size(); ++i)
{
dlib::vector<double,3> f = from_points[i];
f.z() = 1;
dlib::vector<double,3> t = to_points[i];
t.z() = 1;
set_subm(B,0,0,1,3) = t.y()*trans(f);
set_subm(B,1,0,1,3) = trans(f);
set_subm(B,0,3,1,3) = -t.x()*trans(f);
set_subm(B,1,6,1,3) = -t.x()*trans(f);
accum += trans(B)*B;
}
svd2(true, false, accum, u, w, v);
long j = index_of_min(w);
return point_transform_projective(reshape(colm(u,j),3,3));
}
// ----------------------------------------------------------------------------------------
struct obj
{
/*!
WHAT THIS OBJECT REPRESENTS
This is the objective function we really want to minimize when looking
for a transformation matrix. That is, we would like the transformed
points to be as close as possible to their "to" points. Here,
closeness is measured using Euclidean distance.
!*/
obj(
const std::vector<dlib::vector<double,2> >& from_points_,
const std::vector<dlib::vector<double,2> >& to_points_
) :
from_points(from_points_) ,
to_points(to_points_)
{}
const std::vector<dlib::vector<double,2> >& from_points;
const std::vector<dlib::vector<double,2> >& to_points;
double operator() (
const matrix<double,9,1>& p
) const
{
point_transform_projective tran(reshape(p,3,3));
double sum = 0;
for (unsigned long i = 0; i < from_points.size(); ++i)
{
sum += length_squared(tran(from_points[i]) - to_points[i]);
}
return sum;
}
};
struct obj_der
{
/*!
WHAT THIS OBJECT REPRESENTS
This is the derivative of obj.
!*/
obj_der(
const std::vector<dlib::vector<double,2> >& from_points_,
const std::vector<dlib::vector<double,2> >& to_points_
) :
from_points(from_points_) ,
to_points(to_points_)
{}
const std::vector<dlib::vector<double,2> >& from_points;
const std::vector<dlib::vector<double,2> >& to_points;
matrix<double,9,1> operator() (
const matrix<double,9,1>& p
) const
{
const matrix<double,3,3> H = reshape(p,3,3);
matrix<double,3,3> grad;
grad = 0;
for (unsigned long i = 0; i < from_points.size(); ++i)
{
dlib::vector<double,3> from, to;
from = from_points[i];
from.z() = 1;
to = to_points[i];
to.z() = 1;
matrix<double,3,1> w = H*from;
const double scale = (w(2) != 0) ? (1.0/w(2)) : (1);
w *= scale;
matrix<double,3,1> residual = (w-to)*2*scale;
grad(0,0) += from.x()*residual(0);
grad(0,1) += from.y()*residual(0);
grad(0,2) += residual(0);
grad(1,0) += from.x()*residual(1);
grad(1,1) += from.y()*residual(1);
grad(1,2) += residual(1);
grad(2,0) += -(from.x()*w(0)*residual(0) + from.x()*w(1)*residual(1));
grad(2,1) += -(from.y()*w(0)*residual(0) + from.y()*w(1)*residual(1));
grad(2,2) += -( w(0)*residual(0) + w(1)*residual(1));
}
return reshape_to_column_vector(grad);
}
};
}
// ----------------------------------------------------------------------------------------
inline point_transform_projective find_projective_transform (
const std::vector<dlib::vector<double,2> >& from_points,
const std::vector<dlib::vector<double,2> >& to_points
)
{
using namespace impl_proj;
// make sure requires clause is not broken
DLIB_ASSERT(from_points.size() == to_points.size() &&
from_points.size() >= 4,
"\t point_transform_projective find_projective_transform(from_points, to_points)"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t from_points.size(): " << from_points.size()
<< "\n\t to_points.size(): " << to_points.size()
);
// Find a candidate projective transformation. Also, find the best affine
// transform and then compare it with the projective transform estimated using the
// direct SVD method. Use whichever one works better as the starting point for a
// BFGS based optimizer. If the best solution has large mean squared error and is
// also close to affine then find_projective_transform_basic() might give a very
// bad initial guess. So also checking for a good affine transformation can
// produce a much better final result in many cases.
point_transform_projective tran1 = find_projective_transform_basic(from_points, to_points);
point_transform_affine tran2 = find_affine_transform(from_points, to_points);
// check which is best
double error1 = 0;
double error2 = 0;
for (unsigned long i = 0; i < from_points.size(); ++i)
{
error1 += length_squared(tran1(from_points[i])-to_points[i]);
error2 += length_squared(tran2(from_points[i])-to_points[i]);
}
matrix<double,9,1> params;
// Pick the minimum error solution among the two so far.
if (error1 < error2)
params = reshape_to_column_vector(tran1.get_m());
else
params = reshape_to_column_vector(point_transform_projective(tran2).get_m());
// Now refine the transformation matrix so that we can be sure we have
// at least a local minimizer.
obj o(from_points, to_points);
obj_der der(from_points, to_points);
find_min(bfgs_search_strategy(),
objective_delta_stop_strategy(1e-6,100),
o,
der,
params,
0);
return point_transform_projective(reshape(params,3,3));
}
// ----------------------------------------------------------------------------------------
template <typename T>
const dlib::vector<T,2> rotate_point (
const dlib::vector<T,2>& center,
const dlib::vector<T,2>& p,
double angle
)
{
point_rotator rot(angle);
return rot(p-center)+center;
}
// ----------------------------------------------------------------------------------------
inline matrix<double,2,2> rotation_matrix (
double angle
)
{
const double ca = std::cos(angle);
const double sa = std::sin(angle);
matrix<double,2,2> m;
m = ca, -sa,
sa, ca;
return m;
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
class point_transform_affine3d
{
public:
point_transform_affine3d (
)
{
m = identity_matrix<double>(3);
b.x() = 0;
b.y() = 0;
}
point_transform_affine3d (
const matrix<double,3,3>& m_,
const dlib::vector<double,3>& b_
) :m(m_), b(b_)
{
}
const dlib::vector<double,3> operator() (
const dlib::vector<double,3>& p
) const
{
return m*p + b;
}
const matrix<double,3,3>& get_m(
) const { return m; }
const dlib::vector<double,3>& get_b(
) const { return b; }
inline friend void serialize (const point_transform_affine3d& item, std::ostream& out)
{
serialize(item.m, out);
serialize(item.b, out);
}
inline friend void deserialize (point_transform_affine3d& item, std::istream& in)
{
deserialize(item.m, in);
deserialize(item.b, in);
}
private:
matrix<double,3,3> m;
dlib::vector<double,3> b;
};
// ----------------------------------------------------------------------------------------
inline point_transform_affine3d operator* (
const point_transform_affine3d& lhs,
const point_transform_affine& rhs
)
{
matrix<double,3,3> m;
m = 0;
set_subm(m, get_rect(rhs.get_m())) = rhs.get_m();
vector<double,3> b = rhs.get_b();
return point_transform_affine3d(lhs.get_m()*m, lhs.get_m()*b+lhs.get_b());
}
// ----------------------------------------------------------------------------------------
inline point_transform_affine3d operator* (
const point_transform_affine3d& lhs,
const point_transform_affine3d& rhs
)
{
return point_transform_affine3d(lhs.get_m()*rhs.get_m(), lhs.get_m()*rhs.get_b()+lhs.get_b());
}
// ----------------------------------------------------------------------------------------
inline point_transform_affine3d inv (
const point_transform_affine3d& trans
)
{
matrix<double,3,3> im = inv(trans.get_m());
return point_transform_affine3d(im, -im*trans.get_b());
}
// ----------------------------------------------------------------------------------------
inline point_transform_affine3d rotate_around_x (
double angle
)
{
const double ca = std::cos(angle);
const double sa = std::sin(angle);
matrix<double,3,3> m;
m = 1, 0, 0,
0, ca, -sa,
0, sa, ca;
vector<double,3> b;
return point_transform_affine3d(m,b);
}
// ----------------------------------------------------------------------------------------
inline point_transform_affine3d rotate_around_y (
double angle
)
{
const double ca = std::cos(angle);
const double sa = std::sin(angle);
matrix<double,3,3> m;
m = ca, 0, sa,
0, 1, 0,
-sa, 0, ca;
vector<double,3> b;
return point_transform_affine3d(m,b);
}
// ----------------------------------------------------------------------------------------
inline point_transform_affine3d rotate_around_z (
double angle
)
{
const double ca = std::cos(angle);
const double sa = std::sin(angle);
matrix<double,3,3> m;
m = ca, -sa, 0,
sa, ca, 0,
0, 0, 1;
vector<double,3> b;
return point_transform_affine3d(m,b);
}
// ----------------------------------------------------------------------------------------
inline point_transform_affine3d translate_point (
const vector<double,3>& delta
)
{
return point_transform_affine3d(identity_matrix<double>(3),delta);
}
inline point_transform_affine3d translate_point (
double x,
double y,
double z
)
{
return translate_point(vector<double>(x,y,z));
}
// ----------------------------------------------------------------------------------------
class camera_transform
{
public:
camera_transform (
)
{
*this = camera_transform(vector<double>(1,1,1),
vector<double>(0,0,0),
vector<double>(0,0,1),
90,
1);
}
camera_transform (
const vector<double>& camera_pos_,
const vector<double>& camera_looking_at_,
const vector<double>& camera_up_direction_,
const double camera_field_of_view_,
const unsigned long num_pixels_
)
{
// make sure requires clause is not broken
DLIB_CASSERT(0 < camera_field_of_view_ && camera_field_of_view_ < 180,
"\t camera_transform::camera_transform()"
<< "\n\t Invalid inputs were given to this function."
<< "\n\t camera_field_of_view_: " << camera_field_of_view_
);
camera_pos = camera_pos_;
camera_looking_at = camera_looking_at_;
camera_up_direction = camera_up_direction_;
camera_field_of_view = camera_field_of_view_;
num_pixels = num_pixels_;
dlib::vector<double> X,Y,Z;
Z = (camera_looking_at - camera_pos).normalize();
Y = camera_up_direction - dot(camera_up_direction,Z)*Z;
Y = Y.normalize();
X = Z.cross(Y);
set_rowm(proj,0) = trans(X);
// Minus because images have y axis going down but we want the 3d projection to appear using a normal coordinate system with y going up.
set_rowm(proj,1) = -trans(Y);
set_rowm(proj,2) = trans(Z);
width = num_pixels/2.0;
dist_scale = width/std::tan(pi/180*camera_field_of_view/2);
}
vector<double> get_camera_pos() const { return camera_pos; }
vector<double> get_camera_looking_at() const { return camera_looking_at; }
vector<double> get_camera_up_direction()const { return camera_up_direction; }
double get_camera_field_of_view() const { return camera_field_of_view; }
unsigned long get_num_pixels() const { return num_pixels; }
inline dpoint operator() (
const vector<double>& p,
double& scale,
double& distance
) const
{
vector<double> temp = p-camera_pos;
temp = proj*temp;
distance = temp.z();
scale = dist_scale/(temp.z()>0 ? temp.z() : 1e-9);
temp.x() = temp.x()*scale + width;
temp.y() = temp.y()*scale + width;
return temp;
}
dpoint operator() (
const vector<double>& p
) const
{
double scale, distance;
return (*this)(p,scale,distance);
}
inline friend void serialize (const camera_transform& item, std::ostream& out)
{
serialize(item.camera_pos, out);
serialize(item.camera_looking_at, out);
serialize(item.camera_up_direction, out);
serialize(item.camera_field_of_view, out);
serialize(item.num_pixels, out);
serialize(item.proj, out);
serialize(item.dist_scale, out);
serialize(item.width, out);
}
inline friend void deserialize (camera_transform& item, std::istream& in)
{
deserialize(item.camera_pos, in);
deserialize(item.camera_looking_at, in);
deserialize(item.camera_up_direction, in);
deserialize(item.camera_field_of_view, in);
deserialize(item.num_pixels, in);
deserialize(item.proj, in);
deserialize(item.dist_scale, in);
deserialize(item.width, in);
}
private:
vector<double> camera_pos;
vector<double> camera_looking_at;
vector<double> camera_up_direction;
double camera_field_of_view;
unsigned long num_pixels;
matrix<double,3,3> proj;
double dist_scale;
double width;
};
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_POINT_TrANSFORMS_H_
|