File size: 26,286 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
// Copyright (C) 2017  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#ifndef DLIB_FiND_GLOBAL_MAXIMUM_hH_
#define DLIB_FiND_GLOBAL_MAXIMUM_hH_

#include "find_max_global_abstract.h"
#include "global_function_search.h"
#include "../metaprogramming.h"
#include <utility>
#include <chrono>
#include <memory>
#include <thread>
#include <functional>
#include "../threads/thread_pool_extension.h"
#include "../statistics/statistics.h"
#include "../enable_if.h"

namespace dlib
{
    namespace gopt_impl
    {

    // ----------------------------------------------------------------------------------------

        class disable_decay_to_scalar 
        {
            const matrix<double,0,1>& a;
        public:
            disable_decay_to_scalar(const matrix<double,0,1>& a) : a(a){}
            operator const matrix<double,0,1>&() const { return a;}
        };


        template <typename T, size_t... indices> 
        auto _cwv (
            T&& f, 
            const matrix<double,0,1>& a, 
            compile_time_integer_list<indices...>
        ) -> decltype(f(a(indices-1)...)) 
        {
            DLIB_CASSERT(a.size() == sizeof...(indices), 
                "You invoked dlib::call_function_and_expand_args(f,a) but the number of arguments expected by f() doesn't match the size of 'a'. "
                << "Expected " << sizeof...(indices) << " arguments but got " << a.size() << "."
            );  
            return f(a(indices-1)...); 
        }

        // Visual studio, as of November 2017, doesn't support C++11 and can't compile this code.  
        // So we write the terrible garbage in the #else for visual studio.  When Visual Studio supports C++11 I'll update this #ifdef to use the C++11 code.
#ifndef _MSC_VER 
        template <size_t max_unpack>
        struct call_function_and_expand_args
        {
            template <typename T>
            static auto go(T&& f, const matrix<double,0,1>& a) -> decltype(_cwv(std::forward<T>(f),a,typename make_compile_time_integer_range<max_unpack>::type()))
            {
                return _cwv(std::forward<T>(f),a,typename make_compile_time_integer_range<max_unpack>::type());
            }

            template <typename T>
            static auto go(T&& f, const matrix<double,0,1>& a) -> decltype(call_function_and_expand_args<max_unpack-1>::template go(std::forward<T>(f),a))
            {
                return call_function_and_expand_args<max_unpack-1>::go(std::forward<T>(f),a);
            }
        };

        template <>
        struct call_function_and_expand_args<0>
        {
            template <typename T>
            static auto go(T&& f, const matrix<double,0,1>& a) -> decltype(f(disable_decay_to_scalar(a)))
            {
                return f(disable_decay_to_scalar(a));
            }
        };
#else
        template <size_t max_unpack>
        struct call_function_and_expand_args
        {         
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(disable_decay_to_scalar(a)))  {return f(disable_decay_to_scalar(a));   }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0))) { DLIB_CASSERT(a.size() == 1); return f(a(0)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0),a(1))) { DLIB_CASSERT(a.size() == 2); return f(a(0),a(1)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0), a(1), a(2))) { DLIB_CASSERT(a.size() == 3); return f(a(0), a(1),a(2)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0), a(1), a(2), a(3))) { DLIB_CASSERT(a.size() == 4); return f(a(0), a(1), a(2), a(3)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0), a(1), a(2), a(3), a(4))) { DLIB_CASSERT(a.size() == 5); return f(a(0), a(1), a(2), a(3), a(4)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0), a(1), a(2), a(3), a(4), a(5))) { DLIB_CASSERT(a.size() == 6); return f(a(0), a(1), a(2), a(3), a(4), a(5)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0), a(1), a(2), a(3), a(4), a(5), a(6))) { DLIB_CASSERT(a.size() == 7); return f(a(0), a(1), a(2), a(3), a(4), a(5), a(6)); }
        };
#endif
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    template <typename T> 
    auto call_function_and_expand_args(
        T&& f, 
        const matrix<double,0,1>& a
    ) -> decltype(gopt_impl::call_function_and_expand_args<40>::go(f,a))
    {
        // unpack up to 40 parameters when calling f()
        return gopt_impl::call_function_and_expand_args<40>::go(std::forward<T>(f),a);
    }

// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------

    struct max_function_calls
    {
        max_function_calls() = default;
        explicit max_function_calls(size_t max_calls) : max_calls(max_calls) {}
        size_t max_calls = std::numeric_limits<size_t>::max();
    };

// ----------------------------------------------------------------------------------------

    const auto FOREVER = std::chrono::hours(24*365*290); // 290 years
    using stop_condition = std::function<bool(double)>;
    const stop_condition never_stop_early = [](double) { return false; };

// ----------------------------------------------------------------------------------------

    namespace impl
    {
        template <
            typename funct
            >
        std::pair<size_t,function_evaluation> find_max_global (
            double ymult,
            thread_pool& tp,
            std::vector<funct>& functions,
            std::vector<function_spec> specs,
            const max_function_calls num,
            const std::chrono::nanoseconds max_runtime = FOREVER,
            double solver_epsilon = 0,
            std::vector<std::vector<function_evaluation>> initial_function_evals = {},
            stop_condition should_stop = never_stop_early
        ) 
        {
            // Decide which parameters should be searched on a log scale.  Basically, it's
            // common for machine learning models to have parameters that should be searched on
            // a log scale (e.g. SVM C).  These parameters are usually identifiable because
            // they have bounds like [1e-5 1e10], that is, they span a very large range of
            // magnitudes from really small to really big.  So there we are going to check for
            // that and if we find parameters with that kind of bound constraints we will
            // transform them to a log scale automatically.
            std::vector<std::vector<bool>> log_scale(specs.size());
            for (size_t i = 0; i < specs.size(); ++i)
            {
                for (long j = 0; j < specs[i].lower.size(); ++j)
                {
                    if (!specs[i].is_integer_variable[j] && specs[i].lower(j) > 0 && specs[i].upper(j)/specs[i].lower(j) >= 1000)
                    {
                        log_scale[i].push_back(true);
                        specs[i].lower(j) = std::log(specs[i].lower(j));
                        specs[i].upper(j) = std::log(specs[i].upper(j));
                    }
                    else
                    {
                        log_scale[i].push_back(false);
                    }
                }
            }

            if (initial_function_evals.empty()) 
            {
                initial_function_evals.resize(specs.size());
            }
            for (auto& evals : initial_function_evals) {
                for (auto& eval : evals) {
                    eval.y *= ymult;
                }
            }

            global_function_search opt(specs, {initial_function_evals});
            opt.set_solver_epsilon(solver_epsilon);

            running_stats_decayed<double> objective_funct_eval_time(functions.size()*5);
            std::mutex eval_time_mutex;
            using namespace std::chrono;

            const auto time_to_stop = steady_clock::now() + max_runtime;
            //atomic<bool> doesn't support .fetch_or, use std::atomic<int> instead
            std::atomic<int> this_should_stop{false};

            double max_solver_overhead_time = 0;

            // Now run the main solver loop.
            for (size_t i = 0; i < num.max_calls && steady_clock::now() < time_to_stop && !this_should_stop.load(); ++i)
            {
                const auto get_next_x_start_time = steady_clock::now();
                auto next = std::make_shared<function_evaluation_request>(opt.get_next_x());
                const auto get_next_x_runtime = steady_clock::now() - get_next_x_start_time;

                auto execute_call = [&functions,&ymult,&log_scale,&eval_time_mutex,&objective_funct_eval_time,next,&should_stop,&this_should_stop]() {
                    matrix<double,0,1> x = next->x();
                    // Undo any log-scaling that was applied to the variables before we pass them
                    // to the functions being optimized.
                    for (long j = 0; j < x.size(); ++j)
                    {
                        if (log_scale[next->function_idx()][j])
                            x(j) = std::exp(x(j));
                    }
                    const auto funct_eval_start = steady_clock::now();
                    double y = ymult*call_function_and_expand_args(functions[next->function_idx()], x);
                    const double funct_eval_runtime = duration_cast<nanoseconds>(steady_clock::now() - funct_eval_start).count();
                    this_should_stop.fetch_or(should_stop(y*ymult));
                    next->set(y);
                    
                    std::lock_guard<std::mutex> lock(eval_time_mutex);
                    objective_funct_eval_time.add(funct_eval_runtime);
                };

                tp.add_task_by_value(execute_call);

                std::lock_guard<std::mutex> lock(eval_time_mutex);
                const double obj_funct_time = objective_funct_eval_time.mean()/std::max(1ul,tp.num_threads_in_pool());
                const double solver_overhead_time = duration_cast<nanoseconds>(get_next_x_runtime).count();
                max_solver_overhead_time = std::max(max_solver_overhead_time, solver_overhead_time);
                // Don't start thinking about the logic below until we have at least 5 objective
                // function samples for each objective function.  This way we have a decent idea how
                // fast these things are.  The solver overhead is really small initially so none of
                // the stuff below really matters in the beginning anyway.
                if (objective_funct_eval_time.current_n() > functions.size()*5) 
                {
                    // If calling opt.get_next_x() is taking a long time relative to how long it takes
                    // to evaluate the objective function then we should spend less time grinding on the
                    // internal details of the optimizer and more time running the actual objective
                    // function.  E.g. if we could just run 2x more objective function calls in the same
                    // amount of time then we should just do that.  The main slowness in the solver is
                    // from the Monte Carlo sampling, which we can turn down if the objective function
                    // is really fast to evaluate.  This is because the point of the Monte Carlo part is
                    // to try really hard to avoid calls to really expensive objective functions.  But
                    // if the objective function is not expensive then we should just call it.
                    if (obj_funct_time < solver_overhead_time) 
                    {
                        // Reduce the amount of Monte Carlo sampling we do.  If it goes low enough
                        // we will disable it altogether.
                        const size_t new_val = static_cast<size_t>(std::floor(opt.get_monte_carlo_upper_bound_sample_num()*0.8));
                        opt.set_monte_carlo_upper_bound_sample_num(std::max<size_t>(1, new_val));
                        // At this point just disable the upper bounding Monte Carlo search stuff and
                        // use only pure random search since the objective function is super cheap to
                        // evaluate, making this more fancy search a waste of time.
                        if (opt.get_monte_carlo_upper_bound_sample_num() == 1) 
                        {
                            opt.set_pure_random_search_probability(1);
                        }
                    } else if (obj_funct_time > 1.5*max_solver_overhead_time) // Consider reenabling
                    {
                        // The Monte Carlo overhead grows over time as the solver accumulates more
                        // information about the objective function.  So we only want to reenable it
                        // or make it bigger if the objective function really is more expensive.  So
                        // we compare to the max solver runtime we have seen so far. If the
                        // objective function has suddenly gotten more expensive then we start to
                        // turn the Monte Carlo modeling back on.
                        const size_t new_val = static_cast<size_t>(std::ceil(opt.get_monte_carlo_upper_bound_sample_num()*1.28));
                        opt.set_monte_carlo_upper_bound_sample_num(std::min<size_t>(5000, new_val));
                        // Set this back to its default value.
                        opt.set_pure_random_search_probability(0.02);
                    }
                }
            }
            tp.wait_for_all_tasks();


            matrix<double,0,1> x;
            double y;
            size_t function_idx;
            opt.get_best_function_eval(x,y,function_idx);
            // Undo any log-scaling that was applied to the variables before we output them. 
            for (long j = 0; j < x.size(); ++j)
            {
                if (log_scale[function_idx][j])
                    x(j) = std::exp(x(j));
            }
            return std::make_pair(function_idx, function_evaluation(x,y/ymult));
        }

        // This overload allows the order of max_runtime and num to be reversed.
        template <
            typename funct,
            typename ...Args
            >
        std::pair<size_t,function_evaluation> find_max_global (
            double ymult,
            thread_pool& tp,
            std::vector<funct>& functions,
            std::vector<function_spec> specs,
            const std::chrono::nanoseconds max_runtime,
            const max_function_calls num,
            double solver_epsilon = 0,
            Args&& ...args
        ) 
        {
            return find_max_global(ymult, tp, functions, std::move(specs), num, max_runtime, solver_epsilon, std::forward<Args>(args)...);
        }

        // This overload allows the num argument to be skipped.
        template <
            typename funct,
            typename ...Args
            >
        std::pair<size_t,function_evaluation> find_max_global (
            double ymult,
            thread_pool& tp,
            std::vector<funct>& functions,
            std::vector<function_spec> specs,
            const std::chrono::nanoseconds max_runtime,
            double solver_epsilon = 0,
            Args&& ...args
        ) 
        {
            return find_max_global(ymult, tp, functions, std::move(specs), max_function_calls(), max_runtime, solver_epsilon, std::forward<Args>(args)...);
        }

        // This overload allows the max_runtime argument to be skipped.
        template <
            typename funct,
            typename ...Args
            >
        std::pair<size_t,function_evaluation> find_max_global (
            double ymult,
            thread_pool& tp,
            std::vector<funct>& functions,
            std::vector<function_spec> specs,
            const max_function_calls num,
            double solver_epsilon,
            Args&& ...args
        ) 
        {
            return find_max_global(ymult, tp, functions, std::move(specs), num, FOREVER, solver_epsilon, std::forward<Args>(args)...);
        }

        // This overload makes the thread_pool argument optional.
        template <
            typename funct,
            typename ...Args
            >
        std::pair<size_t,function_evaluation> find_max_global (
            double ymult,
            std::vector<funct>& functions,
            Args&& ...args
        ) 
        {
            // disabled, don't use any threads
            thread_pool tp(0);

            return find_max_global(ymult, tp, functions, std::forward<Args>(args)...);
        }

        // The point of normalize() is to handle some of the overloaded argument types in
        // find_max_global() instances below and turn them into the argument types expected by
        // find_max_global() above.
        template <typename T>
        const T& normalize(const T& item) 
        {
            return item;
        }

        inline std::vector<std::vector<function_evaluation>> normalize(
            const std::vector<function_evaluation>& initial_function_evals
        )
        {
            return {initial_function_evals};
        }
    }

// ----------------------------------------------------------------------------------------

    template <
        typename funct,
        typename ...Args
        >
    std::pair<size_t,function_evaluation> find_max_global (
        std::vector<funct>& functions,
        std::vector<function_spec> specs,
        Args&& ...args
    ) 
    {
        return impl::find_max_global(+1, functions, std::move(specs), std::forward<Args>(args)...);
    }

    template <
        typename funct,
        typename ...Args
        >
    std::pair<size_t,function_evaluation> find_min_global (
        std::vector<funct>& functions,
        std::vector<function_spec> specs,
        Args&& ...args
    ) 
    {
        return impl::find_max_global(-1, functions, std::move(specs), std::forward<Args>(args)...);
    }

    template <
        typename funct,
        typename ...Args
        >
    std::pair<size_t,function_evaluation> find_max_global (
        thread_pool& tp,
        std::vector<funct>& functions,
        std::vector<function_spec> specs,
        Args&& ...args
    ) 
    {
        return impl::find_max_global(+1, tp, functions, std::move(specs), std::forward<Args>(args)...);
    }

    template <
        typename funct,
        typename ...Args
        >
    std::pair<size_t,function_evaluation> find_min_global (
        thread_pool& tp,
        std::vector<funct>& functions,
        std::vector<function_spec> specs,
        Args&& ...args
    ) 
    {
        return impl::find_max_global(-1, tp, functions, std::move(specs), std::forward<Args>(args)...);
    }

// ----------------------------------------------------------------------------------------

// Overloads that take function objects and simple matrix bounds instead of function_specs.
    template <
        typename funct,
        typename ...Args
        >
    function_evaluation find_max_global (
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const std::vector<bool>& is_integer_variable,
        Args&& ...args
    ) 
    {
        std::vector<funct> functions(1,std::move(f));
        std::vector<function_spec> specs(1, function_spec(bound1, bound2, is_integer_variable));
        return find_max_global(functions, std::move(specs), impl::normalize(args)...).second;
    }

    template <
        typename funct,
        typename ...Args
        >
    function_evaluation find_min_global (
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const std::vector<bool>& is_integer_variable,
        Args&& ...args
    ) 
    {
        std::vector<funct> functions(1,std::move(f));
        std::vector<function_spec> specs(1, function_spec(bound1, bound2, is_integer_variable));
        return find_min_global(functions, std::move(specs), impl::normalize(args)...).second;
    }

    template <
        typename funct,
        typename ...Args
        >
    function_evaluation find_max_global (
        thread_pool& tp,
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const std::vector<bool>& is_integer_variable,
        Args&& ...args
    ) 
    {
        std::vector<funct> functions(1,std::move(f));
        std::vector<function_spec> specs(1, function_spec(bound1, bound2, is_integer_variable));
        return find_max_global(tp, functions, std::move(specs), impl::normalize(args)...).second;
    }

    template <
        typename funct,
        typename ...Args
        >
    function_evaluation find_min_global (
        thread_pool& tp,
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const std::vector<bool>& is_integer_variable,
        Args&& ...args
    ) 
    {
        std::vector<funct> functions(1,std::move(f));
        std::vector<function_spec> specs(1, function_spec(bound1, bound2, is_integer_variable));
        return find_min_global(tp, functions, std::move(specs), impl::normalize(args)...).second;
    }

// ----------------------------------------------------------------------------------------

// overloads that are the same as above, but is_integer_variable defaulted to false for all parameters.
    template <
        typename funct,
        typename T,
        typename ...Args
        >
    typename disable_if<std::is_same<T,std::vector<bool>>, function_evaluation>::type 
    find_max_global (
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const T& arg,
        Args&& ...args
    ) 
    {
        const std::vector<bool> is_integer_variable(bound1.size(),false);
        return find_max_global(std::move(f), bound1, bound2, is_integer_variable, arg, impl::normalize(args)...);
    }

    template <
        typename funct,
        typename T,
        typename ...Args
        >
    typename disable_if<std::is_same<T,std::vector<bool>>, function_evaluation>::type 
    find_min_global (
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const T& arg,
        Args&& ...args
    ) 
    {
        const std::vector<bool> is_integer_variable(bound1.size(),false);
        return find_min_global(std::move(f), bound1, bound2, is_integer_variable, arg, impl::normalize(args)...);
    }

    template <
        typename funct,
        typename T,
        typename ...Args
        >
    typename disable_if<std::is_same<T,std::vector<bool>>, function_evaluation>::type 
    find_max_global (
        thread_pool& tp,
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const T& arg,
        Args&& ...args
    ) 
    {
        const std::vector<bool> is_integer_variable(bound1.size(),false);
        return find_max_global(tp, std::move(f), bound1, bound2, is_integer_variable, arg, impl::normalize(args)...);
    }

    template <
        typename funct,
        typename T,
        typename ...Args
        >
    typename disable_if<std::is_same<T,std::vector<bool>>, function_evaluation>::type 
    find_min_global (
        thread_pool& tp,
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const T& arg,
        Args&& ...args
    ) 
    {
        const std::vector<bool> is_integer_variable(bound1.size(),false);
        return find_min_global(tp, std::move(f), bound1, bound2, is_integer_variable, arg, impl::normalize(args)...);
    }

// ----------------------------------------------------------------------------------------

// overloads for a function taking a single scalar.
    template <
        typename funct,
        typename T,
        typename ...Args
        >
    function_evaluation find_max_global (
        funct f,
        const double bound1,
        const double bound2,
        const T& arg,
        Args&& ...args
    ) 
    {
        return find_max_global(std::move(f), matrix<double,0,1>({bound1}), matrix<double,0,1>({bound2}), arg, impl::normalize(args)...);
    }

    template <
        typename funct,
        typename T,
        typename ...Args
        >
    function_evaluation find_min_global (
        funct f,
        const double bound1,
        const double bound2,
        const T& arg,
        Args&& ...args
    ) 
    {
        return find_min_global(std::move(f), matrix<double,0,1>({bound1}), matrix<double,0,1>({bound2}), arg, impl::normalize(args)...);
    }

    template <
        typename funct,
        typename T,
        typename ...Args
        >
    function_evaluation find_max_global (
        thread_pool& tp,
        funct f,
        const double bound1,
        const double bound2,
        const T& arg,
        Args&& ...args
    ) 
    {
        return find_max_global(tp, std::move(f), matrix<double,0,1>({bound1}), matrix<double,0,1>({bound2}), arg, impl::normalize(args)...);
    }

    template <
        typename funct,
        typename T,
        typename ...Args
        >
    function_evaluation find_min_global (
        thread_pool& tp,
        funct f,
        const double bound1,
        const double bound2,
        const T& arg,
        Args&& ...args
    ) 
    {
        return find_min_global(tp, std::move(f), matrix<double,0,1>({bound1}), matrix<double,0,1>({bound2}), arg, impl::normalize(args)...);
    }

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_FiND_GLOBAL_MAXIMUM_hH_