File size: 19,053 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
// Copyright (C) 2017  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_FiND_GLOBAL_MAXIMUM_ABSTRACT_hH_
#ifdef DLIB_FiND_GLOBAL_MAXIMUM_ABSTRACT_hH_

#include "upper_bound_function_abstract.h"
#include "global_function_search_abstract.h"
#include "../metaprogramming.h"
#include "../matrix.h"
#include "../threads/thread_pool_extension_abstract.h"
#include <utility>
#include <chrono>
#include <functional>

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename T
        > 
    auto call_function_and_expand_args(
        T&& f, 
        const matrix<double,0,1>& args
    ) -> decltype(f(args or args expanded out as discussed below));
    /*!
        requires
            - f is a function object with one of the following signatures:
                auto f(matrix<double,0,1>)
                auto f(double)
                auto f(double,double)
                auto f(double,double,double)
                ...
                auto f(double,double,...,double)  // up to 40 double arguments
            - if (f() explicitly expands its arguments) then 
                - args.size() == the number of arguments taken by f.
        ensures
            - This function invokes f() with the given arguments and returns the result.
              However, the signature of f() is allowed to vary.  In particular, if f()
              takes a matrix<double,0,1> as a single argument then this function simply
              calls f(args).  However, if f() takes double arguments then args is expanded
              appropriately, i.e. it calls one of the following as appropriate: 
                f(args(0))
                f(args(0),args(1))
                ...
                f(args(0),args(1),...,args(N))
              and the result of f() is returned.
    !*/

// ----------------------------------------------------------------------------------------

    struct max_function_calls
    {
        /*!
            WHAT THIS OBJECT REPRESENTS
                This is a simple typed integer class used to strongly type the "max number
                of function calls" argument to find_max_global() and find_min_global().

        !*/

        max_function_calls() = default;

        explicit max_function_calls(size_t max_calls) : max_calls(max_calls) {}

        size_t max_calls = std::numeric_limits<size_t>::max();
    };

// ----------------------------------------------------------------------------------------

    const auto FOREVER = std::chrono::hours(24*356*290); // 290 years, basically forever

    /*!
       WHAT THIS OBJECT REPRESENTS
          A call-back that returns true when the search should stop.

          It is useful when the user either wants to terminate the search based on special knowledge
          of the function, the user's preferences regarding what is a "good-enough" solution, or
          based on the results of some external process which may have found a solution and this search
          is no longer required.
     !*/
    using stop_condition = std::function<bool(double)>;
    // The default condition.
    const stop_condition never_stop_early = [](double) { return false; };

// ----------------------------------------------------------------------------------------

    template <
        typename funct
        >
    std::pair<size_t,function_evaluation> find_max_global (
        thread_pool& tp,
        std::vector<funct>& functions,
        const std::vector<function_spec>& specs,
        const max_function_calls num,
        const std::chrono::nanoseconds max_runtime = FOREVER,
        double solver_epsilon = 0,
        const std::vector<std::vector<function_evaluation>>& initial_function_evals = {},
        stop_condition should_stop = never_stop_early
    );
    /*!
        requires
            - functions.size() != 0
            - functions.size() == specs.size()
            - solver_epsilon >= 0
            - for all valid i:
                - functions[i] is a real valued multi-variate function object.  Moreover,
                  it must be callable via an expression of the form:
                  call_function_and_expand_args(functions[i], specs.lower).  This means
                  function[i] should have a signature like one of the following:
                    double f(matrix<double,0,1>)
                    double f(double)
                    double f(double,double)
                    etc.
                - The range of inputs defined by specs[i] must be valid inputs to
                  functions[i].
            - if (tp.num_threads_in_pool() != 0) then
                - it must be safe to call the given functions concurrently from multiple
                  threads.
            - initial_function_evals.empty() || initial_function_evals.size() == functions.size()
            - for all valid i:
                - for (item : initial_function_evals[i]):
                    - functions[i](item.x) == item.y
                      i.e. initial_function_evals contains a record of evaluations of the given
                      functions.
        ensures
            - This function performs global optimization on the set of given functions.
              The goal is to maximize the following objective function:
                 max_{i,x_i}: functions[i](x_i)
                 subject to the constraints on x_i defined by specs[i].
              Once found, the return value of find_max_global() is:
                make_pair(i, function_evaluation(x_i,functions[i](x_i))). 
              That is, we search for the settings of i and x that return the largest output
              and return those settings.
            - The search is performed using the global_function_search object.  See its
              documentation for details of the algorithm.
            - We set the global_function_search::get_solver_epsilon() parameter to
              solver_epsilon.  Therefore, the search will only attempt to find a global
              maximizer to at most solver_epsilon accuracy.  Once a local maximizer is
              found to that accuracy the search will focus entirely on finding other maxima
              elsewhere rather than on further improving the current local optima found so
              far.  That is, once a local maxima is identified to about solver_epsilon
              accuracy, the algorithm will spend all its time exploring the functions to
              find other local maxima to investigate.  An epsilon of 0 means it will keep
              solving until it reaches full floating point precision.  Larger values will
              cause it to switch to pure global exploration sooner and therefore might be
              more effective if your objective function has many local maxima and you don't
              care about a super high precision solution.
            - find_max_global() runs until one of the following is true:
                - The total number of calls to the provided functions is == num.max_calls
                - More than max_runtime time has elapsed since the start of this function.
                - should_stop(f(x)) returns true
            - Any variables that satisfy the following conditions are optimized on a log-scale:
                - The lower bound on the variable is > 0
                - The ratio of the upper bound to lower bound is >= 1000
                - The variable is not an integer variable
              We do this because it's common to optimize machine learning models that have
              parameters with bounds in a range such as [1e-5 to 1e10] (e.g. the SVM C
              parameter) and it's much more appropriate to optimize these kinds of
              variables on a log scale.  So we transform them by applying std::log() to
              them and then undo the transform via std::exp() before invoking the function
              being optimized.  Therefore, this transformation is invisible to the user
              supplied functions.  In most cases, it improves the efficiency of the
              optimizer.
            - The evaluations in initial_function_evals are incorporated into the solver state at
              startup.  This is useful if you have information from a previous optimization attempt
              or just know some good initial x values that should be attempted as a baseline.
              Giving initial_function_evals allows you to tell the solver to explicitly include
              those x values in its search.
            - if (tp.num_threads_in_pool() != 0) then
                - This function will make concurrent calls to the given functions.  In
                  particular, it will submit the calls to the functions as jobs to the
                  given thread_pool tp.
    !*/

    template <
        typename funct
        >
    std::pair<size_t,function_evaluation> find_max_global (
        std::vector<funct>& functions,
        const std::vector<function_spec>& specs,
        const max_function_calls num,
        const std::chrono::nanoseconds max_runtime = FOREVER,
        double solver_epsilon = 0,
        const std::vector<std::vector<function_evaluation>>& initial_function_evals = {},
        stop_condition should_stop = never_stop_early
    );
    /*!
        this function is identical to the find_max_global() defined immediately above,
        except that no threading is used.
    !*/

    template <
        typename funct
        >
    std::pair<size_t,function_evaluation> find_min_global (
        std::vector<funct>& functions,
        const std::vector<function_spec>& specs,
        const max_function_calls num,
        const std::chrono::nanoseconds max_runtime = FOREVER,
        double solver_epsilon = 0,
        const std::vector<std::vector<function_evaluation>>& initial_function_evals = {},
        stop_condition should_stop = never_stop_early
    );
    /*!
        This function is identical to the find_max_global() defined immediately above,
        except that we perform minimization rather than maximization.
    !*/

    template <
        typename funct
        >
    std::pair<size_t,function_evaluation> find_min_global (
        thread_pool& tp,
        std::vector<funct>& functions,
        const std::vector<function_spec>& specs,
        const max_function_calls num,
        const std::chrono::nanoseconds max_runtime = FOREVER,
        double solver_epsilon = 0,
        const std::vector<std::vector<function_evaluation>>& initial_function_evals = {},
        stop_condition should_stop = never_stop_early
    );
    /*!
        This function is identical to the find_max_global() defined immediately above,
        except that we perform minimization rather than maximization.  We also allow you to
        give a thread_pool so we can make concurrent calls to the given functions during
        optimization.
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename funct
        >
    function_evaluation find_max_global (
        thread_pool& tp,
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const std::vector<bool>& is_integer_variable,
        const max_function_calls num,
        const std::chrono::nanoseconds max_runtime = FOREVER,
        double solver_epsilon = 0,
        const std::vector<function_evaluation>& initial_function_evals = {},
        stop_condition should_stop = never_stop_early
    );
    /*!
        requires
            - bound1.size() == bound2.size() == is_integer_variable.size()
            - for all valid i: bound1(i) != bound2(i)
            - solver_epsilon >= 0
            - f() is a real valued multi-variate function object.  Moreover, it must be
              callable via an expression of the form: call_function_and_expand_args(f,
              bound1).  This means f() should have a signature like one of the following:
                double f(matrix<double,0,1>)
                double f(double)
                double f(double,double)
                etc.
            - The range of inputs defined by function_spec(bound1,bound2,is_integer_variable) 
              must be valid inputs to f().
            - if (tp.num_threads_in_pool() != 0) then
                - it must be safe to call the given function f() concurrently from multiple
                  threads.
            - for (item : initial_function_evals):
                - f(item.x) == item.y
                  i.e. initial_function_evals contains a record of evaluations of f().
        ensures
            - This function performs global optimization on the given f() function.
              The goal is to maximize the following objective function:
                 f(x)
                 subject to the constraints on x defined by function_spec(bound1,bound2,is_integer_variable).
              Once found, the return value of find_max_global() is:
                function_evaluation(x,f(x))). 
              That is, we search for the setting of x that returns the largest output and
              return that setting.
            - The search is performed using the global_function_search object.  See its
              documentation for details of the algorithm.
            - We set the global_function_search::get_solver_epsilon() parameter to
              solver_epsilon.  Therefore, the search will only attempt to find a global
              maximizer to at most solver_epsilon accuracy.  Once a local maximizer is
              found to that accuracy the search will focus entirely on finding other maxima
              elsewhere rather than on further improving the current local optima found so
              far.  That is, once a local maxima is identified to about solver_epsilon
              accuracy, the algorithm will spend all its time exploring the function to
              find other local maxima to investigate.  An epsilon of 0 means it will keep
              solving until it reaches full floating point precision.  Larger values will
              cause it to switch to pure global exploration sooner and therefore might be
              more effective if your objective function has many local maxima and you don't
              care about a super high precision solution.
            - find_max_global() runs until one of the following is true:
                - The total number of calls to f() is == num.max_calls
                - More than max_runtime time has elapsed since the start of this function.
                - should_stop(f(x)) returns true
            - Any variables that satisfy the following conditions are optimized on a log-scale:
                - The lower bound on the variable is > 0
                - The ratio of the upper bound to lower bound is >= 1000
                - The variable is not an integer variable
              We do this because it's common to optimize machine learning models that have
              parameters with bounds in a range such as [1e-5 to 1e10] (e.g. the SVM C
              parameter) and it's much more appropriate to optimize these kinds of
              variables on a log scale.  So we transform them by applying std::log() to
              them and then undo the transform via std::exp() before invoking the function
              being optimized.  Therefore, this transformation is invisible to the user
              supplied functions.  In most cases, it improves the efficiency of the
              optimizer.
            - The evaluations in initial_function_evals are incorporated into the solver state at
              startup.  This is useful if you have information from a previous optimization attempt
              of f(x) or just know some good initial x values that should be attempted as a
              baseline.  Giving initial_function_evals allows you to tell the solver to explicitly
              include those x values in its search.
            - if (tp.num_threads_in_pool() != 0) then
                - This function will make concurrent calls to the given function f().  In
                  particular, it will submit the calls to f() as jobs to the given
                  thread_pool tp.
    !*/

    template <
        typename funct
        >
    function_evaluation find_min_global (
        thread_pool& tp,
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const std::vector<bool>& is_integer_variable,
        const max_function_calls num,
        const std::chrono::nanoseconds max_runtime = FOREVER,
        double solver_epsilon = 0,
        const std::vector<function_evaluation>& initial_function_evals = {},
        stop_condition should_stop = never_stop_early
    );
    /*!
        This function is identical to the find_max_global() defined immediately above,
        except that we perform minimization rather than maximization.
    !*/

    template <
        typename funct
        >
    function_evaluation find_max_global (
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const std::vector<bool>& is_integer_variable,
        const max_function_calls num,
        const std::chrono::nanoseconds max_runtime = FOREVER,
        double solver_epsilon = 0,
        const std::vector<function_evaluation>& initial_function_evals = {},
        stop_condition should_stop = never_stop_early
    );
    /*!
        This function is identical to the find_max_global() defined immediately above,
        except that we don't take a thread_pool and therefore don't make concurrent calls
        to f().
    !*/

    template <
        typename funct
        >
    function_evaluation find_min_global (
        funct f,
        const matrix<double,0,1>& bound1,
        const matrix<double,0,1>& bound2,
        const std::vector<bool>& is_integer_variable,
        const max_function_calls num,
        const std::chrono::nanoseconds max_runtime = FOREVER,
        double solver_epsilon = 0,
        const std::vector<function_evaluation>& initial_function_evals = {},
        stop_condition should_stop = never_stop_early
    );
    /*!
        This function is identical to the find_min_global() defined immediately above,
        except that we don't take a thread_pool and therefore don't make concurrent calls
        to f().
    !*/

// Finally, there are a bunch of overloads of find_min_global() and find_max_global() that make do
// the following for you:
//   - They make is_integer_variable optional.  If you don't provide it then we assume no parameters
//     are integers.
//   - The order of num and max_runtime can be exchanged.  You can also leave one of these arguments
//     out so long as you provide the other.
//   - If f() takes just a single double then bound1 and bound2 can also just be doubles.

}

#endif // DLIB_FiND_GLOBAL_MAXIMUM_ABSTRACT_hH_