File size: 33,575 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 |
#include "global_function_search.h"
#include "upper_bound_function.h"
#include "../optimization.h"
namespace dlib
{
// ----------------------------------------------------------------------------------------
namespace qopt_impl
{
void fit_quadratic_to_points_mse(
const matrix<double>& X,
const matrix<double,0,1>& Y,
matrix<double>& H,
matrix<double,0,1>& g,
double& c
)
{
DLIB_CASSERT(X.size() > 0);
DLIB_CASSERT(X.nc() == Y.size());
DLIB_CASSERT(X.nc() >= (X.nr()+1)*(X.nr()+2)/2);
const long dims = X.nr();
const long M = X.nc();
matrix<double> W((X.nr()+1)*(X.nr()+2)/2, M);
set_subm(W, 0,0, dims, M) = X;
set_subm(W, dims,0, 1, M) = 1;
for (long c = 0; c < X.nc(); ++c)
{
long wr = dims+1;
for (long r = 0; r < X.nr(); ++r)
{
for (long r2 = r; r2 < X.nr(); ++r2)
{
W(wr,c) = X(r,c)*X(r2,c);
if (r2 == r)
W(wr,c) *= 0.5;
++wr;
}
}
}
matrix<double,0,1> z = pinv(trans(W))*Y;
c = z(dims);
g = rowm(z, range(0,dims-1));
H.set_size(dims,dims);
long wr = dims+1;
for (long r = 0; r < X.nr(); ++r)
{
for (long r2 = r; r2 < X.nr(); ++r2)
{
H(r,r2) = H(r2,r) = z(wr++);
}
}
}
// ----------------------------------------------------------------------------------------
void fit_quadratic_to_points(
const matrix<double>& X,
const matrix<double,0,1>& Y,
matrix<double>& H,
matrix<double,0,1>& g,
double& c
)
/*!
requires
- X.size() > 0
- X.nc() == Y.size()
- X.nr()+1 <= X.nc()
ensures
- This function finds a quadratic function, Q(x), that interpolates the
given set of points. If there aren't enough points to uniquely define
Q(x) then the Q(x) that fits the given points with the minimum Frobenius
norm hessian matrix is selected.
- To be precise:
- Let: Q(x) == 0.5*trans(x)*H*x + trans(x)*g + c
- Then this function finds H, g, and c that minimizes the following:
sum(squared(H))
such that:
Q(colm(X,i)) == Y(i), for all valid i
- If there are more points than necessary to constrain Q then the Q
that best interpolates the function in the mean squared sense is
found.
!*/
{
DLIB_CASSERT(X.size() > 0);
DLIB_CASSERT(X.nc() == Y.size());
DLIB_CASSERT(X.nr()+1 <= X.nc());
if (X.nc() >= (X.nr()+1)*(X.nr()+2)/2)
{
fit_quadratic_to_points_mse(X,Y,H,g,c);
return;
}
const long dims = X.nr();
const long M = X.nc();
/*
Our implementation uses the equations 3.9 - 3.12 from the paper:
The NEWUOA software for unconstrained optimization without derivatives
By M.J.D. Powell, 40th Workshop on Large Scale Nonlinear Optimization (Erice, Italy, 2004)
*/
matrix<double> W(M + dims + 1, M + dims + 1);
set_subm(W, 0, 0, M, M) = 0.5*squared(tmp(trans(X)*X));
set_subm(W, 0, M, M, 1) = 1;
set_subm(W, M, 0, 1, M) = 1;
set_subm(W, M, M, dims+1, dims+1) = 0;
set_subm(W, 0, M+1, X.nc(), X.nr()) = trans(X);
set_subm(W, M+1, 0, X.nr(), X.nc()) = X;
const matrix<double,0,1> r = join_cols(Y, zeros_matrix<double>(dims+1,1));
//matrix<double,0,1> z = pinv(W)*r;
lu_decomposition<decltype(W)> lu(W);
matrix<double,0,1> z = lu.solve(r);
//if (lu.is_singular()) std::cout << "WARNING, THE W MATRIX IS SINGULAR!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" << std::endl;
matrix<double,0,1> lambda = rowm(z, range(0,M-1));
c = z(M);
g = rowm(z, range(M+1,z.size()-1));
H = X*diagm(lambda)*trans(X);
}
// ----------------------------------------------------------------------------------------
struct quad_interp_result
{
quad_interp_result() = default;
template <typename EXP>
quad_interp_result(
const matrix_exp<EXP>& best_x,
double predicted_improvement
) : best_x(best_x), predicted_improvement(predicted_improvement) {}
matrix<double,0,1> best_x;
double predicted_improvement = std::numeric_limits<double>::quiet_NaN();
};
// ----------------------------------------------------------------------------------------
quad_interp_result find_max_quadraticly_interpolated_vector (
const matrix<double,0,1>& anchor,
const double radius,
const std::vector<matrix<double,0,1>>& x,
const std::vector<double>& y,
const matrix<double,0,1>& lower,
const matrix<double,0,1>& upper
)
{
DLIB_CASSERT(x.size() == y.size());
DLIB_CASSERT(x.size() > 0);
for (size_t i = 0; i < x.size(); ++i)
DLIB_CASSERT(anchor.size() == x[i].size());
const long x_size = static_cast<long>(x.size());
DLIB_CASSERT(anchor.size()+1 <= x_size && x_size <= (anchor.size()+1)*(anchor.size()+2)/2);
matrix<double> X(anchor.size(), x.size());
matrix<double,0,1> Y(x.size());
for (size_t i = 0; i < x.size(); ++i)
{
set_colm(X,i) = x[i] - anchor;
Y(i) = y[i];
}
matrix<double> H;
matrix<double,0,1> g;
double c;
fit_quadratic_to_points(X, Y, H, g, c);
matrix<double,0,1> p;
solve_trust_region_subproblem_bounded(-H,-g, radius, p, 0.001, 500, lower-anchor, upper-anchor);
// ensure we never move more than radius from the anchor. This might happen if the
// trust region subproblem isn't solved accurately enough.
if (length(p) >= radius)
p *= radius/length(p);
double predicted_improvement = 0.5*trans(p)*H*p + trans(p)*g;
return quad_interp_result{clamp(anchor+p,lower,upper), predicted_improvement};
}
// ----------------------------------------------------------------------------------------
quad_interp_result pick_next_sample_using_trust_region (
const std::vector<function_evaluation>& samples,
double& radius,
const matrix<double,0,1>& lower,
const matrix<double,0,1>& upper,
const std::vector<bool>& is_integer_variable
)
{
DLIB_CASSERT(samples.size() > 0);
// We don't use the QP to optimize integer variables. Instead, we just fix them at
// their best observed value and use the QP to optimize the real variables. So the
// number of dimensions, as far as the QP is concerned, is the number of non-integer
// variables.
size_t dims = 0;
for (auto is_int : is_integer_variable)
{
if (!is_int)
++dims;
}
DLIB_CASSERT(samples.size() >= dims+1);
// Use enough points to fill out a quadratic model or the max available if we don't
// have quite enough.
const long N = std::min(samples.size(), (dims+1)*(dims+2)/2);
// first find the best sample;
double best_val = -1e300;
matrix<double,0,1> best_x;
for (auto& v : samples)
{
if (v.y > best_val)
{
best_val = v.y;
best_x = v.x;
}
}
// if there are only integer variables then there isn't really anything to do. So just
// return the best_x and say there is no improvement.
if (dims == 0)
return quad_interp_result(best_x, 0);
matrix<long,0,1> active_dims(dims);
long j = 0;
for (size_t i = 0; i < is_integer_variable.size(); ++i)
{
if (!is_integer_variable[i])
active_dims(j++) = i;
}
// now find the N-1 nearest neighbors of best_x
std::vector<std::pair<double,size_t>> distances;
for (size_t i = 0; i < samples.size(); ++i)
distances.emplace_back(length(best_x-samples[i].x), i);
std::sort(distances.begin(), distances.end());
distances.resize(N);
std::vector<matrix<double,0,1>> x;
std::vector<double> y;
for (auto& idx : distances)
{
x.emplace_back(rowm(samples[idx.second].x, active_dims));
y.emplace_back(samples[idx.second].y);
}
if (radius == 0)
{
for (auto& idx : distances)
radius = std::max(radius, length(rowm(best_x-samples[idx.second].x, active_dims)) );
// Shrink the radius a little so we are always going to be making the sampling of
// points near the best current point smaller.
radius *= 0.95;
}
auto tmp = find_max_quadraticly_interpolated_vector(rowm(best_x,active_dims), radius, x, y, rowm(lower,active_dims), rowm(upper,active_dims));
// stick the integer variables back into the solution
for (long i = 0; i < active_dims.size(); ++i)
best_x(active_dims(i)) = tmp.best_x(i);
tmp.best_x = best_x;
return tmp;
}
// ----------------------------------------------------------------------------------------
matrix<double,0,1> make_random_vector(
dlib::rand& rnd,
const matrix<double,0,1>& lower,
const matrix<double,0,1>& upper,
const std::vector<bool>& is_integer_variable
)
{
matrix<double,0,1> temp(lower.size());
for (long i = 0; i < temp.size(); ++i)
{
temp(i) = rnd.get_double_in_range(lower(i), upper(i));
if (is_integer_variable[i])
temp(i) = std::round(temp(i));
}
return temp;
}
// ----------------------------------------------------------------------------------------
struct max_upper_bound_function
{
max_upper_bound_function() = default;
template <typename EXP>
max_upper_bound_function(
const matrix_exp<EXP>& x,
double predicted_improvement,
double upper_bound
) : x(x), predicted_improvement(predicted_improvement), upper_bound(upper_bound) {}
matrix<double,0,1> x;
double predicted_improvement = 0;
double upper_bound = 0;
};
// ------------------------------------------------------------------------------------
max_upper_bound_function pick_next_sample_as_max_upper_bound (
dlib::rand& rnd,
const upper_bound_function& ub,
const matrix<double,0,1>& lower,
const matrix<double,0,1>& upper,
const std::vector<bool>& is_integer_variable,
const size_t num_random_samples
)
{
DLIB_CASSERT(ub.num_points() > 0);
// now do a simple random search to find the maximum upper bound
double best_ub_so_far = -std::numeric_limits<double>::infinity();
matrix<double,0,1> vtemp(lower.size()), v;
for (size_t rounds = 0; rounds < num_random_samples; ++rounds)
{
vtemp = make_random_vector(rnd, lower, upper, is_integer_variable);
double bound = ub(vtemp);
if (bound > best_ub_so_far)
{
best_ub_so_far = bound;
v = vtemp;
}
}
double max_value = -std::numeric_limits<double>::infinity();
for (auto& v : ub.get_points())
max_value = std::max(max_value, v.y);
return max_upper_bound_function(v, best_ub_so_far - max_value, best_ub_so_far);
}
} // end of namespace qopt_impl;
using namespace qopt_impl;
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
function_spec::function_spec(
matrix<double,0,1> bound1,
matrix<double,0,1> bound2
) :
lower(std::move(bound1)), upper(std::move(bound2))
{
DLIB_CASSERT(lower.size() == upper.size());
for (long i = 0; i < lower.size(); ++i)
{
if (upper(i) < lower(i))
std::swap(lower(i), upper(i));
DLIB_CASSERT(upper(i) != lower(i), "The upper and lower bounds can't be equal.");
}
is_integer_variable.assign(lower.size(), false);
}
// ----------------------------------------------------------------------------------------
function_spec::function_spec(
matrix<double,0,1> bound1,
matrix<double,0,1> bound2,
std::vector<bool> is_integer
) :
function_spec(std::move(bound1),std::move(bound2))
{
is_integer_variable = std::move(is_integer);
DLIB_CASSERT(lower.size() == (long)is_integer_variable.size());
// Make sure any integer variables have integer bounds.
for (size_t i = 0; i < is_integer_variable.size(); ++i)
{
if (is_integer_variable[i])
{
DLIB_CASSERT(std::round(lower(i)) == lower(i), "If you say a variable is an integer variable then it must have an integer lower bound. \n"
<< "lower[i] = " << lower(i));
DLIB_CASSERT(std::round(upper(i)) == upper(i), "If you say a variable is an integer variable then it must have an integer upper bound. \n"
<< "upper[i] = " << upper(i));
}
}
}
// ----------------------------------------------------------------------------------------
namespace gopt_impl
{
upper_bound_function funct_info::build_upper_bound_with_all_function_evals (
) const
{
upper_bound_function tmp(ub);
// we are going to add the outstanding evals into this and assume the
// outstanding evals are going to take y values equal to their nearest
// neighbor complete evals.
for (auto& eval : outstanding_evals)
{
function_evaluation e;
e.x = eval.x;
e.y = find_nn(ub.get_points(), eval.x);
tmp.add(e);
}
return tmp;
}
// ------------------------------------------------------------------------------------
double funct_info::find_nn (
const std::vector<function_evaluation>& evals,
const matrix<double,0,1>& x
)
{
double best_y = 0;
double best_dist = std::numeric_limits<double>::infinity();
for (auto& v : evals)
{
double dist = length_squared(v.x-x);
if (dist < best_dist)
{
best_dist = dist;
best_y = v.y;
}
}
return best_y;
}
} // end namespace gopt_impl
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
function_evaluation_request::function_evaluation_request(
function_evaluation_request&& item
)
{
m_has_been_evaluated = item.m_has_been_evaluated;
req = item.req;
info = item.info;
item.info.reset();
item.m_has_been_evaluated = true;
}
// ----------------------------------------------------------------------------------------
function_evaluation_request& function_evaluation_request::
operator=(
function_evaluation_request&& item
)
{
function_evaluation_request(std::move(item)).swap(*this);
return *this;
}
// ----------------------------------------------------------------------------------------
void function_evaluation_request::
swap(
function_evaluation_request& item
)
{
std::swap(m_has_been_evaluated, item.m_has_been_evaluated);
std::swap(req, item.req);
std::swap(info, item.info);
}
// ----------------------------------------------------------------------------------------
size_t function_evaluation_request::
function_idx (
) const
{
return info->function_idx;
}
const matrix<double,0,1>& function_evaluation_request::
x (
) const
{
return req.x;
}
// ----------------------------------------------------------------------------------------
bool function_evaluation_request::
has_been_evaluated (
) const
{
return m_has_been_evaluated;
}
// ----------------------------------------------------------------------------------------
function_evaluation_request::
~function_evaluation_request()
{
if (!m_has_been_evaluated)
{
std::lock_guard<std::mutex> lock(*info->m);
// remove the evaluation request from the outstanding list.
auto i = std::find(info->outstanding_evals.begin(), info->outstanding_evals.end(), req);
info->outstanding_evals.erase(i);
}
}
// ----------------------------------------------------------------------------------------
void function_evaluation_request::
set (
double y
)
{
DLIB_CASSERT(has_been_evaluated() == false);
std::lock_guard<std::mutex> lock(*info->m);
m_has_been_evaluated = true;
// move the evaluation from outstanding to complete
auto i = std::find(info->outstanding_evals.begin(), info->outstanding_evals.end(), req);
DLIB_CASSERT(i != info->outstanding_evals.end());
info->outstanding_evals.erase(i);
info->ub.add(function_evaluation(req.x,y));
// Now do trust region radius maintenance and keep track of the best objective
// values and all that.
if (req.was_trust_region_generated_request)
{
// Adjust trust region radius based on how good this evaluation
// was.
double measured_improvement = y-req.anchor_objective_value;
double rho = measured_improvement/std::abs(req.predicted_improvement);
//std::cout << "rho: "<< rho << std::endl;
//std::cout << "radius: "<< info->radius << std::endl;
if (rho < 0.25)
info->radius *= 0.5;
else if (rho > 0.75)
info->radius *= 2;
}
if (y > info->best_objective_value)
{
if (!req.was_trust_region_generated_request && length(req.x - info->best_x) > info->radius*1.001)
{
//std::cout << "reset radius because of big move, " << length(req.x - info->best_x) << " radius was " << info->radius << std::endl;
// reset trust region radius since we made a big move. Doing this will
// cause the radius to be reset to the size of the local region.
info->radius = 0;
}
info->best_objective_value = y;
info->best_x = req.x;
}
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
global_function_search::
global_function_search(
const function_spec& function
) : global_function_search(std::vector<function_spec>(1,function)) {}
// ----------------------------------------------------------------------------------------
global_function_search::
global_function_search(
const std::vector<function_spec>& functions_
)
{
DLIB_CASSERT(functions_.size() > 0);
m = std::make_shared<std::mutex>();
functions.reserve(functions_.size());
for (size_t i = 0; i < functions_.size(); ++i)
functions.emplace_back(std::make_shared<gopt_impl::funct_info>(functions_[i],i,m));
}
// ----------------------------------------------------------------------------------------
global_function_search::
global_function_search(
const std::vector<function_spec>& functions_,
const std::vector<std::vector<function_evaluation>>& initial_function_evals,
const double relative_noise_magnitude_
) :
global_function_search(functions_)
{
DLIB_CASSERT(functions_.size() > 0);
DLIB_CASSERT(functions_.size() == initial_function_evals.size());
DLIB_CASSERT(relative_noise_magnitude_ >= 0);
relative_noise_magnitude = relative_noise_magnitude_;
for (size_t i = 0; i < initial_function_evals.size(); ++i)
{
functions[i]->ub = upper_bound_function(initial_function_evals[i], relative_noise_magnitude);
if (initial_function_evals[i].size() != 0)
{
auto best = max_scoring_element(initial_function_evals[i], [](const function_evaluation& e) { return e.y; }).first;
functions[i]->best_objective_value = best.y;
functions[i]->best_x = best.x;
}
}
}
// ----------------------------------------------------------------------------------------
size_t global_function_search::
num_functions(
) const
{
return functions.size();
}
// ----------------------------------------------------------------------------------------
void global_function_search::
set_seed (
time_t seed
)
{
rnd = dlib::rand(seed);
}
// ----------------------------------------------------------------------------------------
void global_function_search::
get_function_evaluations (
std::vector<function_spec>& specs,
std::vector<std::vector<function_evaluation>>& function_evals
) const
{
std::lock_guard<std::mutex> lock(*m);
specs.clear();
function_evals.clear();
for (size_t i = 0; i < functions.size(); ++i)
{
specs.emplace_back(functions[i]->spec);
function_evals.emplace_back(functions[i]->ub.get_points());
}
}
// ----------------------------------------------------------------------------------------
void global_function_search::
get_best_function_eval (
matrix<double,0,1>& x,
double& y,
size_t& function_idx
) const
{
DLIB_CASSERT(num_functions() != 0);
std::lock_guard<std::mutex> lock(*m);
// find the largest value
auto& info = *best_function(function_idx);
y = info.best_objective_value;
x = info.best_x;
}
// ----------------------------------------------------------------------------------------
function_evaluation_request global_function_search::
get_next_x (
)
{
DLIB_CASSERT(num_functions() != 0);
using namespace gopt_impl;
std::lock_guard<std::mutex> lock(*m);
// the first thing we do is make sure each function has at least max(3,dimensionality of function) evaluations
for (auto& info : functions)
{
const long dims = info->spec.lower.size();
// If this is the very beginning of the optimization process
if (info->ub.num_points()+info->outstanding_evals.size() < 1)
{
outstanding_function_eval_request new_req;
new_req.request_id = next_request_id++;
// Pick the point right in the center of the bounds to evaluate first since
// people will commonly center the bound on a location they think is good.
// So might as well try there first.
new_req.x = (info->spec.lower + info->spec.upper)/2.0;
for (long i = 0; i < new_req.x.size(); ++i)
{
if (info->spec.is_integer_variable[i])
new_req.x(i) = std::round(new_req.x(i));
}
info->outstanding_evals.emplace_back(new_req);
return function_evaluation_request(new_req,info);
}
else if (info->ub.num_points() < std::max<long>(3,dims))
{
outstanding_function_eval_request new_req;
new_req.request_id = next_request_id++;
new_req.x = make_random_vector(rnd, info->spec.lower, info->spec.upper, info->spec.is_integer_variable);
info->outstanding_evals.emplace_back(new_req);
return function_evaluation_request(new_req,info);
}
}
if (do_trust_region_step && !has_outstanding_trust_region_request())
{
// find the currently best performing function, we will do a trust region
// step on it.
auto info = best_function();
const long dims = info->spec.lower.size();
// if we have enough points to do a trust region step
if (info->ub.num_points() > dims+1)
{
auto tmp = pick_next_sample_using_trust_region(info->ub.get_points(),
info->radius, info->spec.lower, info->spec.upper, info->spec.is_integer_variable);
//std::cout << "QP predicted improvement: "<< tmp.predicted_improvement << std::endl;
if (tmp.predicted_improvement > min_trust_region_epsilon)
{
do_trust_region_step = false;
outstanding_function_eval_request new_req;
new_req.request_id = next_request_id++;
new_req.x = tmp.best_x;
new_req.was_trust_region_generated_request = true;
new_req.anchor_objective_value = info->best_objective_value;
new_req.predicted_improvement = tmp.predicted_improvement;
info->outstanding_evals.emplace_back(new_req);
return function_evaluation_request(new_req, info);
}
}
}
// make it so we alternate between upper bounded and trust region steps.
do_trust_region_step = true;
if (rnd.get_random_double() >= pure_random_search_probability)
{
// pick a point at random to sample according to the upper bound
double best_upper_bound = -std::numeric_limits<double>::infinity();
std::shared_ptr<funct_info> best_funct;
matrix<double,0,1> next_sample;
// so figure out if any function has a good upper bound and if so pick the
// function with the largest upper bound for evaluation.
for (auto& info : functions)
{
auto tmp = pick_next_sample_as_max_upper_bound(rnd,
info->build_upper_bound_with_all_function_evals(), info->spec.lower, info->spec.upper,
info->spec.is_integer_variable, num_random_samples);
if (tmp.predicted_improvement > 0 && tmp.upper_bound > best_upper_bound)
{
best_upper_bound = tmp.upper_bound;
next_sample = std::move(tmp.x);
best_funct = info;
}
}
// if we found a good function to evaluate then return that.
if (best_funct)
{
outstanding_function_eval_request new_req;
new_req.request_id = next_request_id++;
new_req.x = std::move(next_sample);
best_funct->outstanding_evals.emplace_back(new_req);
return function_evaluation_request(new_req, best_funct);
}
}
// pick entirely at random
size_t function_idx = rnd.get_integer(functions.size());
auto info = functions[function_idx];
outstanding_function_eval_request new_req;
new_req.request_id = next_request_id++;
new_req.x = make_random_vector(rnd, info->spec.lower, info->spec.upper, info->spec.is_integer_variable);
info->outstanding_evals.emplace_back(new_req);
return function_evaluation_request(new_req, info);
}
// ----------------------------------------------------------------------------------------
double global_function_search::
get_pure_random_search_probability (
) const
{
return pure_random_search_probability;
}
// ----------------------------------------------------------------------------------------
void global_function_search::
set_pure_random_search_probability (
double prob
)
{
DLIB_CASSERT(0 <= prob && prob <= 1);
pure_random_search_probability = prob;
}
// ----------------------------------------------------------------------------------------
double global_function_search::
get_solver_epsilon (
) const
{
return min_trust_region_epsilon;
}
// ----------------------------------------------------------------------------------------
void global_function_search::
set_solver_epsilon (
double eps
)
{
DLIB_CASSERT(0 <= eps);
min_trust_region_epsilon = eps;
}
// ----------------------------------------------------------------------------------------
double global_function_search::
get_relative_noise_magnitude (
) const
{
return relative_noise_magnitude;
}
// ----------------------------------------------------------------------------------------
void global_function_search::
set_relative_noise_magnitude (
double value
)
{
DLIB_CASSERT(0 <= value);
relative_noise_magnitude = value;
if (m)
{
std::lock_guard<std::mutex> lock(*m);
// recreate all the upper bound functions with the new relative noise magnitude
for (auto& f : functions)
f->ub = upper_bound_function(f->ub.get_points(), relative_noise_magnitude);
}
}
// ----------------------------------------------------------------------------------------
size_t global_function_search::
get_monte_carlo_upper_bound_sample_num (
) const
{
return num_random_samples;
}
// ----------------------------------------------------------------------------------------
void global_function_search::
set_monte_carlo_upper_bound_sample_num (
size_t num
)
{
num_random_samples = num;
}
// ----------------------------------------------------------------------------------------
std::shared_ptr<gopt_impl::funct_info> global_function_search::
best_function(
) const
{
size_t idx = 0;
return best_function(idx);
}
// ----------------------------------------------------------------------------------------
std::shared_ptr<gopt_impl::funct_info> global_function_search::
best_function(
size_t& idx
) const
{
auto compare = [](const std::shared_ptr<gopt_impl::funct_info>& a, const std::shared_ptr<gopt_impl::funct_info>& b)
{ return a->best_objective_value < b->best_objective_value; };
auto i = std::max_element(functions.begin(), functions.end(), compare);
idx = std::distance(functions.begin(),i);
return *i;
}
// ----------------------------------------------------------------------------------------
bool global_function_search::
has_outstanding_trust_region_request (
) const
{
for (auto& f : functions)
{
for (auto& i : f->outstanding_evals)
{
if (i.was_trust_region_generated_request)
return true;
}
}
return false;
}
// ----------------------------------------------------------------------------------------
}
|