File size: 10,461 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// Copyright (C) 2011  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.
#undef DLIB_HASHED_IMAGE_FEATUrES_ABSTRACT_Hh_
#ifdef DLIB_HASHED_IMAGE_FEATUrES_ABSTRACT_Hh_

#include "../lsh/projection_hash_abstract.h"
#include <vector>
#include "../matrix.h"
#include "../statistics.h"

namespace dlib
{

// ----------------------------------------------------------------------------------------

    template <
        typename feature_extractor,
        typename hash_function_type_ = projection_hash
        >
    class hashed_feature_image : noncopyable
    {
        /*!
            REQUIREMENTS ON feature_extractor 
                - must be an object with an interface compatible with dlib::hog_image

            REQUIREMENTS ON hash_function_type_ 
                - must be an object with an interface compatible with projection_hash 

            INITIAL VALUE
                 - size() == 0
                 - uses_uniform_feature_weights() == false

            WHAT THIS OBJECT REPRESENTS
                This object is a tool for performing image feature extraction.  In
                particular, it wraps another image feature extractor and converts the
                wrapped image feature vectors into sparse indicator vectors.  It does this
                by hashing each feature vector into the range [0, get_num_dimensions()-1]
                and then returns a new vector which is zero everywhere except for the
                position determined by the hash. 


            THREAD SAFETY
                Concurrent access to an instance of this object is not safe and should be protected
                by a mutex lock except for the case where you are copying the configuration 
                (via copy_configuration()) of a hashed_feature_image object to many other threads.  
                In this case, it is safe to copy the configuration of a shared object so long
                as no other operations are performed on it.


            NOTATION 
                let BASE_FE denote the base feature_extractor object contained inside 
                the hashed_feature_image.
        !*/

    public:

        typedef feature_extractor feature_extractor_type;
        typedef hash_function_type_ hash_function_type;
        typedef std::vector<std::pair<unsigned int,double> > descriptor_type;

        hashed_feature_image (
        ); 
        /*!
            ensures
                - this object is properly initialized
        !*/

        void clear (
        );
        /*!
            ensures
                - this object will have its initial value
        !*/

        void set_hash (
            const hash_function_type& hash
        );
        /*!
            ensures
                - #get_hash() == hash
        !*/

        const hash_function_type& get_hash (
        ) const;
        /*!
            ensures
                - returns the hash function used by this object to hash
                  base feature vectors into integers.
        !*/

        void copy_configuration (
            const feature_extractor& item
        );
        /*!
            ensures
                - performs BASE_FE.copy_configuration(item)
        !*/

        void copy_configuration (
            const hashed_feature_image& item
        );
        /*!
            ensures
                - copies all the state information of item into *this, except for state 
                  information populated by load().  More precisely, given two hashed_feature_image 
                  objects H1 and H2, the following sequence of instructions should always 
                  result in both of them having the exact same state.
                    H2.copy_configuration(H1);
                    H1.load(img);
                    H2.load(img);
        !*/

        template <
            typename image_type
            >
        void load (
            const image_type& img
        );
        /*!
            requires
                - image_type == any type that can be supplied to feature_extractor::load() 
            ensures
                - performs BASE_FE.load(img)
                  i.e. does feature extraction.  The features can be accessed using
                  operator() as defined below.
        !*/

        size_t size (
        ) const;
        /*!
            ensures
                - returns BASE_FE.size() 
        !*/

        long nr (
        ) const;
        /*!
            ensures
                - returns BASE_FE.nr() 
        !*/

        long nc (
        ) const;
        /*!
            ensures
                - returns BASE_FE.nc() 
        !*/

        long get_num_dimensions (
        ) const;
        /*!
            ensures
                - returns the dimensionality of the feature vectors returned by operator().  
                  In this case, this is the number of hash bins.  That is, get_hash().num_hash_bins()
        !*/

        void use_relative_feature_weights (
        );
        /*!
            ensures
                - #uses_uniform_feature_weights() == false
        !*/

        void use_uniform_feature_weights (
        );
        /*!
            ensures
                - #uses_uniform_feature_weights() == true 
        !*/

        bool uses_uniform_feature_weights (
        ) const;
        /*!
            ensures
                - returns true if this object weights each feature with a value of 1 and
                  false if it uses a weighting of 1/N where N is the number of occurrences
                  of the feature in an image (note that we normalize N so that it is
                  invariant to the size of the image given to load()).
        !*/

        const descriptor_type& operator() (
            long row,
            long col
        ) const;
        /*!
            requires
                - 0 <= row < nr()
                - 0 <= col < nc()
                - It must be legal to evaluate expressions of the form: get_hash()(BASE_FE(row,col))
                  (e.g. the hash function must be properly configured to process the feature
                  vectors produced by the base feature extractor)
            ensures
                - hashes BASE_FE(row,col) and returns the resulting indicator vector. 
                - To be precise, this function returns a sparse vector V such that:
                    - V.size() == 1 
                    - V[0].first == get_hash()(BASE_FE(row,col))
                    - if (uses_uniform_feature_weights()) then
                        - V[0].second == 1 
                    - else
                        - V[0].second == 1/N where N is the number of times a feature in
                          hash bin V[0].first was observed in the image given to load().
                          Note that we scale all the counts so that they are invariant to
                          the size of the image.
        !*/

        const rectangle get_block_rect (
            long row,
            long col
        ) const;
        /*!
            ensures
                - returns BASE_FE.get_block_rect(row,col)
                  I.e. returns a rectangle that tells you what part of the original image is associated
                  with a particular feature vector.
        !*/

        const point image_to_feat_space (
            const point& p
        ) const;
        /*!
            ensures
                - returns BASE_FE.image_to_feat_space(p)
                  I.e. Each local feature is extracted from a certain point in the input image.
                  This function returns the identity of the local feature corresponding
                  to the image location p.  Or in other words, let P == image_to_feat_space(p), 
                  then (*this)(P.y(),P.x()) == the local feature closest to, or centered at, 
                  the point p in the input image.  Note that some image points might not have 
                  corresponding feature locations.  E.g. border points or points outside the 
                  image.  In these cases the returned point will be outside get_rect(*this).
        !*/

        const rectangle image_to_feat_space (
            const rectangle& rect
        ) const;
        /*!
            ensures
                - returns BASE_FE.image_to_feat_space(rect)
                  I.e. returns rectangle(image_to_feat_space(rect.tl_corner()), image_to_feat_space(rect.br_corner()));
                  (i.e. maps a rectangle from image space to feature space)
        !*/

        const point feat_to_image_space (
            const point& p
        ) const;
        /*!
            ensures
                - returns BASE_FE.feat_to_image_space(p)
                  I.e. returns the location in the input image space corresponding to the center
                  of the local feature at point p.  In other words, this function computes
                  the inverse of image_to_feat_space().  Note that it may only do so approximately, 
                  since more than one image location might correspond to the same local feature.  
                  That is, image_to_feat_space() might not be invertible so this function gives 
                  the closest possible result.
        !*/

        const rectangle feat_to_image_space (
            const rectangle& rect
        ) const;
        /*!
            ensures
                - returns BASE_FE.feat_to_image_space(rect)
                  I.e. return rectangle(feat_to_image_space(rect.tl_corner()), feat_to_image_space(rect.br_corner()));
                  (i.e. maps a rectangle from feature space to image space)
        !*/

    };

// ----------------------------------------------------------------------------------------

    template <
        typename T,
        typename U
        >
    void serialize (
        const hashed_feature_image<T,U>& item,
        std::ostream& out
    );
    /*!
        provides serialization support 
    !*/

// ----------------------------------------------------------------------------------------

    template <
        typename T,
        typename U
        >
    void deserialize (
        hashed_feature_image<T,U>& item,
        std::istream& in 
    );
    /*!
        provides deserialization support 
    !*/

// ----------------------------------------------------------------------------------------

}

#endif // DLIB_HASHED_IMAGE_FEATUrES_ABSTRACT_Hh_