File size: 20,587 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
// Copyright (C) 2010 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_HoG_Hh_
#define DLIB_HoG_Hh_
#include "hog_abstract.h"
#include "../algs.h"
#include "../matrix.h"
#include "../array2d.h"
#include "../geometry.h"
#include <cmath>
namespace dlib
{
enum
{
hog_no_interpolation,
hog_angle_interpolation,
hog_full_interpolation,
hog_signed_gradient,
hog_unsigned_gradient
};
template <
unsigned long cell_size_,
unsigned long block_size_,
unsigned long cell_stride_,
unsigned long num_orientation_bins_,
int gradient_type_,
int interpolation_type_
>
class hog_image : noncopyable
{
COMPILE_TIME_ASSERT(cell_size_ > 1);
COMPILE_TIME_ASSERT(block_size_ > 0);
COMPILE_TIME_ASSERT(cell_stride_ > 0);
COMPILE_TIME_ASSERT(num_orientation_bins_ > 0);
COMPILE_TIME_ASSERT( gradient_type_ == hog_signed_gradient ||
gradient_type_ == hog_unsigned_gradient);
COMPILE_TIME_ASSERT( interpolation_type_ == hog_no_interpolation ||
interpolation_type_ == hog_angle_interpolation ||
interpolation_type_ == hog_full_interpolation );
public:
const static unsigned long cell_size = cell_size_;
const static unsigned long block_size = block_size_;
const static unsigned long cell_stride = cell_stride_;
const static unsigned long num_orientation_bins = num_orientation_bins_;
const static int gradient_type = gradient_type_;
const static int interpolation_type = interpolation_type_;
const static long min_size = cell_size*block_size+2;
typedef matrix<double, block_size*block_size*num_orientation_bins, 1> descriptor_type;
hog_image (
) :
num_block_rows(0),
num_block_cols(0)
{}
void clear (
)
{
num_block_rows = 0;
num_block_cols = 0;
hist_cells.clear();
}
void copy_configuration (
const hog_image&
){}
template <
typename image_type
>
inline void load (
const image_type& img
)
{
COMPILE_TIME_ASSERT( pixel_traits<typename image_traits<image_type>::pixel_type>::has_alpha == false );
load_impl(mat(img));
}
inline void unload(
) { clear(); }
inline size_t size (
) const { return static_cast<size_t>(nr()*nc()); }
inline long nr (
) const { return num_block_rows; }
inline long nc (
) const { return num_block_cols; }
long get_num_dimensions (
) const
{
return block_size*block_size*num_orientation_bins;
}
inline const descriptor_type& operator() (
long row,
long col
) const
{
// make sure requires clause is not broken
DLIB_ASSERT( 0 <= row && row < nr() &&
0 <= col && col < nc(),
"\t descriptor_type hog_image::operator()()"
<< "\n\t invalid row or col argument"
<< "\n\t row: " << row
<< "\n\t col: " << col
<< "\n\t nr(): " << nr()
<< "\n\t nc(): " << nc()
<< "\n\t this: " << this
);
row *= cell_stride;
col *= cell_stride;
++row;
++col;
int feat = 0;
for (unsigned long r = 0; r < block_size; ++r)
{
for (unsigned long c = 0; c < block_size; ++c)
{
for (unsigned long i = 0; i < num_orientation_bins; ++i)
{
des(feat++) = hist_cells[row+r][col+c].values[i];
}
}
}
des /= length(des) + 1e-8;
return des;
}
const rectangle get_block_rect (
long row,
long col
) const
{
row *= cell_stride;
col *= cell_stride;
row *= cell_size;
col *= cell_size;
// do this to account for the 1 pixel padding we use all around the image
++row;
++col;
return rectangle(col, row, col+cell_size*block_size-1, row+cell_size*block_size-1);
}
const point image_to_feat_space (
const point& p
) const
{
const long half_block = block_size/2;
if ((block_size%2) == 0)
{
return point(((p.x()-1)/(long)cell_size - half_block)/(long)cell_stride,
((p.y()-1)/(long)cell_size - half_block)/(long)cell_stride);
}
else
{
return point(((p.x()-1-(long)cell_size/2)/(long)cell_size - half_block)/(long)cell_stride,
((p.y()-1-(long)cell_size/2)/(long)cell_size - half_block)/(long)cell_stride);
}
}
const rectangle image_to_feat_space (
const rectangle& rect
) const
{
return rectangle(image_to_feat_space(rect.tl_corner()), image_to_feat_space(rect.br_corner()));
}
const point feat_to_image_space (
const point& p
) const
{
const long half_block = block_size/2;
if ((block_size%2) == 0)
{
return point((p.x()*cell_stride + half_block)*cell_size + 1,
(p.y()*cell_stride + half_block)*cell_size + 1);
}
else
{
return point((p.x()*cell_stride + half_block)*cell_size + 1 + cell_size/2,
(p.y()*cell_stride + half_block)*cell_size + 1 + cell_size/2);
}
}
const rectangle feat_to_image_space (
const rectangle& rect
) const
{
return rectangle(feat_to_image_space(rect.tl_corner()), feat_to_image_space(rect.br_corner()));
}
// these _PRIVATE_ functions are only here as a workaround for a bug in visual studio 2005.
void _PRIVATE_serialize (std::ostream& out) const
{
// serialize hist_cells
serialize(hist_cells.nc(),out);
serialize(hist_cells.nr(),out);
hist_cells.reset();
while (hist_cells.move_next())
serialize(hist_cells.element().values,out);
hist_cells.reset();
serialize(num_block_rows, out);
serialize(num_block_cols, out);
}
void _PRIVATE_deserialize (std::istream& in )
{
// deserialize item.hist_cells
long nc, nr;
deserialize(nc,in);
deserialize(nr,in);
hist_cells.set_size(nr,nc);
while (hist_cells.move_next())
deserialize(hist_cells.element().values,in);
hist_cells.reset();
deserialize(num_block_rows, in);
deserialize(num_block_cols, in);
}
private:
template <
typename image_type
>
void load_impl (
const image_type& img
)
{
// Note that we keep a border of 1 pixel all around the image so that we don't have
// to worry about running outside the image when computing the horizontal and vertical
// gradients.
// Note also that we have a border of unused cells around the hist_cells array so that we
// don't have to worry about edge effects when doing the interpolation in the main loop
// below.
// check if the window is just too small
if (img.nr() < min_size || img.nc() < min_size)
{
// If the image is smaller than our windows then there aren't any descriptors at all!
num_block_rows = 0;
num_block_cols = 0;
return;
}
// Make sure we have the right number of cell histograms and that they are
// all set to zero.
hist_cells.set_size((img.nr()-2)/cell_size+2, (img.nc()-2)/cell_size+2);
for (long r = 0; r < hist_cells.nr(); ++r)
{
for (long c = 0; c < hist_cells.nc(); ++c)
{
hist_cells[r][c].zero();
}
}
// loop over all the histogram cells and fill them out
for (long rh = 1; rh < hist_cells.nr()-1; ++rh)
{
for (long ch = 1; ch < hist_cells.nc()-1; ++ch)
{
// Fill out the current histogram cell.
// First, figure out the row and column offsets into the image for the current histogram cell.
const long roff = (rh-1)*cell_size + 1;
const long coff = (ch-1)*cell_size + 1;
for (long r = 0; r < (long)cell_size; ++r)
{
for (long c = 0; c < (long)cell_size; ++c)
{
unsigned long left;
unsigned long right;
unsigned long top;
unsigned long bottom;
assign_pixel(left, img(r+roff,c+coff-1));
assign_pixel(right, img(r+roff,c+coff+1));
assign_pixel(top, img(r+roff-1,c+coff));
assign_pixel(bottom, img(r+roff+1,c+coff));
double grad_x = (long)right-(long)left;
double grad_y = (long)top-(long)bottom;
// obtain the angle of the gradient. Make sure it is scaled between 0 and 1.
double angle = std::max(0.0, std::atan2(grad_y, grad_x)/pi + 1)/2;
if (gradient_type == hog_unsigned_gradient)
{
angle *= 2;
if (angle >= 1)
angle -= 1;
}
// now scale angle to between 0 and num_orientation_bins
angle *= num_orientation_bins;
const double strength = std::sqrt(grad_y*grad_y + grad_x*grad_x);
if (interpolation_type == hog_no_interpolation)
{
// no interpolation
hist_cells[rh][ch].values[round_to_int(angle)%num_orientation_bins] += strength;
}
else // if we should do some interpolation
{
unsigned long quantized_angle_lower = static_cast<unsigned long>(std::floor(angle));
unsigned long quantized_angle_upper = static_cast<unsigned long>(std::ceil(angle));
quantized_angle_lower %= num_orientation_bins;
quantized_angle_upper %= num_orientation_bins;
const double angle_split = (angle-std::floor(angle));
const double upper_strength = angle_split*strength;
const double lower_strength = (1-angle_split)*strength;
if (interpolation_type == hog_angle_interpolation)
{
// Stick into gradient histogram. Note that we linearly interpolate between neighboring
// histogram buckets.
hist_cells[rh][ch].values[quantized_angle_lower] += lower_strength;
hist_cells[rh][ch].values[quantized_angle_upper] += upper_strength;
}
else // here we do hog_full_interpolation
{
const double center_r = (cell_size-1)/2.0;
const double center_c = (cell_size-1)/2.0;
const double lin_neighbor_r = std::abs(center_r - r)/cell_size;
const double lin_main_r = 1-lin_neighbor_r;
const double lin_neighbor_c = std::abs(center_c - c)/cell_size;
const double lin_main_c = 1-lin_neighbor_c;
// Which neighboring cells we interpolate into depends on which
// corner of our main cell we are nearest.
if (r < center_r)
{
if (c < center_c)
{
hist_cells[rh][ch].values[quantized_angle_upper] += upper_strength * lin_main_r*lin_main_c;
hist_cells[rh][ch].values[quantized_angle_lower] += lower_strength * lin_main_r*lin_main_c;
hist_cells[rh-1][ch].values[quantized_angle_upper] += upper_strength * lin_neighbor_r*lin_main_c;
hist_cells[rh-1][ch].values[quantized_angle_lower] += lower_strength * lin_neighbor_r*lin_main_c;
hist_cells[rh][ch-1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_main_r;
hist_cells[rh][ch-1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_main_r;
hist_cells[rh-1][ch-1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_neighbor_r;
hist_cells[rh-1][ch-1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_neighbor_r;
}
else
{
hist_cells[rh][ch].values[quantized_angle_upper] += upper_strength * lin_main_r*lin_main_c;
hist_cells[rh][ch].values[quantized_angle_lower] += lower_strength * lin_main_r*lin_main_c;
hist_cells[rh-1][ch].values[quantized_angle_upper] += upper_strength * lin_neighbor_r*lin_main_c;
hist_cells[rh-1][ch].values[quantized_angle_lower] += lower_strength * lin_neighbor_r*lin_main_c;
hist_cells[rh][ch+1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_main_r;
hist_cells[rh][ch+1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_main_r;
hist_cells[rh-1][ch+1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_neighbor_r;
hist_cells[rh-1][ch+1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_neighbor_r;
}
}
else
{
if (c < center_c)
{
hist_cells[rh][ch].values[quantized_angle_upper] += upper_strength * lin_main_r*lin_main_c;
hist_cells[rh][ch].values[quantized_angle_lower] += lower_strength * lin_main_r*lin_main_c;
hist_cells[rh+1][ch].values[quantized_angle_upper] += upper_strength * lin_neighbor_r*lin_main_c;
hist_cells[rh+1][ch].values[quantized_angle_lower] += lower_strength * lin_neighbor_r*lin_main_c;
hist_cells[rh][ch-1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_main_r;
hist_cells[rh][ch-1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_main_r;
hist_cells[rh+1][ch-1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_neighbor_r;
hist_cells[rh+1][ch-1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_neighbor_r;
}
else
{
hist_cells[rh][ch].values[quantized_angle_upper] += upper_strength * lin_main_r*lin_main_c;
hist_cells[rh][ch].values[quantized_angle_lower] += lower_strength * lin_main_r*lin_main_c;
hist_cells[rh+1][ch].values[quantized_angle_upper] += upper_strength * lin_neighbor_r*lin_main_c;
hist_cells[rh+1][ch].values[quantized_angle_lower] += lower_strength * lin_neighbor_r*lin_main_c;
hist_cells[rh][ch+1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_main_r;
hist_cells[rh][ch+1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_main_r;
hist_cells[rh+1][ch+1].values[quantized_angle_upper] += upper_strength * lin_neighbor_c*lin_neighbor_r;
hist_cells[rh+1][ch+1].values[quantized_angle_lower] += lower_strength * lin_neighbor_c*lin_neighbor_r;
}
}
}
}
}
}
}
}
// Now figure out how many blocks we should have. Note again that the hist_cells has a border of
// unused cells (thats where that -2 comes from).
num_block_rows = (hist_cells.nr()-2 - (block_size-1) + cell_stride - 1)/cell_stride;
num_block_cols = (hist_cells.nc()-2 - (block_size-1) + cell_stride - 1)/cell_stride;
}
unsigned long round_to_int(
double val
) const
{
return static_cast<unsigned long>(std::floor(val + 0.5));
}
struct histogram
{
void zero()
{
for (unsigned long i = 0; i < num_orientation_bins; ++i)
values[i] = 0;
}
double values[num_orientation_bins];
};
array2d<histogram> hist_cells;
mutable descriptor_type des;
long num_block_rows;
long num_block_cols;
};
// ----------------------------------------------------------------------------------------
template <
unsigned long T1,
unsigned long T2,
unsigned long T3,
unsigned long T4,
int T5,
int T6
>
void serialize (
const hog_image<T1,T2,T3,T4,T5,T6>& item,
std::ostream& out
)
{
item._PRIVATE_serialize(out);
}
template <
unsigned long T1,
unsigned long T2,
unsigned long T3,
unsigned long T4,
int T5,
int T6
>
void deserialize (
hog_image<T1,T2,T3,T4,T5,T6>& item,
std::istream& in
)
{
item._PRIVATE_deserialize(in);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_HoG_Hh_
|