File size: 51,714 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 |
<html><!-- Created using the cpp_pretty_printer from the dlib C++ library. See http://dlib.net for updates. --><head><title>dlib C++ Library - trainer_abstract.h</title></head><body bgcolor='white'><pre>
<font color='#009900'>// Copyright (C) 2015 Davis E. King ([email protected])
</font><font color='#009900'>// License: Boost Software License See LICENSE.txt for the full license.
</font><font color='#0000FF'>#undef</font> DLIB_DNn_TRAINER_ABSTRACT_H_
<font color='#0000FF'>#ifdef</font> DLIB_DNn_TRAINER_ABSTRACT_H_
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='core_abstract.h.html'>core_abstract.h</a>"
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='solvers_abstract.h.html'>solvers_abstract.h</a>"
<font color='#0000FF'>#include</font> <font color='#5555FF'><</font>vector<font color='#5555FF'>></font>
<font color='#0000FF'>#include</font> <font color='#5555FF'><</font>chrono<font color='#5555FF'>></font>
<font color='#0000FF'>namespace</font> dlib
<b>{</b>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>enum</font> <font color='#0000FF'>class</font> <b><a name='force_flush_to_disk'></a>force_flush_to_disk</b> <b>{</b>
no <font color='#5555FF'>=</font> <font color='#979000'>0</font>,
yes <font color='#5555FF'>=</font> <font color='#979000'>1</font>
<b>}</b>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>template</font> <font color='#5555FF'><</font>
<font color='#0000FF'>typename</font> net_type,
<font color='#0000FF'>typename</font> solver_type <font color='#5555FF'>=</font> sgd
<font color='#5555FF'>></font>
<font color='#0000FF'>class</font> <b><a name='dnn_trainer'></a>dnn_trainer</b>
<b>{</b>
<font color='#009900'>/*!
REQUIREMENTS ON net_type
- net_type is an add_loss_layer object.
REQUIREMENTS ON solver_type
- solver_type is an implementation of the EXAMPLE_SOLVER interface defined
in solvers_abstract.h
WHAT THIS OBJECT REPRESENTS
This object is a tool training a deep neural network. To use it you supply
a neural network type and a solver, then you call train() with your
training data and it will output a new network instance that has hopefully
learned something useful from your training data.
If you are compiling with CUDA then this object will use the GPU that is
currently selected (i.e. the one indicated by cudaGetDevice()) when
dnn_trainer is constructed. It will continue to use that device even if
you later change it by a call to cudaSetDevice().
EXCEPTIONS
If an exception is thrown by any part of the neural network during training
then the exception will be propagated out of the trainer to the user.
Moreover, the trainer instance will be unusable and should be destroyed.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>typedef</font> <font color='#0000FF'>typename</font> net_type::training_label_type training_label_type;
<font color='#0000FF'>typedef</font> <font color='#0000FF'>typename</font> net_type::input_type input_type;
<font color='#0000FF'>const</font> <font color='#0000FF'>static</font> <font color='#0000FF'><u>size_t</u></font> num_computational_layers <font color='#5555FF'>=</font> net_type::num_computational_layers;
<font color='#0000FF'>using</font> threads <font color='#5555FF'>=</font> std::vector<font color='#5555FF'><</font>std::shared_ptr<font color='#5555FF'><</font>thread_pool<font color='#5555FF'>></font><font color='#5555FF'>></font>;
<b><a name='dnn_trainer'></a>dnn_trainer</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>delete</font>;
<b><a name='dnn_trainer'></a>dnn_trainer</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> dnn_trainer<font color='#5555FF'>&</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>delete</font>;
dnn_trainer<font color='#5555FF'>&</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> dnn_trainer<font color='#5555FF'>&</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>delete</font>;
<b><a name='dnn_trainer'></a>dnn_trainer</b><font face='Lucida Console'>(</font>
net_type<font color='#5555FF'>&</font> net,
<font color='#0000FF'>const</font> solver_type<font color='#5555FF'>&</font> solver <font color='#5555FF'>=</font> <font color='#BB00BB'>solver_type</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>,
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font><font color='#0000FF'><u>int</u></font><font color='#5555FF'>></font><font color='#5555FF'>&</font> cuda_extra_devices <font color='#5555FF'>=</font> <b>{</b><b>}</b>,
std::shared_ptr<font color='#5555FF'><</font>threads<font color='#5555FF'>></font> thread_pools <font color='#5555FF'>=</font> std::shared_ptr<font color='#5555FF'><</font>threads<font color='#5555FF'>></font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- for all valid i:
- 0 <= cuda_extra_devices[i] < dlib::cuda::get_num_devices()
ensures
- &#get_net() == &net
(i.e. The dnn_trainer holds a reference to net, it does not copy it.
Therefore, you must ensure net has a lifetime at least as long as the
dnn_trainer).
- #get_solvers() == a set of solvers that are all initialized with the
provided solver instance.
- #get_max_num_epochs() == 10000
- #get_mini_batch_size() == 128
- #get_learning_rate() == 1e-2
- #get_min_learning_rate() == 1e-5
- #get_iterations_without_progress_threshold() == 2000
- #get_test_iterations_without_progress_threshold() == 500
- #get_learning_rate_shrink_factor() == 0.1
- #get_learning_rate_schedule().size() == 0
- #get_train_one_step_calls() == 0
- #get_test_one_step_calls() == 0
- #get_synchronization_file() == ""
- if (cuda_extra_devices.size() > 0) then
- This object will use multiple graphics cards to run the learning
algorithms. In particular, it will always use whatever device is
currently selected on the calling thread (the device indicated by
cudaGetDevice()). In addition, you can ask to use additional
devices, which you do by putting their device numbers into
cuda_extra_devices.
- if (thread_pools.get() != nullptr) then
- Any new threads spun within the trainer will execute within the
passed thread pools vector. This means that the same threads can
be re-used across different dnn_trainer instances. Otherwise, the
CUDA runtime may leak memory. This, however, is relevant only if
your program is going to instantiate a large number of trainers,
and generally stay up and running for a very long time. If not,
then you need not worry about this.
NB: Any particular thread pools vector should be passed to max
one trainer instance at a time.
NB: The mentioned leak isn't happening because dlib is or isn't
doing something. Instead, it is a limitation of the CUDA
runtime that dlib has no control over.
!*/</font>
net_type<font color='#5555FF'>&</font> <b><a name='get_net'></a>get_net</b> <font face='Lucida Console'>(</font>
force_flush_to_disk force_flush <font color='#5555FF'>=</font> force_flush_to_disk::yes
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- returns the neural network object used by this trainer. This is the
network that is optimized when you call train() or train_one_step().
Recall that the dnn_trainer doesn't contain the net_type object but
simply holds a reference to an external network which was provided to the
dnn_trainer's constructor.
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
- If force_flush is yes, then this function will sync the trainer state to
disk if the current state hasn't already been synced to disk since the
last network modification.
!*/</font>
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>solver_type<font color='#5555FF'>></font><font color='#5555FF'>&</font> <b><a name='get_solvers'></a>get_solvers</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the solvers used to optimize each layer of the neural network
get_net(). In particular, the first layer's solver is
get_solvers()[0], the second layer's solver is
get_solvers()[1], and so on.
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
!*/</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='get_mini_batch_size'></a>get_mini_batch_size</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- During training, we call the network's update() routine over and over
with training data. The number of training samples we give to each call
to update is the "mini-batch size", which is defined by
get_mini_batch_size().
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_mini_batch_size'></a>set_mini_batch_size</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> batch_size
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- batch_size > 0
ensures
- #get_mini_batch_size() == batch_size
!*/</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='get_max_num_epochs'></a>get_max_num_epochs</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- train() will execute at most get_max_num_epochs() iterations over the
training data before returning.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_max_num_epochs'></a>set_max_num_epochs</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> num
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- num > 0
ensures
- #get_max_num_epochs() == num
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_learning_rate'></a>set_learning_rate</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>double</u></font> lr
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- lr > 0
ensures
- #get_learning_rate() == lr
- #get_learning_rate_schedule().size() == 0
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
!*/</font>
<font color='#0000FF'><u>double</u></font> <b><a name='get_learning_rate'></a>get_learning_rate</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- During each training step, a solver tells us how to modify the parameters
of each layer in the network. It does this by outputting a step vector
that, when added to the parameters, will hopefully result in improved
network performance. The learning rate is one of the inputs to the
solver and influences the size of this step vector. This function
returns the current learning rate, that is, the learning rate that will
be used during the next training step.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_min_learning_rate'></a>set_min_learning_rate</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>double</u></font> lr
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- lr > 0
ensures
- #get_min_learning_rate() == lr
- #get_learning_rate_schedule().size() == 0
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
!*/</font>
<font color='#0000FF'><u>double</u></font> <b><a name='get_min_learning_rate'></a>get_min_learning_rate</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- During training via this->train(), this object will test if progress is
still being made and if it isn't then it will reduce get_learning_rate()
by setting it to get_learning_rate()*get_learning_rate_shrink_factor().
However, it will not reduce it below get_min_learning_rate(). Once this
minimum learning rate is crossed the training will terminate.
- get_min_learning_rate() doesn't apply if you are using train_one_step().
You can keep calling train_one_step() as many times as you want and the
learning rate will drop infinitely close to 0 if you run long enough.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'><</font><font color='#0000FF'>typename</font> EXP<font color='#5555FF'>></font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_learning_rate_schedule'></a>set_learning_rate_schedule</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> matrix_exp<font color='#5555FF'><</font>EXP<font color='#5555FF'>></font><font color='#5555FF'>&</font> schedule
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- schedule.size() > 0
- min(schedule) > 0
ensures
- #get_learning_rate_schedule() == reshape_to_column_vector(schedule)
- #get_learning_rate() == schedule(0,0)
- #get_min_learning_rate() == min(schedule)
- #set_learning_rate_shrink_factor() == 1
!*/</font>
<font color='#0000FF'>const</font> matrix<font color='#5555FF'><</font><font color='#0000FF'><u>double</u></font>,<font color='#979000'>0</font>,<font color='#979000'>1</font><font color='#5555FF'>></font><font color='#5555FF'>&</font> <b><a name='get_learning_rate_schedule'></a>get_learning_rate_schedule</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- if (this function returns a non-empty matrix) then
- This trainer will use an explicit learning rate schedule defined by
the learning rate values in get_learning_rate_schedule(). For
example, if get_learning_rate_schedule() returned {0.1, 0.09, 0.08,
0.07, 0.06} then the first training mini-batch would use a learning
rate of 0.1, then the next training mini-batch uses 0.09, and then
0.8, and so on until the end of the schedule is reached.
If you continue to run training after the end of the schedule has
been reached then the learning rate will be fixed to 0.99 times the
final value. So in our example, eventually the learning rate would
be fixed to 0.99*0.06. This allows you to test if we have reached the
end of the schedule by checking if get_learning_rate() >= 0.06.
!*/</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='get_steps_without_progress'></a>get_steps_without_progress</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- if (get_learning_rate_shrink_factor() != 1) then
- returns an estimate of how many mini-batches have executed without us
observing a statistically significant decrease in the training error.
- else
- returns 0
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_iterations_without_progress_threshold'></a>set_iterations_without_progress_threshold</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> thresh
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #get_iterations_without_progress_threshold() == thresh
- #get_learning_rate_schedule().size() == 0
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
!*/</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='get_iterations_without_progress_threshold'></a>get_iterations_without_progress_threshold</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- This object monitors the progress of training and estimates if the
training error is being reduced. It does this by looking at the previous
get_iterations_without_progress_threshold() mini-batch results and
applying the statistical test defined by the running_gradient object to
see if the training error is getting smaller. If it isn't being reduced
then get_learning_rate() is made smaller by a factor of get_learning_rate_shrink_factor().
Therefore, get_iterations_without_progress_threshold() should always be
set to something sensibly large so that this test can be done with
reasonably high confidence. Think of this test as saying "if the loss
hasn't decreased for the previous get_iterations_without_progress_threshold()
then shrink the learning rate".
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_learning_rate_shrink_factor'></a>set_learning_rate_shrink_factor</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>double</u></font> shrink
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- 0 < shrink && shrink <= 1
ensures
- #get_learning_rate_shrink_factor() == shrink
- #get_learning_rate_schedule().size() == 0
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
!*/</font>
<font color='#0000FF'><u>double</u></font> <b><a name='get_learning_rate_shrink_factor'></a>get_learning_rate_shrink_factor</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- Whenever the training routine thinks it isn't making progress anymore it
will reduce get_learning_rate() by multiplying it by get_learning_rate_shrink_factor().
- You can disable the automatic learning rate reduction by setting
get_learning_rate_shrink_factor() to 1.
!*/</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='get_train_one_step_calls'></a>get_train_one_step_calls</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the number of times train_one_step() has been called.
!*/</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='get_test_one_step_calls'></a>get_test_one_step_calls</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the number of times test_one_step() has been called.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='be_verbose'></a>be_verbose</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- This object will print status messages to standard out so that a
user can observe the progress of the algorithm.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='be_quiet'></a>be_quiet</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- This object will not print anything to standard out
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_synchronization_file'></a>set_synchronization_file</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> std::string<font color='#5555FF'>&</font> filename,
std::chrono::seconds time_between_syncs <font color='#5555FF'>=</font> std::chrono::<font color='#BB00BB'>minutes</font><font face='Lucida Console'>(</font><font color='#979000'>15</font><font face='Lucida Console'>)</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #get_synchronization_file() == filename
- While training is running, either via train() or repeated calls to
train_one_step(), this object will save its entire state, including the
state of get_net(), to disk in the file named filename every
time_between_syncs seconds.
- If the filename file already exists then the state of this trainer will
be loaded from that file by this call to set_synchronization_file().
This allows you to resume a training session which was previously
interrupted.
- It should be noted that when saving, the trainer will alternate between
saving to a file called filename and another file called filename+"_".
We do this because it's possible that your computer might crash (not
because of dlib, just in general) before the data is safely saved to
disk. This way, you will always have a backup file if the write to disk
gets corrupted or is incomplete. Moreover, when loading, we will always
load from the newest of the two possible files.
!*/</font>
<font color='#0000FF'>const</font> std::string<font color='#5555FF'>&</font> <b><a name='get_synchronization_file'></a>get_synchronization_file</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- Returns the name of the file the dnn_trainer will periodically save it's
state to. If the return value is "" then synchronization is disabled.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='train'></a>train</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>input_type<font color='#5555FF'>></font><font color='#5555FF'>&</font> data,
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>training_label_type<font color='#5555FF'>></font><font color='#5555FF'>&</font> labels
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- data.size() == labels.size()
- data.size() > 0
- net_type uses a supervised loss.
i.e. net_type::training_label_type != no_label_type.
ensures
- Trains a supervised neural network based on the given training data.
The goal of training is to find the network parameters that minimize
get_net().compute_loss(data.begin(), data.end(), labels.begin()).
- The optimizer will run until get_learning_rate() < get_min_learning_rate()
or get_max_num_epochs() training epochs have been executed.
- Each layer in the network will be optimized by its corresponding solver
in get_solvers().
- Each call to train DOES NOT reinitialize the state of get_net() or
get_solvers(). That is, the existing state of the solvers and network is
the starting point for the optimization each time train() is called. In
particular, if you use the set_synchronization_file() method you can
resume an interrupted train() call by simply calling train() again and it
will pick up from the last synchronization point.
- You can obtain the average loss value during the final training epoch by
calling get_average_loss().
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='train'></a>train</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>input_type<font color='#5555FF'>></font><font color='#5555FF'>&</font> data
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- data.size() > 0
- net_type uses an unsupervised loss.
i.e. net_type::training_label_type == no_label_type.
ensures
- Trains an unsupervised neural network based on the given training data.
The goal of training is to find the network parameters that minimize
get_net().compute_loss(data.begin(), data.end()).
- The optimizer will run until get_learning_rate() < get_min_learning_rate()
or get_max_num_epochs() training epochs have been executed.
- Each layer in the network will be optimized by its corresponding solver
in get_solvers().
- Each call to train DOES NOT reinitialize the state of get_net() or
get_solvers(). That is, the existing state of the solvers and network is
the starting point for the optimization each time train() is called. In
particular, if you use the set_synchronization_file() method you can
resume an interrupted train() call by simply calling train() again and it
will pick up from the last synchronization point.
- You can obtain the average loss value during the final training epoch by
calling get_average_loss().
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='train_one_step'></a>train_one_step</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>input_type<font color='#5555FF'>></font><font color='#5555FF'>&</font> data,
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>training_label_type<font color='#5555FF'>></font><font color='#5555FF'>&</font> labels
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- data.size() == labels.size()
- data.size() > 0
- net_type uses a supervised loss.
i.e. net_type::training_label_type != no_label_type.
ensures
- Performs one stochastic gradient update step based on the mini-batch of
data and labels supplied to this function. In particular, calling
train_one_step() in a loop is equivalent to calling the train() method
defined above. However, train_one_step() allows you to stream data from
disk into the training process while train() requires you to first load
all the training data into RAM. Otherwise, these training methods are
equivalent.
- You can observe the current average loss value by calling get_average_loss().
- The network training will happen in another thread. Therefore, after
calling this function you should call get_net() before you touch the net
object from the calling thread to ensure no other threads are still
accessing the network.
- #get_train_one_step_calls() == get_train_one_step_calls() + 1.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'><</font>
<font color='#0000FF'>typename</font> data_iterator,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>></font>
<font color='#0000FF'><u>void</u></font> <b><a name='train_one_step'></a>train_one_step</b> <font face='Lucida Console'>(</font>
data_iterator dbegin,
data_iterator dend,
label_iterator lbegin
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- std::advance(lbegin, std::distance(dbegin, dend) - 1) is dereferencable
- std::distance(dbegin, dend) > 0
- net_type uses a supervised loss.
i.e. net_type::training_label_type != no_label_type.
ensures
- Performs one stochastic gradient update step based on the mini-batch of
data and labels supplied to this function. In particular, calling
train_one_step() in a loop is equivalent to calling the train() method
defined above. However, train_one_step() allows you to stream data from
disk into the training process while train() requires you to first load
all the training data into RAM. Otherwise, these training methods are
equivalent.
- You can observe the current average loss value by calling get_average_loss().
- The network training will happen in another thread. Therefore, after
calling this function you should call get_net() before you touch the net
object from the calling thread to ensure no other threads are still
accessing the network.
- #get_train_one_step_calls() == get_train_one_step_calls() + 1.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='train_one_step'></a>train_one_step</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>input_type<font color='#5555FF'>></font><font color='#5555FF'>&</font> data
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- data.size() > 0
- net_type uses an unsupervised loss.
i.e. net_type::training_label_type == no_label_type.
ensures
- Performs one stochastic gradient update step based on the mini-batch of
data supplied to this function. In particular, calling train_one_step()
in a loop is equivalent to calling the train() method defined above.
However, train_one_step() allows you to stream data from disk into the
training process while train() requires you to first load all the
training data into RAM. Otherwise, these training methods are
equivalent.
- You can observe the current average loss value by calling get_average_loss().
- The network training will happen in another thread. Therefore, after
calling this function you should call get_net() before you touch the net
object from the calling thread to ensure no other threads are still
accessing the network.
- #get_train_one_step_calls() == get_train_one_step_calls() + 1.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'><</font>
<font color='#0000FF'>typename</font> data_iterator
<font color='#5555FF'>></font>
<font color='#0000FF'><u>void</u></font> <b><a name='train_one_step'></a>train_one_step</b> <font face='Lucida Console'>(</font>
data_iterator dbegin,
data_iterator dend
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- std::distance(dbegin, dend) > 0
- net_type uses an unsupervised loss.
i.e. net_type::training_label_type == no_label_type.
ensures
- Performs one stochastic gradient update step based on the mini-batch of
data supplied to this function. In particular, calling train_one_step()
in a loop is equivalent to calling the train() method defined above.
However, train_one_step() allows you to stream data from disk into the
training process while train() requires you to first load all the
training data into RAM. Otherwise, these training methods are
equivalent.
- You can observe the current average loss value by calling get_average_loss().
- The network training will happen in another thread. Therefore, after
calling this function you should call get_net() before you touch the net
object from the calling thread to ensure no other threads are still
accessing the network.
- #get_train_one_step_calls() == get_train_one_step_calls() + 1.
!*/</font>
<font color='#0000FF'><u>double</u></font> <b><a name='get_average_loss'></a>get_average_loss</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the average loss value observed during previous calls to
train_one_step() or train(). That is, the average output of
net_type::update() during the previous mini-batch updates.
- Note that, if be_verbose() has been called, then this object will
automatically call clear_average_loss() periodically when it logs the
loss to the console.
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='clear_average_loss'></a>clear_average_loss</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #get_average_loss() == 0
- get_average_loss() uses a dlib::running_stats object to keep a running
average of the loss values seen during the previous mini-batch updates
applied during training. Calling clear_average_loss() resets the
running_stats object so it forgets about all previous loss values
observed.
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
!*/</font>
<font color='#009900'>// ----------------------
</font>
<font color='#0000FF'><u>double</u></font> <b><a name='get_average_test_loss'></a>get_average_test_loss</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the average loss value observed during previous calls to
test_one_step().
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='test_one_step'></a>test_one_step</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>input_type<font color='#5555FF'>></font><font color='#5555FF'>&</font> data,
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>training_label_type<font color='#5555FF'>></font><font color='#5555FF'>&</font> labels
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- data.size() == labels.size()
- data.size() > 0
- net_type uses a supervised loss.
i.e. net_type::training_label_type != no_label_type.
ensures
- Runs the given data through the network and computes and records the loss.
- This call does not modify network parameters. The point of
test_one_step() is two fold, to allow you to observe the accuracy of the
network on hold out data during training, and to allow the trainer to
automatically adjust the learning rate when the test loss stops
improving. It should be noted that you are not required to use
test_one_step() at all, but if you want to do this kind of thing it is
available.
- You can observe the current average loss value by calling get_average_test_loss().
- The computation will happen in another thread. Therefore, after calling
this function you should call get_net() before you touch the net object
from the calling thread to ensure no other threads are still accessing
the network.
- #get_test_one_step_calls() == get_test_one_step_calls() + 1.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'><</font>
<font color='#0000FF'>typename</font> data_iterator,
<font color='#0000FF'>typename</font> label_iterator
<font color='#5555FF'>></font>
<font color='#0000FF'><u>void</u></font> <b><a name='test_one_step'></a>test_one_step</b> <font face='Lucida Console'>(</font>
data_iterator dbegin,
data_iterator dend,
label_iterator lbegin
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- std::advance(lbegin, std::distance(dbegin, dend) - 1) is dereferencable
- std::distance(dbegin, dend) > 0
- net_type uses a supervised loss.
i.e. net_type::training_label_type != no_label_type.
ensures
- Runs the given data through the network and computes and records the loss.
- This call does not modify network parameters. The point of
test_one_step() is two fold, to allow you to observe the accuracy of the
network on hold out data during training, and to allow the trainer to
automatically adjust the learning rate when the test loss stops
improving. It should be noted that you are not required to use
test_one_step() at all, but if you want to do this kind of thing it is
available.
- You can observe the current average loss value by calling get_average_test_loss().
- The computation will happen in another thread. Therefore, after calling
this function you should call get_net() before you touch the net object
from the calling thread to ensure no other threads are still accessing
the network.
- #get_test_one_step_calls() == get_test_one_step_calls() + 1.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='test_one_step'></a>test_one_step</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>input_type<font color='#5555FF'>></font><font color='#5555FF'>&</font> data
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- data.size() > 0
- net_type uses an unsupervised loss.
i.e. net_type::training_label_type == no_label_type.
ensures
- Runs the given data through the network and computes and records the loss.
- This call does not modify network parameters. The point of
test_one_step() is two fold, to allow you to observe the accuracy of the
network on hold out data during training, and to allow the trainer to
automatically adjust the learning rate when the test loss stops
improving. It should be noted that you are not required to use
test_one_step() at all, but if you want to do this kind of thing it is
available.
- You can observe the current average loss value by calling get_average_test_loss().
- The computation will happen in another thread. Therefore, after calling
this function you should call get_net() before you touch the net object
from the calling thread to ensure no other threads are still accessing
the network.
- #get_test_one_step_calls() == get_test_one_step_calls() + 1.
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'><</font>
<font color='#0000FF'>typename</font> data_iterator
<font color='#5555FF'>></font>
<font color='#0000FF'><u>void</u></font> <b><a name='test_one_step'></a>test_one_step</b> <font face='Lucida Console'>(</font>
data_iterator dbegin,
data_iterator dend
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- std::distance(dbegin, dend) > 0
- net_type uses an unsupervised loss.
i.e. net_type::training_label_type == no_label_type.
ensures
- Runs the given data through the network and computes and records the loss.
- This call does not modify network parameters. The point of
test_one_step() is two fold, to allow you to observe the accuracy of the
network on hold out data during training, and to allow the trainer to
automatically adjust the learning rate when the test loss stops
improving. It should be noted that you are not required to use
test_one_step() at all, but if you want to do this kind of thing it is
available.
- You can observe the current average loss value by calling get_average_test_loss().
- The computation will happen in another thread. Therefore, after calling
this function you should call get_net() before you touch the net object
from the calling thread to ensure no other threads are still accessing
the network.
- #get_test_one_step_calls() == get_test_one_step_calls() + 1.
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_test_iterations_without_progress_threshold'></a>set_test_iterations_without_progress_threshold</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> thresh
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #get_test_iterations_without_progress_threshold() == thresh
- #get_learning_rate_schedule().size() == 0
- This function blocks until all threads inside the dnn_trainer have
stopped touching the net.
!*/</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='get_test_iterations_without_progress_threshold'></a>get_test_iterations_without_progress_threshold</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- This object monitors the progress of training and estimates if the
testing error is being reduced. It does this by looking at the previous
get_test_iterations_without_progress_threshold() mini-batch results from
test_one_step() and applying the statistical test defined by the
running_gradient object to see if the testing error is getting smaller.
If it isn't being reduced then get_learning_rate() is made smaller by a
factor of get_learning_rate_shrink_factor().
Therefore, get_test_iterations_without_progress_threshold() should always be
set to something sensibly large so that this test can be done with
reasonably high confidence. Think of this test as saying "if the testing loss
hasn't decreased for the previous get_test_iterations_without_progress_threshold()
calls to test_one_step() then shrink the learning rate".
!*/</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='get_test_steps_without_progress'></a>get_test_steps_without_progress</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- if (get_learning_rate_shrink_factor() != 1) then
- returns an estimate of how many mini-batches have executed without us
observing a statistically significant decrease in the testing error
(i.e. the error on the data given to the trainer via test_one_step()
calls).
- else
- returns 0
!*/</font>
<b>}</b>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>template</font> <font color='#5555FF'><</font>
<font color='#0000FF'>typename</font> net_type,
<font color='#0000FF'>typename</font> solver_type
<font color='#5555FF'>></font>
std::ostream<font color='#5555FF'>&</font> <b><a name='operator'></a>operator</b><font color='#5555FF'><</font><font color='#5555FF'><</font> <font face='Lucida Console'>(</font>
std::ostream<font color='#5555FF'>&</font> out,
dnn_trainer<font color='#5555FF'><</font>net_type,solver_type<font color='#5555FF'>></font><font color='#5555FF'>&</font> trainer
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- Prints a log of the current parameters of trainer to out.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<b>}</b>
<font color='#0000FF'>#endif</font> <font color='#009900'>// DLIB_DNn_TRAINER_ABSTRACT_H_
</font>
</pre></body></html> |