File size: 22,107 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
<html><!-- Created using the cpp_pretty_printer from the dlib C++ library.  See http://dlib.net for updates. --><head><title>dlib C++ Library - dnn_inception_ex.cpp</title></head><body bgcolor='white'><pre>
<font color='#009900'>// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
</font><font color='#009900'>/*
    This is an example illustrating the use of the deep learning tools from the
    dlib C++ Library.  I'm assuming you have already read the introductory
    <a href="dnn_introduction_ex.cpp.html">dnn_introduction_ex.cpp</a> and <a href="dnn_introduction2_ex.cpp.html">dnn_introduction2_ex.cpp</a> examples.  In this
    example we are going to show how to create inception networks. 

    An inception network is composed of inception blocks of the form:

               input from SUBNET
              /        |        \
             /         |         \
          block1    block2  ... blockN 
             \         |         /
              \        |        /
          concatenate tensors from blocks
                       |
                    output
                 
    That is, an inception block runs a number of smaller networks (e.g. block1,
    block2) and then concatenates their results.  For further reading refer to:
    Szegedy, Christian, et al. "Going deeper with convolutions." Proceedings of
    the IEEE Conference on Computer Vision and Pattern Recognition. 2015.
*/</font>

<font color='#0000FF'>#include</font> <font color='#5555FF'>&lt;</font>dlib<font color='#5555FF'>/</font>dnn.h<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>#include</font> <font color='#5555FF'>&lt;</font>iostream<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>#include</font> <font color='#5555FF'>&lt;</font>dlib<font color='#5555FF'>/</font>data_io.h<font color='#5555FF'>&gt;</font>

<font color='#0000FF'>using</font> <font color='#0000FF'>namespace</font> std;
<font color='#0000FF'>using</font> <font color='#0000FF'>namespace</font> dlib;

<font color='#009900'>// Inception layer has some different convolutions inside.  Here we define
</font><font color='#009900'>// blocks as convolutions with different kernel size that we will use in
</font><font color='#009900'>// inception layer block.
</font><font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> block_a1 <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>10</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> block_a2 <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>10</font>,<font color='#979000'>3</font>,<font color='#979000'>3</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,relu<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>16</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> block_a3 <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>10</font>,<font color='#979000'>5</font>,<font color='#979000'>5</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,relu<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>16</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> block_a4 <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>10</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,max_pool<font color='#5555FF'>&lt;</font><font color='#979000'>3</font>,<font color='#979000'>3</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;

<font color='#009900'>// Here is inception layer definition. It uses different blocks to process input
</font><font color='#009900'>// and returns combined output.  Dlib includes a number of these inceptionN
</font><font color='#009900'>// layer types which are themselves created using concat layers.  
</font><font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> incept_a <font color='#5555FF'>=</font> inception4<font color='#5555FF'>&lt;</font>block_a1,block_a2,block_a3,block_a4, SUBNET<font color='#5555FF'>&gt;</font>;

<font color='#009900'>// Network can have inception layers of different structure.  It will work
</font><font color='#009900'>// properly so long as all the sub-blocks inside a particular inception block
</font><font color='#009900'>// output tensors with the same number of rows and columns.
</font><font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> block_b1 <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>4</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> block_b2 <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>4</font>,<font color='#979000'>3</font>,<font color='#979000'>3</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> block_b3 <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>4</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,max_pool<font color='#5555FF'>&lt;</font><font color='#979000'>3</font>,<font color='#979000'>3</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> incept_b <font color='#5555FF'>=</font> inception3<font color='#5555FF'>&lt;</font>block_b1,block_b2,block_b3,SUBNET<font color='#5555FF'>&gt;</font>;

<font color='#009900'>// Now we can define a simple network for classifying MNIST digits.  We will
</font><font color='#009900'>// train and test this network in the code below.
</font><font color='#0000FF'>using</font> net_type <font color='#5555FF'>=</font> loss_multiclass_log<font color='#5555FF'>&lt;</font>
        fc<font color='#5555FF'>&lt;</font><font color='#979000'>10</font>,
        relu<font color='#5555FF'>&lt;</font>fc<font color='#5555FF'>&lt;</font><font color='#979000'>32</font>,
        max_pool<font color='#5555FF'>&lt;</font><font color='#979000'>2</font>,<font color='#979000'>2</font>,<font color='#979000'>2</font>,<font color='#979000'>2</font>,incept_b<font color='#5555FF'>&lt;</font>
        max_pool<font color='#5555FF'>&lt;</font><font color='#979000'>2</font>,<font color='#979000'>2</font>,<font color='#979000'>2</font>,<font color='#979000'>2</font>,incept_a<font color='#5555FF'>&lt;</font>
        input<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>
        <font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;

<font color='#0000FF'><u>int</u></font> <b><a name='main'></a>main</b><font face='Lucida Console'>(</font><font color='#0000FF'><u>int</u></font> argc, <font color='#0000FF'><u>char</u></font><font color='#5555FF'>*</font><font color='#5555FF'>*</font> argv<font face='Lucida Console'>)</font> <font color='#0000FF'>try</font>
<b>{</b>
    <font color='#009900'>// This example is going to run on the MNIST dataset.
</font>    <font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>argc <font color='#5555FF'>!</font><font color='#5555FF'>=</font> <font color='#979000'>2</font><font face='Lucida Console'>)</font>
    <b>{</b>
        cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>This example needs the MNIST dataset to run!</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
        cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>You can get MNIST from http://yann.lecun.com/exdb/mnist/</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
        cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>Download the 4 files that comprise the dataset, decompress them, and</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
        cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>put them in a folder.  Then give that folder as input to this program.</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
        <font color='#0000FF'>return</font> <font color='#979000'>1</font>;
    <b>}</b>


    std::vector<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font> training_images;
    std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font>         training_labels;
    std::vector<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font> testing_images;
    std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font>         testing_labels;
    <font color='#BB00BB'>load_mnist_dataset</font><font face='Lucida Console'>(</font>argv[<font color='#979000'>1</font>], training_images, training_labels, testing_images, testing_labels<font face='Lucida Console'>)</font>;


    <font color='#009900'>// Make an instance of our inception network.
</font>    net_type net;
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>The net has </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> net.num_layers <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'> layers in it.</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> net <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;


    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>Training NN...</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    dnn_trainer<font color='#5555FF'>&lt;</font>net_type<font color='#5555FF'>&gt;</font> <font color='#BB00BB'>trainer</font><font face='Lucida Console'>(</font>net<font face='Lucida Console'>)</font>;
    trainer.<font color='#BB00BB'>set_learning_rate</font><font face='Lucida Console'>(</font><font color='#979000'>0.01</font><font face='Lucida Console'>)</font>;
    trainer.<font color='#BB00BB'>set_min_learning_rate</font><font face='Lucida Console'>(</font><font color='#979000'>0.00001</font><font face='Lucida Console'>)</font>;
    trainer.<font color='#BB00BB'>set_mini_batch_size</font><font face='Lucida Console'>(</font><font color='#979000'>128</font><font face='Lucida Console'>)</font>;
    trainer.<font color='#BB00BB'>be_verbose</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
    trainer.<font color='#BB00BB'>set_synchronization_file</font><font face='Lucida Console'>(</font>"<font color='#CC0000'>inception_sync</font>", std::chrono::<font color='#BB00BB'>seconds</font><font face='Lucida Console'>(</font><font color='#979000'>20</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>;
    <font color='#009900'>// Train the network.  This might take a few minutes...
</font>    trainer.<font color='#BB00BB'>train</font><font face='Lucida Console'>(</font>training_images, training_labels<font face='Lucida Console'>)</font>;

    <font color='#009900'>// At this point our net object should have learned how to classify MNIST images.  But
</font>    <font color='#009900'>// before we try it out let's save it to disk.  Note that, since the trainer has been
</font>    <font color='#009900'>// running images through the network, net will have a bunch of state in it related to
</font>    <font color='#009900'>// the last batch of images it processed (e.g. outputs from each layer).  Since we
</font>    <font color='#009900'>// don't care about saving that kind of stuff to disk we can tell the network to forget
</font>    <font color='#009900'>// about that kind of transient data so that our file will be smaller.  We do this by
</font>    <font color='#009900'>// "cleaning" the network before saving it.
</font>    net.<font color='#BB00BB'>clean</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
    <font color='#BB00BB'>serialize</font><font face='Lucida Console'>(</font>"<font color='#CC0000'>mnist_network_inception.dat</font>"<font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> net;
    <font color='#009900'>// Now if we later wanted to recall the network from disk we can simply say:
</font>    <font color='#009900'>// deserialize("mnist_network_inception.dat") &gt;&gt; net;
</font>

    <font color='#009900'>// Now let's run the training images through the network.  This statement runs all the
</font>    <font color='#009900'>// images through it and asks the loss layer to convert the network's raw output into
</font>    <font color='#009900'>// labels.  In our case, these labels are the numbers between 0 and 9.
</font>    std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font> predicted_labels <font color='#5555FF'>=</font> <font color='#BB00BB'>net</font><font face='Lucida Console'>(</font>training_images<font face='Lucida Console'>)</font>;
    <font color='#0000FF'><u>int</u></font> num_right <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
    <font color='#0000FF'><u>int</u></font> num_wrong <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
    <font color='#009900'>// And then let's see if it classified them correctly.
</font>    <font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>0</font>; i <font color='#5555FF'>&lt;</font> training_images.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
    <b>{</b>
        <font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>predicted_labels[i] <font color='#5555FF'>=</font><font color='#5555FF'>=</font> training_labels[i]<font face='Lucida Console'>)</font>
            <font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_right;
        <font color='#0000FF'>else</font>
            <font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_wrong;
        
    <b>}</b>
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>training num_right: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>training num_wrong: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_wrong <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>training accuracy:  </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right<font color='#5555FF'>/</font><font face='Lucida Console'>(</font><font color='#0000FF'><u>double</u></font><font face='Lucida Console'>)</font><font face='Lucida Console'>(</font>num_right<font color='#5555FF'>+</font>num_wrong<font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;

    <font color='#009900'>// Let's also see if the network can correctly classify the testing images.
</font>    <font color='#009900'>// Since MNIST is an easy dataset, we should see 99% accuracy.
</font>    predicted_labels <font color='#5555FF'>=</font> <font color='#BB00BB'>net</font><font face='Lucida Console'>(</font>testing_images<font face='Lucida Console'>)</font>;
    num_right <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
    num_wrong <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
    <font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>0</font>; i <font color='#5555FF'>&lt;</font> testing_images.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
    <b>{</b>
        <font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>predicted_labels[i] <font color='#5555FF'>=</font><font color='#5555FF'>=</font> testing_labels[i]<font face='Lucida Console'>)</font>
            <font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_right;
        <font color='#0000FF'>else</font>
            <font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_wrong;
        
    <b>}</b>
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>testing num_right: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>testing num_wrong: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_wrong <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>testing accuracy:  </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right<font color='#5555FF'>/</font><font face='Lucida Console'>(</font><font color='#0000FF'><u>double</u></font><font face='Lucida Console'>)</font><font face='Lucida Console'>(</font>num_right<font color='#5555FF'>+</font>num_wrong<font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;

<b>}</b>
<font color='#0000FF'>catch</font><font face='Lucida Console'>(</font>std::exception<font color='#5555FF'>&amp;</font> e<font face='Lucida Console'>)</font>
<b>{</b>
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> e.<font color='#BB00BB'>what</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
<b>}</b>


</pre></body></html>