File size: 45,633 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
<html><!-- Created using the cpp_pretty_printer from the dlib C++ library.  See http://dlib.net for updates. --><head><title>dlib C++ Library - dnn_introduction2_ex.cpp</title></head><body bgcolor='white'><pre>
<font color='#009900'>// The contents of this file are in the public domain. See LICENSE_FOR_EXAMPLE_PROGRAMS.txt
</font><font color='#009900'>/*
    This is an example illustrating the use of the deep learning tools from the
    dlib C++ Library.  I'm assuming you have already read the <a href="dnn_introduction_ex.cpp.html">dnn_introduction_ex.cpp</a> 
    example.  So in this example program I'm going to go over a number of more
    advanced parts of the API, including:
        - Using multiple GPUs
        - Training on large datasets that don't fit in memory 
        - Defining large networks
        - Accessing and configuring layers in a network
*/</font>

<font color='#0000FF'>#include</font> <font color='#5555FF'>&lt;</font>dlib<font color='#5555FF'>/</font>dnn.h<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>#include</font> <font color='#5555FF'>&lt;</font>iostream<font color='#5555FF'>&gt;</font>
<font color='#0000FF'>#include</font> <font color='#5555FF'>&lt;</font>dlib<font color='#5555FF'>/</font>data_io.h<font color='#5555FF'>&gt;</font>

<font color='#0000FF'>using</font> <font color='#0000FF'>namespace</font> std;
<font color='#0000FF'>using</font> <font color='#0000FF'>namespace</font> dlib;

<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#009900'>// Let's start by showing how you can conveniently define large and complex
</font><font color='#009900'>// networks.  The most important tool for doing this are C++'s alias templates.
</font><font color='#009900'>// These let us define new layer types that are combinations of a bunch of other
</font><font color='#009900'>// layers.  These will form the building blocks for more complex networks.
</font>
<font color='#009900'>// So let's begin by defining the building block of a residual network (see
</font><font color='#009900'>// Figure 2 in Deep Residual Learning for Image Recognition by He, Zhang, Ren,
</font><font color='#009900'>// and Sun).  We are going to decompose the residual block into a few alias
</font><font color='#009900'>// statements.  First, we define the core block.
</font>
<font color='#009900'>// Here we have parameterized the "block" layer on a BN layer (nominally some
</font><font color='#009900'>// kind of batch normalization), the number of filter outputs N, and the stride
</font><font color='#009900'>// the block operates at.
</font><font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
    <font color='#0000FF'><u>int</u></font> N, 
    <font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font> <font color='#0000FF'>class</font> <b><a name='BN'></a>BN</b>, 
    <font color='#0000FF'><u>int</u></font> stride, 
    <font color='#0000FF'>typename</font> SUBNET
    <font color='#5555FF'>&gt;</font> 
<font color='#0000FF'>using</font> block  <font color='#5555FF'>=</font> BN<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font>N,<font color='#979000'>3</font>,<font color='#979000'>3</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,relu<font color='#5555FF'>&lt;</font>BN<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font>N,<font color='#979000'>3</font>,<font color='#979000'>3</font>,stride,stride,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;

<font color='#009900'>// Next, we need to define the skip layer mechanism used in the residual network
</font><font color='#009900'>// paper.  They create their blocks by adding the input tensor to the output of
</font><font color='#009900'>// each block.  So we define an alias statement that takes a block and wraps it
</font><font color='#009900'>// with this skip/add structure.
</font>
<font color='#009900'>// Note the tag layer.  This layer doesn't do any computation.  It exists solely
</font><font color='#009900'>// so other layers can refer to it.  In this case, the add_prev1 layer looks for
</font><font color='#009900'>// the tag1 layer and will take the tag1 output and add it to the input of the
</font><font color='#009900'>// add_prev1 layer.  This combination allows us to implement skip and residual
</font><font color='#009900'>// style networks.  We have also set the block stride to 1 in this statement.
</font><font color='#009900'>// The significance of that is explained next.
</font><font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
    <font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'><u>int</u></font>,<font color='#0000FF'>template</font><font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font><font color='#0000FF'>class</font>,<font color='#0000FF'><u>int</u></font>,<font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font> <font color='#0000FF'>class</font> <b><a name='block'></a>block</b>, 
    <font color='#0000FF'><u>int</u></font> N, 
    <font color='#0000FF'>template</font><font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font><font color='#0000FF'>class</font> <b><a name='BN'></a>BN</b>, 
    <font color='#0000FF'>typename</font> SUBNET
    <font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> residual <font color='#5555FF'>=</font> add_prev1<font color='#5555FF'>&lt;</font>block<font color='#5555FF'>&lt;</font>N,BN,<font color='#979000'>1</font>,tag1<font color='#5555FF'>&lt;</font>SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;

<font color='#009900'>// Some residual blocks do downsampling.  They do this by using a stride of 2
</font><font color='#009900'>// instead of 1.  However, when downsampling we need to also take care to
</font><font color='#009900'>// downsample the part of the network that adds the original input to the output
</font><font color='#009900'>// or the sizes won't make sense (the network will still run, but the results
</font><font color='#009900'>// aren't as good).  So here we define a downsampling version of residual.  In
</font><font color='#009900'>// it, we make use of the skip1 layer.  This layer simply outputs whatever is
</font><font color='#009900'>// output by the tag1 layer.  Therefore, the skip1 layer (there are also skip2,
</font><font color='#009900'>// skip3, etc. in dlib) allows you to create branching network structures.
</font>
<font color='#009900'>// residual_down creates a network structure like this:
</font><font color='#009900'>/*
         input from SUBNET
             /     \
            /       \
         block     downsample(using avg_pool)
            \       /
             \     /
           add tensors (using add_prev2 which adds the output of tag2 with avg_pool's output)
                |
              output
*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font>
    <font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'><u>int</u></font>,<font color='#0000FF'>template</font><font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font><font color='#0000FF'>class</font>,<font color='#0000FF'><u>int</u></font>,<font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font> <font color='#0000FF'>class</font> <b><a name='block'></a>block</b>, 
    <font color='#0000FF'><u>int</u></font> N, 
    <font color='#0000FF'>template</font><font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font><font color='#5555FF'>&gt;</font><font color='#0000FF'>class</font> <b><a name='BN'></a>BN</b>, 
    <font color='#0000FF'>typename</font> SUBNET
    <font color='#5555FF'>&gt;</font>
<font color='#0000FF'>using</font> residual_down <font color='#5555FF'>=</font> add_prev2<font color='#5555FF'>&lt;</font>avg_pool<font color='#5555FF'>&lt;</font><font color='#979000'>2</font>,<font color='#979000'>2</font>,<font color='#979000'>2</font>,<font color='#979000'>2</font>,skip1<font color='#5555FF'>&lt;</font>tag2<font color='#5555FF'>&lt;</font>block<font color='#5555FF'>&lt;</font>N,BN,<font color='#979000'>2</font>,tag1<font color='#5555FF'>&lt;</font>SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;



<font color='#009900'>// Now we can define 4 different residual blocks we will use in this example.
</font><font color='#009900'>// The first two are non-downsampling residual blocks while the last two
</font><font color='#009900'>// downsample.  Also, res and res_down use batch normalization while ares and
</font><font color='#009900'>// ares_down have had the batch normalization replaced with simple affine
</font><font color='#009900'>// layers.  We will use the affine version of the layers when testing our
</font><font color='#009900'>// networks.
</font><font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> res       <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>residual<font color='#5555FF'>&lt;</font>block,<font color='#979000'>8</font>,bn_con,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> ares      <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>residual<font color='#5555FF'>&lt;</font>block,<font color='#979000'>8</font>,affine,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> res_down  <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>residual_down<font color='#5555FF'>&lt;</font>block,<font color='#979000'>8</font>,bn_con,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> <font color='#0000FF'>using</font> ares_down <font color='#5555FF'>=</font> relu<font color='#5555FF'>&lt;</font>residual_down<font color='#5555FF'>&lt;</font>block,<font color='#979000'>8</font>,affine,SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;



<font color='#009900'>// Now that we have these convenient aliases, we can define a residual network
</font><font color='#009900'>// without a lot of typing.  Note the use of a repeat layer.  This special layer
</font><font color='#009900'>// type allows us to type repeat&lt;9,res,SUBNET&gt; instead of
</font><font color='#009900'>// res&lt;res&lt;res&lt;res&lt;res&lt;res&lt;res&lt;res&lt;res&lt;SUBNET&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;.  It will also prevent
</font><font color='#009900'>// the compiler from complaining about super deep template nesting when creating
</font><font color='#009900'>// large networks.
</font><font color='#0000FF'>const</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> number_of_classes <font color='#5555FF'>=</font> <font color='#979000'>10</font>;
<font color='#0000FF'>using</font> net_type <font color='#5555FF'>=</font> loss_multiclass_log<font color='#5555FF'>&lt;</font>fc<font color='#5555FF'>&lt;</font>number_of_classes,
                            avg_pool_everything<font color='#5555FF'>&lt;</font>
                            res<font color='#5555FF'>&lt;</font>res<font color='#5555FF'>&lt;</font>res<font color='#5555FF'>&lt;</font>res_down<font color='#5555FF'>&lt;</font>
                            repeat<font color='#5555FF'>&lt;</font><font color='#979000'>9</font>,res, <font color='#009900'>// repeat this layer 9 times
</font>                            res_down<font color='#5555FF'>&lt;</font>
                            res<font color='#5555FF'>&lt;</font>
                            input<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>
                            <font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;


<font color='#009900'>// And finally, let's define a residual network building block that uses
</font><font color='#009900'>// parametric ReLU units instead of regular ReLU.
</font><font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> SUBNET<font color='#5555FF'>&gt;</font> 
<font color='#0000FF'>using</font> pres  <font color='#5555FF'>=</font> prelu<font color='#5555FF'>&lt;</font>add_prev1<font color='#5555FF'>&lt;</font>bn_con<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>8</font>,<font color='#979000'>3</font>,<font color='#979000'>3</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,prelu<font color='#5555FF'>&lt;</font>bn_con<font color='#5555FF'>&lt;</font>con<font color='#5555FF'>&lt;</font><font color='#979000'>8</font>,<font color='#979000'>3</font>,<font color='#979000'>3</font>,<font color='#979000'>1</font>,<font color='#979000'>1</font>,tag1<font color='#5555FF'>&lt;</font>SUBNET<font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;

<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>int</u></font> <b><a name='main'></a>main</b><font face='Lucida Console'>(</font><font color='#0000FF'><u>int</u></font> argc, <font color='#0000FF'><u>char</u></font><font color='#5555FF'>*</font><font color='#5555FF'>*</font> argv<font face='Lucida Console'>)</font> <font color='#0000FF'>try</font>
<b>{</b>
    <font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>argc <font color='#5555FF'>!</font><font color='#5555FF'>=</font> <font color='#979000'>2</font><font face='Lucida Console'>)</font>
    <b>{</b>
        cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>This example needs the MNIST dataset to run!</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
        cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>You can get MNIST from http://yann.lecun.com/exdb/mnist/</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
        cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>Download the 4 files that comprise the dataset, decompress them, and</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
        cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>put them in a folder.  Then give that folder as input to this program.</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
        <font color='#0000FF'>return</font> <font color='#979000'>1</font>;
    <b>}</b>

    std::vector<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font> training_images;
    std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font> training_labels;
    std::vector<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font> testing_images;
    std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font> testing_labels;
    <font color='#BB00BB'>load_mnist_dataset</font><font face='Lucida Console'>(</font>argv[<font color='#979000'>1</font>], training_images, training_labels, testing_images, testing_labels<font face='Lucida Console'>)</font>;


    <font color='#009900'>// dlib uses cuDNN under the covers.  One of the features of cuDNN is the
</font>    <font color='#009900'>// option to use slower methods that use less RAM or faster methods that use
</font>    <font color='#009900'>// a lot of RAM.  If you find that you run out of RAM on your graphics card
</font>    <font color='#009900'>// then you can call this function and we will request the slower but more
</font>    <font color='#009900'>// RAM frugal cuDNN algorithms.
</font>    <font color='#BB00BB'>set_dnn_prefer_smallest_algorithms</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;


    <font color='#009900'>// Create a network as defined above.  This network will produce 10 outputs
</font>    <font color='#009900'>// because that's how we defined net_type.  However, fc layers can have the
</font>    <font color='#009900'>// number of outputs they produce changed at runtime.  
</font>    net_type net;
    <font color='#009900'>// So if you wanted to use the same network but override the number of
</font>    <font color='#009900'>// outputs at runtime you can do so like this:
</font>    net_type <font color='#BB00BB'>net2</font><font face='Lucida Console'>(</font><font color='#BB00BB'>num_fc_outputs</font><font face='Lucida Console'>(</font><font color='#979000'>15</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>;

    <font color='#009900'>// Now, let's imagine we wanted to replace some of the relu layers with
</font>    <font color='#009900'>// prelu layers.  We might do it like this:
</font>    <font color='#0000FF'>using</font> net_type2 <font color='#5555FF'>=</font> loss_multiclass_log<font color='#5555FF'>&lt;</font>fc<font color='#5555FF'>&lt;</font>number_of_classes,
                                avg_pool_everything<font color='#5555FF'>&lt;</font>
                                pres<font color='#5555FF'>&lt;</font>res<font color='#5555FF'>&lt;</font>res<font color='#5555FF'>&lt;</font>res_down<font color='#5555FF'>&lt;</font> <font color='#009900'>// 2 prelu layers here
</font>                                tag4<font color='#5555FF'>&lt;</font>repeat<font color='#5555FF'>&lt;</font><font color='#979000'>9</font>,pres,    <font color='#009900'>// 9 groups, each containing 2 prelu layers  
</font>                                res_down<font color='#5555FF'>&lt;</font>
                                res<font color='#5555FF'>&lt;</font>
                                input<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>
                                <font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;

    <font color='#009900'>// prelu layers have a floating point parameter.  If you want to set it to
</font>    <font color='#009900'>// something other than its default value you can do so like this:
</font>    net_type2 <font color='#BB00BB'>pnet</font><font face='Lucida Console'>(</font><font color='#BB00BB'>prelu_</font><font face='Lucida Console'>(</font><font color='#979000'>0.2</font><font face='Lucida Console'>)</font>,  
                   <font color='#BB00BB'>prelu_</font><font face='Lucida Console'>(</font><font color='#979000'>0.25</font><font face='Lucida Console'>)</font>,
                   <font color='#BB00BB'>repeat_group</font><font face='Lucida Console'>(</font><font color='#BB00BB'>prelu_</font><font face='Lucida Console'>(</font><font color='#979000'>0.3</font><font face='Lucida Console'>)</font>,<font color='#BB00BB'>prelu_</font><font face='Lucida Console'>(</font><font color='#979000'>0.4</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font> <font color='#009900'>// Initialize all the prelu instances in the repeat 
</font>                                                         <font color='#009900'>// layer.  repeat_group() is needed to group the 
</font>                                                         <font color='#009900'>// things that are part of repeat's block.
</font>                   <font face='Lucida Console'>)</font>;
    <font color='#009900'>// As you can see, a network will greedily assign things given to its
</font>    <font color='#009900'>// constructor to the layers inside itself.  The assignment is done in the
</font>    <font color='#009900'>// order the layers are defined, but it will skip layers where the
</font>    <font color='#009900'>// assignment doesn't make sense.  
</font>
    <font color='#009900'>// Now let's print the details of the pnet to the screen and inspect it.
</font>    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>The pnet has </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> pnet.num_layers <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'> layers in it.</font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> pnet <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    <font color='#009900'>// These print statements will output this (I've truncated it since it's
</font>    <font color='#009900'>// long, but you get the idea):
</font>    <font color='#009900'>/*
        The pnet has 131 layers in it.
        layer&lt;0&gt;    loss_multiclass_log
        layer&lt;1&gt;    fc       (num_outputs=10) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
        layer&lt;2&gt;    avg_pool (nr=0, nc=0, stride_y=1, stride_x=1, padding_y=0, padding_x=0)
        layer&lt;3&gt;    prelu    (initial_param_value=0.2)
        layer&lt;4&gt;    add_prev1
        layer&lt;5&gt;    bn_con   eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
        layer&lt;6&gt;    con      (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
        layer&lt;7&gt;    prelu    (initial_param_value=0.25)
        layer&lt;8&gt;    bn_con   eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
        layer&lt;9&gt;    con      (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
        layer&lt;10&gt;   tag1
        ...
        layer&lt;34&gt;   relu
        layer&lt;35&gt;   bn_con   eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
        layer&lt;36&gt;   con      (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
        layer&lt;37&gt;   tag1
        layer&lt;38&gt;   tag4
        layer&lt;39&gt;   prelu    (initial_param_value=0.3)
        layer&lt;40&gt;   add_prev1
        layer&lt;41&gt;   bn_con   eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
        ...
        layer&lt;118&gt;  relu
        layer&lt;119&gt;  bn_con   eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
        layer&lt;120&gt;  con      (num_filters=8, nr=3, nc=3, stride_y=2, stride_x=2, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
        layer&lt;121&gt;  tag1
        layer&lt;122&gt;  relu
        layer&lt;123&gt;  add_prev1
        layer&lt;124&gt;  bn_con   eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
        layer&lt;125&gt;  con      (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
        layer&lt;126&gt;  relu
        layer&lt;127&gt;  bn_con   eps=1e-05 learning_rate_mult=1 weight_decay_mult=0 bias_learning_rate_mult=1 bias_weight_decay_mult=1
        layer&lt;128&gt;  con      (num_filters=8, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
        layer&lt;129&gt;  tag1
        layer&lt;130&gt;  input&lt;matrix&gt;
    */</font>

    <font color='#009900'>// Now that we know the index numbers for each layer, we can access them
</font>    <font color='#009900'>// individually using layer&lt;index&gt;(pnet).  For example, to access the output
</font>    <font color='#009900'>// tensor for the first prelu layer we can say:
</font>    layer<font color='#5555FF'>&lt;</font><font color='#979000'>3</font><font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>pnet<font face='Lucida Console'>)</font>.<font color='#BB00BB'>get_output</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
    <font color='#009900'>// Or to print the prelu parameter for layer 7 we can say:
</font>    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>prelu param: </font>"<font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> layer<font color='#5555FF'>&lt;</font><font color='#979000'>7</font><font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>pnet<font face='Lucida Console'>)</font>.<font color='#BB00BB'>layer_details</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>.<font color='#BB00BB'>get_initial_param_value</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;

    <font color='#009900'>// We can also access layers by their type.  This next statement finds the
</font>    <font color='#009900'>// first tag1 layer in pnet, and is therefore equivalent to calling
</font>    <font color='#009900'>// layer&lt;10&gt;(pnet):
</font>    layer<font color='#5555FF'>&lt;</font>tag1<font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>pnet<font face='Lucida Console'>)</font>;
    <font color='#009900'>// The tag layers don't do anything at all and exist simply so you can tag
</font>    <font color='#009900'>// parts of your network and access them by layer&lt;tag&gt;().  You can also
</font>    <font color='#009900'>// index relative to a tag.  So for example, to access the layer immediately
</font>    <font color='#009900'>// after tag4 you can say:
</font>    layer<font color='#5555FF'>&lt;</font>tag4,<font color='#979000'>1</font><font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>pnet<font face='Lucida Console'>)</font>; <font color='#009900'>// Equivalent to layer&lt;38+1&gt;(pnet).
</font>
    <font color='#009900'>// Or to access the layer 2 layers after tag4:
</font>    layer<font color='#5555FF'>&lt;</font>tag4,<font color='#979000'>2</font><font color='#5555FF'>&gt;</font><font face='Lucida Console'>(</font>pnet<font face='Lucida Console'>)</font>;
    <font color='#009900'>// Tagging is a very useful tool for making complex network structures.  For
</font>    <font color='#009900'>// example, the add_prev1 layer is implemented internally by using a call to
</font>    <font color='#009900'>// layer&lt;tag1&gt;().
</font>


    <font color='#009900'>// Ok, that's enough talk about defining and inspecting networks.  Let's
</font>    <font color='#009900'>// talk about training networks!
</font>
    <font color='#009900'>// The dnn_trainer will use SGD by default, but you can tell it to use
</font>    <font color='#009900'>// different solvers like adam with a weight decay of 0.0005 and the given
</font>    <font color='#009900'>// momentum parameters. 
</font>    dnn_trainer<font color='#5555FF'>&lt;</font>net_type,adam<font color='#5555FF'>&gt;</font> <font color='#BB00BB'>trainer</font><font face='Lucida Console'>(</font>net,<font color='#BB00BB'>adam</font><font face='Lucida Console'>(</font><font color='#979000'>0.0005</font>, <font color='#979000'>0.9</font>, <font color='#979000'>0.999</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>;
    <font color='#009900'>// Also, if you have multiple graphics cards you can tell the trainer to use
</font>    <font color='#009900'>// them together to make the training faster.  For example, replacing the
</font>    <font color='#009900'>// above constructor call with this one would cause it to use GPU cards 0
</font>    <font color='#009900'>// and 1.
</font>    <font color='#009900'>//dnn_trainer&lt;net_type,adam&gt; trainer(net,adam(0.0005, 0.9, 0.999), {0,1});
</font>
    trainer.<font color='#BB00BB'>be_verbose</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
    <font color='#009900'>// While the trainer is running it keeps an eye on the training error.  If
</font>    <font color='#009900'>// it looks like the error hasn't decreased for the last 2000 iterations it
</font>    <font color='#009900'>// will automatically reduce the learning rate by 0.1.  You can change these
</font>    <font color='#009900'>// default parameters to some other values by calling these functions.  Or
</font>    <font color='#009900'>// disable the automatic shrinking entirely by setting the shrink factor to 1.
</font>    trainer.<font color='#BB00BB'>set_iterations_without_progress_threshold</font><font face='Lucida Console'>(</font><font color='#979000'>2000</font><font face='Lucida Console'>)</font>;
    trainer.<font color='#BB00BB'>set_learning_rate_shrink_factor</font><font face='Lucida Console'>(</font><font color='#979000'>0.1</font><font face='Lucida Console'>)</font>;
    <font color='#009900'>// The learning rate will start at 1e-3.
</font>    trainer.<font color='#BB00BB'>set_learning_rate</font><font face='Lucida Console'>(</font><font color='#979000'>1e</font><font color='#5555FF'>-</font><font color='#979000'>3</font><font face='Lucida Console'>)</font>;
    trainer.<font color='#BB00BB'>set_synchronization_file</font><font face='Lucida Console'>(</font>"<font color='#CC0000'>mnist_resnet_sync</font>", std::chrono::<font color='#BB00BB'>seconds</font><font face='Lucida Console'>(</font><font color='#979000'>100</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>;


    <font color='#009900'>// Now, what if your training dataset is so big it doesn't fit in RAM?  You
</font>    <font color='#009900'>// make mini-batches yourself, any way you like, and you send them to the
</font>    <font color='#009900'>// trainer by repeatedly calling trainer.train_one_step(). 
</font>    <font color='#009900'>//
</font>    <font color='#009900'>// For example, the loop below stream MNIST data to out trainer.
</font>    std::vector<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font> mini_batch_samples;
    std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font> mini_batch_labels; 
    dlib::rand <font color='#BB00BB'>rnd</font><font face='Lucida Console'>(</font><font color='#BB00BB'>time</font><font face='Lucida Console'>(</font><font color='#979000'>0</font><font face='Lucida Console'>)</font><font face='Lucida Console'>)</font>;
    <font color='#009900'>// Loop until the trainer's automatic shrinking has shrunk the learning rate to 1e-6.
</font>    <font color='#009900'>// Given our settings, this means it will stop training after it has shrunk the
</font>    <font color='#009900'>// learning rate 3 times.
</font>    <font color='#0000FF'>while</font><font face='Lucida Console'>(</font>trainer.<font color='#BB00BB'>get_learning_rate</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>&gt;</font><font color='#5555FF'>=</font> <font color='#979000'>1e</font><font color='#5555FF'>-</font><font color='#979000'>6</font><font face='Lucida Console'>)</font>
    <b>{</b>
        mini_batch_samples.<font color='#BB00BB'>clear</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
        mini_batch_labels.<font color='#BB00BB'>clear</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;

        <font color='#009900'>// make a 128 image mini-batch
</font>        <font color='#0000FF'>while</font><font face='Lucida Console'>(</font>mini_batch_samples.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font> <font color='#979000'>128</font><font face='Lucida Console'>)</font>
        <b>{</b>
            <font color='#0000FF'>auto</font> idx <font color='#5555FF'>=</font> rnd.<font color='#BB00BB'>get_random_32bit_number</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font><font color='#5555FF'>%</font>training_images.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
            mini_batch_samples.<font color='#BB00BB'>push_back</font><font face='Lucida Console'>(</font>training_images[idx]<font face='Lucida Console'>)</font>;
            mini_batch_labels.<font color='#BB00BB'>push_back</font><font face='Lucida Console'>(</font>training_labels[idx]<font face='Lucida Console'>)</font>;
        <b>}</b>

        <font color='#009900'>// Tell the trainer to update the network given this mini-batch
</font>        trainer.<font color='#BB00BB'>train_one_step</font><font face='Lucida Console'>(</font>mini_batch_samples, mini_batch_labels<font face='Lucida Console'>)</font>;

        <font color='#009900'>// You can also feed validation data into the trainer by periodically
</font>        <font color='#009900'>// calling trainer.test_one_step(samples,labels).  Unlike train_one_step(),
</font>        <font color='#009900'>// test_one_step() doesn't modify the network, it only computes the testing
</font>        <font color='#009900'>// error which it records internally.  This testing error will then be print
</font>        <font color='#009900'>// in the verbose logging and will also determine when the trainer's
</font>        <font color='#009900'>// automatic learning rate shrinking happens.  Therefore, test_one_step()
</font>        <font color='#009900'>// can be used to perform automatic early stopping based on held out data.   
</font>    <b>}</b>

    <font color='#009900'>// When you call train_one_step(), the trainer will do its processing in a
</font>    <font color='#009900'>// separate thread.  This allows the main thread to work on loading data
</font>    <font color='#009900'>// while the trainer is busy executing the mini-batches in parallel.
</font>    <font color='#009900'>// However, this also means we need to wait for any mini-batches that are
</font>    <font color='#009900'>// still executing to stop before we mess with the net object.  Calling
</font>    <font color='#009900'>// get_net() performs the necessary synchronization.
</font>    trainer.<font color='#BB00BB'>get_net</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;


    net.<font color='#BB00BB'>clean</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
    <font color='#BB00BB'>serialize</font><font face='Lucida Console'>(</font>"<font color='#CC0000'>mnist_res_network.dat</font>"<font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> net;


    <font color='#009900'>// Now we have a trained network.  However, it has batch normalization
</font>    <font color='#009900'>// layers in it.  As is customary, we should replace these with simple
</font>    <font color='#009900'>// affine layers before we use the network.  This can be accomplished by
</font>    <font color='#009900'>// making a network type which is identical to net_type but with the batch
</font>    <font color='#009900'>// normalization layers replaced with affine.  For example:
</font>    <font color='#0000FF'>using</font> test_net_type <font color='#5555FF'>=</font> loss_multiclass_log<font color='#5555FF'>&lt;</font>fc<font color='#5555FF'>&lt;</font>number_of_classes,
                                avg_pool_everything<font color='#5555FF'>&lt;</font>
                                ares<font color='#5555FF'>&lt;</font>ares<font color='#5555FF'>&lt;</font>ares<font color='#5555FF'>&lt;</font>ares_down<font color='#5555FF'>&lt;</font>
                                repeat<font color='#5555FF'>&lt;</font><font color='#979000'>9</font>,ares,
                                ares_down<font color='#5555FF'>&lt;</font>
                                ares<font color='#5555FF'>&lt;</font>
                                input<font color='#5555FF'>&lt;</font>matrix<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>char</u></font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>
                                <font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font>;
    <font color='#009900'>// Then we can simply assign our trained net to our testing net.
</font>    test_net_type tnet <font color='#5555FF'>=</font> net;
    <font color='#009900'>// Or if you only had a file with your trained network you could deserialize
</font>    <font color='#009900'>// it directly into your testing network.  
</font>    <font color='#BB00BB'>deserialize</font><font face='Lucida Console'>(</font>"<font color='#CC0000'>mnist_res_network.dat</font>"<font face='Lucida Console'>)</font> <font color='#5555FF'>&gt;</font><font color='#5555FF'>&gt;</font> tnet;


    <font color='#009900'>// And finally, we can run the testing network over our data.
</font>
    std::vector<font color='#5555FF'>&lt;</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>&gt;</font> predicted_labels <font color='#5555FF'>=</font> <font color='#BB00BB'>tnet</font><font face='Lucida Console'>(</font>training_images<font face='Lucida Console'>)</font>;
    <font color='#0000FF'><u>int</u></font> num_right <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
    <font color='#0000FF'><u>int</u></font> num_wrong <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
    <font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>0</font>; i <font color='#5555FF'>&lt;</font> training_images.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
    <b>{</b>
        <font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>predicted_labels[i] <font color='#5555FF'>=</font><font color='#5555FF'>=</font> training_labels[i]<font face='Lucida Console'>)</font>
            <font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_right;
        <font color='#0000FF'>else</font>
            <font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_wrong;
        
    <b>}</b>
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>training num_right: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>training num_wrong: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_wrong <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>training accuracy:  </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right<font color='#5555FF'>/</font><font face='Lucida Console'>(</font><font color='#0000FF'><u>double</u></font><font face='Lucida Console'>)</font><font face='Lucida Console'>(</font>num_right<font color='#5555FF'>+</font>num_wrong<font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;

    predicted_labels <font color='#5555FF'>=</font> <font color='#BB00BB'>tnet</font><font face='Lucida Console'>(</font>testing_images<font face='Lucida Console'>)</font>;
    num_right <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
    num_wrong <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
    <font color='#0000FF'>for</font> <font face='Lucida Console'>(</font><font color='#0000FF'><u>size_t</u></font> i <font color='#5555FF'>=</font> <font color='#979000'>0</font>; i <font color='#5555FF'>&lt;</font> testing_images.<font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <font color='#5555FF'>+</font><font color='#5555FF'>+</font>i<font face='Lucida Console'>)</font>
    <b>{</b>
        <font color='#0000FF'>if</font> <font face='Lucida Console'>(</font>predicted_labels[i] <font color='#5555FF'>=</font><font color='#5555FF'>=</font> testing_labels[i]<font face='Lucida Console'>)</font>
            <font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_right;
        <font color='#0000FF'>else</font>
            <font color='#5555FF'>+</font><font color='#5555FF'>+</font>num_wrong;
        
    <b>}</b>
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>testing num_right: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>testing num_wrong: </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_wrong <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> "<font color='#CC0000'>testing accuracy:  </font>" <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> num_right<font color='#5555FF'>/</font><font face='Lucida Console'>(</font><font color='#0000FF'><u>double</u></font><font face='Lucida Console'>)</font><font face='Lucida Console'>(</font>num_right<font color='#5555FF'>+</font>num_wrong<font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;

<b>}</b>
<font color='#0000FF'>catch</font><font face='Lucida Console'>(</font>std::exception<font color='#5555FF'>&amp;</font> e<font face='Lucida Console'>)</font>
<b>{</b>
    cout <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> e.<font color='#BB00BB'>what</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#5555FF'>&lt;</font><font color='#5555FF'>&lt;</font> endl;
<b>}</b>


</pre></body></html>