File size: 10,674 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#include "cluster.h"
#include <dlib/console_progress_indicator.h>
#include <dlib/image_io.h>
#include <dlib/data_io.h>
#include <dlib/image_transforms.h>
#include <dlib/misc_api.h>
#include <dlib/dir_nav.h>
#include <dlib/clustering.h>
#include <dlib/svm.h>
#include <dlib/statistics.h>
// ----------------------------------------------------------------------------------------
using namespace std;
using namespace dlib;
// ----------------------------------------------------------------------------
struct assignment
{
unsigned long c;
double dist;
unsigned long idx;
bool operator<(const assignment& item) const
{ return dist < item.dist; }
};
std::vector<assignment> angular_cluster (
std::vector<matrix<double,0,1> > feats,
const unsigned long num_clusters
)
{
DLIB_CASSERT(feats.size() != 0, "The dataset can't be empty");
for (unsigned long i = 0; i < feats.size(); ++i)
{
DLIB_CASSERT(feats[i].size() == feats[0].size(), "All feature vectors must have the same length.");
}
// find the centroid of feats
const matrix<double,0,1> m = mean(mat(feats));
// Now center feats and then project onto the unit sphere. The reason for projecting
// onto the unit sphere is so pick_initial_centers() works in a sensible way.
for (auto& f : feats)
{
f = normalize(f-m);
}
// now do angular clustering of the points
std::vector<matrix<double,0,1> > centers;
pick_initial_centers(num_clusters, centers, feats, linear_kernel<matrix<double,0,1> >(), 0.05);
find_clusters_using_angular_kmeans(feats, centers);
// and then report the resulting assignments
std::vector<assignment> assignments;
for (unsigned long i = 0; i < feats.size(); ++i)
{
assignment temp;
temp.c = nearest_center(centers, feats[i]);
temp.dist = length(feats[i] - centers[temp.c]);
temp.idx = i;
assignments.push_back(temp);
}
return assignments;
}
std::vector<assignment> chinese_cluster (
std::vector<matrix<double,0,1> > feats,
unsigned long &num_clusters
)
{
DLIB_CASSERT(feats.size() != 0, "The dataset can't be empty");
for (unsigned long i = 0; i < feats.size(); ++i)
{
DLIB_CASSERT(feats[i].size() == feats[0].size(), "All feature vectors must have the same length.");
}
// Try to find a good value to select if we should add a vertex in the graph. First we
// normalize the features.
const matrix<double,0,1> m = mean(mat(feats));
for (auto& f : feats)
{
f = normalize(f-m);
}
// Then we find the average distance between them, that average will be a good threshold to
// decide if pairs are connected.
running_stats<double> rs;
for (size_t i = 0; i < feats.size(); ++i) {
for (size_t j = i; j < feats.size(); ++j) {
rs.add(length(feats[i] - feats[j]));
}
}
// add vertices for chinese whispers to find clusters
std::vector<sample_pair> edges;
for (size_t i = 0; i < feats.size(); ++i) {
for (size_t j = i; j < feats.size(); ++j) {
if (length(feats[i] - feats[j]) < rs.mean()) {
edges.push_back(sample_pair(i, j, length(feats[i] - feats[j])));
}
}
}
std::vector<unsigned long> labels;
num_clusters = chinese_whispers(edges, labels);
std::vector<assignment> assignments;
for (unsigned long i = 0; i < feats.size(); ++i)
{
assignment temp;
temp.c = labels[i];
temp.dist = length(feats[i]);
temp.idx = i;
assignments.push_back(temp);
}
return assignments;
}
// ----------------------------------------------------------------------------------------
bool compare_first (
const std::pair<double,image_dataset_metadata::image>& a,
const std::pair<double,image_dataset_metadata::image>& b
)
{
return a.first < b.first;
}
// ----------------------------------------------------------------------------------------
double mean_aspect_ratio (
const image_dataset_metadata::dataset& data
)
{
double sum = 0;
double cnt = 0;
for (unsigned long i = 0; i < data.images.size(); ++i)
{
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
rectangle rect = data.images[i].boxes[j].rect;
if (rect.area() == 0 || data.images[i].boxes[j].ignore)
continue;
sum += rect.width()/(double)rect.height();
++cnt;
}
}
if (cnt != 0)
return sum/cnt;
else
return 0;
}
// ----------------------------------------------------------------------------------------
bool has_non_ignored_boxes (const image_dataset_metadata::image& img)
{
for (auto&& b : img.boxes)
{
if (!b.ignore)
return true;
}
return false;
}
// ----------------------------------------------------------------------------------------
int cluster_dataset(
const dlib::command_line_parser& parser
)
{
// make sure the user entered an argument to this program
if (parser.number_of_arguments() != 1)
{
cerr << "The --cluster option requires you to give one XML file on the command line." << endl;
return EXIT_FAILURE;
}
unsigned long num_clusters = get_option(parser, "cluster", 0);
const unsigned long chip_size = get_option(parser, "size", 8000);
image_dataset_metadata::dataset data;
image_dataset_metadata::load_image_dataset_metadata(data, parser[0]);
set_current_dir(get_parent_directory(file(parser[0])));
const double aspect_ratio = mean_aspect_ratio(data);
dlib::array<array2d<rgb_pixel> > images;
std::vector<matrix<double,0,1> > feats;
console_progress_indicator pbar(data.images.size());
// extract all the object chips and HOG features.
cout << "Loading image data..." << endl;
for (unsigned long i = 0; i < data.images.size(); ++i)
{
pbar.print_status(i);
if (!has_non_ignored_boxes(data.images[i]))
continue;
array2d<rgb_pixel> img, chip;
load_image(img, data.images[i].filename);
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
if (data.images[i].boxes[j].ignore || data.images[i].boxes[j].rect.area() < 10)
continue;
drectangle rect = data.images[i].boxes[j].rect;
rect = set_aspect_ratio(rect, aspect_ratio);
extract_image_chip(img, chip_details(rect, chip_size), chip);
feats.push_back(extract_fhog_features(chip));
images.push_back(chip);
}
}
if (feats.size() == 0)
{
cerr << "No non-ignored object boxes found in the XML dataset. You can't cluster an empty dataset." << endl;
return EXIT_FAILURE;
}
cout << "\nClustering objects..." << endl;
std::vector<assignment> assignments;
if (num_clusters) {
assignments = angular_cluster(feats, num_clusters);
} else {
assignments = chinese_cluster(feats, num_clusters);
}
// Now output each cluster to disk as an XML file.
for (unsigned long c = 0; c < num_clusters; ++c)
{
// We are going to accumulate all the image metadata for cluster c. We put it
// into idata so we can sort the images such that images with central chips
// come before less central chips. The idea being to get the good chips to
// show up first in the listing, making it easy to manually remove bad ones if
// that is desired.
std::vector<std::pair<double,image_dataset_metadata::image> > idata(data.images.size());
unsigned long idx = 0;
for (unsigned long i = 0; i < data.images.size(); ++i)
{
idata[i].first = std::numeric_limits<double>::infinity();
idata[i].second.filename = data.images[i].filename;
if (!has_non_ignored_boxes(data.images[i]))
continue;
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j)
{
idata[i].second.boxes.push_back(data.images[i].boxes[j]);
if (data.images[i].boxes[j].ignore || data.images[i].boxes[j].rect.area() < 10)
continue;
// If this box goes into cluster c then update the score for the whole
// image based on this boxes' score. Otherwise, mark the box as
// ignored.
if (assignments[idx].c == c)
idata[i].first = std::min(idata[i].first, assignments[idx].dist);
else
idata[i].second.boxes.back().ignore = true;
++idx;
}
}
// now save idata to an xml file.
std::sort(idata.begin(), idata.end(), compare_first);
image_dataset_metadata::dataset cdata;
cdata.comment = data.comment + "\n\n This file contains objects which were clustered into group " +
cast_to_string(c+1) + " of " + cast_to_string(num_clusters) + " groups with a chip size of " +
cast_to_string(chip_size) + " by imglab.";
cdata.name = data.name;
for (unsigned long i = 0; i < idata.size(); ++i)
{
// if this image has non-ignored boxes in it then include it in the output.
if (idata[i].first != std::numeric_limits<double>::infinity())
cdata.images.push_back(idata[i].second);
}
string outfile = "cluster_"+pad_int_with_zeros(c+1, 3) + ".xml";
cout << "Saving " << outfile << endl;
save_image_dataset_metadata(cdata, outfile);
}
// Now output each cluster to disk as a big tiled jpeg file. Sort everything so, just
// like in the xml file above, the best objects come first in the tiling.
std::sort(assignments.begin(), assignments.end());
for (unsigned long c = 0; c < num_clusters; ++c)
{
dlib::array<array2d<rgb_pixel> > temp;
for (unsigned long i = 0; i < assignments.size(); ++i)
{
if (assignments[i].c == c)
temp.push_back(images[assignments[i].idx]);
}
string outfile = "cluster_"+pad_int_with_zeros(c+1, 3) + ".jpg";
cout << "Saving " << outfile << endl;
save_jpeg(tile_images(temp), outfile);
}
return EXIT_SUCCESS;
}
// ----------------------------------------------------------------------------------------
|