File size: 17,509 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
// Copyright (C) 2017 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/geometry/vector.h>
#include <dlib/dnn.h>
#include <dlib/image_transforms.h>
#include "indexing.h"
#include <dlib/image_io.h>
#include <dlib/clustering.h>
#include <pybind11/stl_bind.h>
#include <pybind11/stl.h>
using namespace dlib;
using namespace std;
namespace py = pybind11;
typedef matrix<double,0,1> cv;
class face_recognition_model_v1
{
public:
face_recognition_model_v1(const std::string& model_filename)
{
deserialize(model_filename) >> net;
}
matrix<double,0,1> compute_face_descriptor (
numpy_image<rgb_pixel> img,
const full_object_detection& face,
const int num_jitters,
float padding = 0.25
)
{
std::vector<full_object_detection> faces(1, face);
return compute_face_descriptors(img, faces, num_jitters, padding)[0];
}
matrix<double,0,1> compute_face_descriptor_from_aligned_image (
numpy_image<rgb_pixel> img,
const int num_jitters
)
{
std::vector<numpy_image<rgb_pixel>> images{img};
return batch_compute_face_descriptors_from_aligned_images(images, num_jitters)[0];
}
std::vector<matrix<double,0,1>> compute_face_descriptors (
numpy_image<rgb_pixel> img,
const std::vector<full_object_detection>& faces,
const int num_jitters,
float padding = 0.25
)
{
std::vector<numpy_image<rgb_pixel>> batch_img(1, img);
std::vector<std::vector<full_object_detection>> batch_faces(1, faces);
return batch_compute_face_descriptors(batch_img, batch_faces, num_jitters, padding)[0];
}
std::vector<std::vector<matrix<double,0,1>>> batch_compute_face_descriptors (
const std::vector<numpy_image<rgb_pixel>>& batch_imgs,
const std::vector<std::vector<full_object_detection>>& batch_faces,
const int num_jitters,
float padding = 0.25
)
{
if (batch_imgs.size() != batch_faces.size())
throw dlib::error("The array of images and the array of array of locations must be of the same size");
int total_chips = 0;
for (const auto& faces : batch_faces)
{
total_chips += faces.size();
for (const auto& f : faces)
{
if (f.num_parts() != 68 && f.num_parts() != 5)
throw dlib::error("The full_object_detection must use the iBUG 300W 68 point face landmark style or dlib's 5 point style.");
}
}
dlib::array<matrix<rgb_pixel>> face_chips;
for (int i = 0; i < batch_imgs.size(); ++i)
{
auto& faces = batch_faces[i];
auto& img = batch_imgs[i];
std::vector<chip_details> dets;
for (const auto& f : faces)
dets.push_back(get_face_chip_details(f, 150, padding));
dlib::array<matrix<rgb_pixel>> this_img_face_chips;
extract_image_chips(img, dets, this_img_face_chips);
for (auto& chip : this_img_face_chips)
face_chips.push_back(chip);
}
std::vector<std::vector<matrix<double,0,1>>> face_descriptors(batch_imgs.size());
if (num_jitters <= 1)
{
// extract descriptors and convert from float vectors to double vectors
auto descriptors = net(face_chips, 16);
auto next = std::begin(descriptors);
for (int i = 0; i < batch_faces.size(); ++i)
{
for (int j = 0; j < batch_faces[i].size(); ++j)
{
face_descriptors[i].push_back(matrix_cast<double>(*next++));
}
}
DLIB_ASSERT(next == std::end(descriptors));
}
else
{
// extract descriptors and convert from float vectors to double vectors
auto fimg = std::begin(face_chips);
for (int i = 0; i < batch_faces.size(); ++i)
{
for (int j = 0; j < batch_faces[i].size(); ++j)
{
auto& r = mean(mat(net(jitter_image(*fimg++, num_jitters), 16)));
face_descriptors[i].push_back(matrix_cast<double>(r));
}
}
DLIB_ASSERT(fimg == std::end(face_chips));
}
return face_descriptors;
}
std::vector<matrix<double,0,1>> batch_compute_face_descriptors_from_aligned_images (
const std::vector<numpy_image<rgb_pixel>>& batch_imgs,
const int num_jitters
)
{
dlib::array<matrix<rgb_pixel>> face_chips;
for (auto& img : batch_imgs) {
matrix<rgb_pixel> image;
if (is_image<unsigned char>(img))
assign_image(image, numpy_image<unsigned char>(img));
else if (is_image<rgb_pixel>(img))
assign_image(image, numpy_image<rgb_pixel>(img));
else
throw dlib::error("Unsupported image type, must be 8bit gray or RGB image.");
// Check for the size of the image
if ((image.nr() != 150) || (image.nc() != 150)) {
throw dlib::error("Unsupported image size, it should be of size 150x150. Also cropping must be done as `dlib.get_face_chip` would do it. \
That is, centered and scaled essentially the same way.");
}
face_chips.push_back(image);
}
std::vector<matrix<double,0,1>> face_descriptors;
if (num_jitters <= 1)
{
// extract descriptors and convert from float vectors to double vectors
auto descriptors = net(face_chips, 16);
for (auto& des: descriptors) {
face_descriptors.push_back(matrix_cast<double>(des));
}
}
else
{
// extract descriptors and convert from float vectors to double vectors
for (auto& fimg : face_chips) {
auto& r = mean(mat(net(jitter_image(fimg, num_jitters), 16)));
face_descriptors.push_back(matrix_cast<double>(r));
}
}
return face_descriptors;
}
private:
dlib::rand rnd;
std::vector<matrix<rgb_pixel>> jitter_image(
const matrix<rgb_pixel>& img,
const int num_jitters
)
{
std::vector<matrix<rgb_pixel>> crops;
for (int i = 0; i < num_jitters; ++i)
crops.push_back(dlib::jitter_image(img,rnd));
return crops;
}
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>;
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET>
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>;
template <int N, template <typename> class BN, int stride, typename SUBNET>
using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>;
template <int N, typename SUBNET> using ares = relu<residual<block,N,affine,SUBNET>>;
template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>;
template <typename SUBNET> using alevel0 = ares_down<256,SUBNET>;
template <typename SUBNET> using alevel1 = ares<256,ares<256,ares_down<256,SUBNET>>>;
template <typename SUBNET> using alevel2 = ares<128,ares<128,ares_down<128,SUBNET>>>;
template <typename SUBNET> using alevel3 = ares<64,ares<64,ares<64,ares_down<64,SUBNET>>>>;
template <typename SUBNET> using alevel4 = ares<32,ares<32,ares<32,SUBNET>>>;
using anet_type = loss_metric<fc_no_bias<128,avg_pool_everything<
alevel0<
alevel1<
alevel2<
alevel3<
alevel4<
max_pool<3,3,2,2,relu<affine<con<32,7,7,2,2,
input_rgb_image_sized<150>
>>>>>>>>>>>>;
anet_type net;
};
// ----------------------------------------------------------------------------------------
py::list chinese_whispers_clustering(py::list descriptors, float threshold)
{
DLIB_CASSERT(threshold > 0);
py::list clusters;
size_t num_descriptors = py::len(descriptors);
// This next bit of code creates a graph of connected objects and then uses the Chinese
// whispers graph clustering algorithm to identify how many objects there are and which
// objects belong to which cluster.
std::vector<sample_pair> edges;
std::vector<unsigned long> labels;
for (size_t i = 0; i < num_descriptors; ++i)
{
for (size_t j = i; j < num_descriptors; ++j)
{
matrix<double,0,1>& first_descriptor = descriptors[i].cast<matrix<double,0,1>&>();
matrix<double,0,1>& second_descriptor = descriptors[j].cast<matrix<double,0,1>&>();
if (length(first_descriptor-second_descriptor) < threshold)
edges.push_back(sample_pair(i,j));
}
}
chinese_whispers(edges, labels);
for (size_t i = 0; i < labels.size(); ++i)
{
clusters.append(labels[i]);
}
return clusters;
}
py::list chinese_whispers_raw(py::list edges)
{
py::list clusters;
size_t num_edges = py::len(edges);
std::vector<sample_pair> edges_pairs;
std::vector<unsigned long> labels;
for (size_t idx = 0; idx < num_edges; ++idx)
{
py::tuple t = edges[idx].cast<py::tuple>();
if ((len(t) != 2) && (len(t) != 3))
{
PyErr_SetString( PyExc_IndexError, "Input must be a list of tuples with 2 or 3 elements.");
throw py::error_already_set();
}
size_t i = t[0].cast<size_t>();
size_t j = t[1].cast<size_t>();
double distance = (len(t) == 3) ? t[2].cast<double>(): 1;
edges_pairs.push_back(sample_pair(i, j, distance));
}
chinese_whispers(edges_pairs, labels);
for (size_t i = 0; i < labels.size(); ++i)
{
clusters.append(labels[i]);
}
return clusters;
}
void save_face_chips (
numpy_image<rgb_pixel> img,
const std::vector<full_object_detection>& faces,
const std::string& chip_filename,
size_t size = 150,
float padding = 0.25
)
{
int num_faces = faces.size();
std::vector<chip_details> dets;
for (const auto& f : faces)
dets.push_back(get_face_chip_details(f, size, padding));
dlib::array<matrix<rgb_pixel>> face_chips;
extract_image_chips(numpy_image<rgb_pixel>(img), dets, face_chips);
int i=0;
for (const auto& chip : face_chips)
{
i++;
if(num_faces > 1)
{
const std::string& file_name = chip_filename + "_" + std::to_string(i) + ".jpg";
save_jpeg(chip, file_name);
}
else
{
const std::string& file_name = chip_filename + ".jpg";
save_jpeg(chip, file_name);
}
}
}
void save_face_chip (
numpy_image<rgb_pixel> img,
const full_object_detection& face,
const std::string& chip_filename,
size_t size = 150,
float padding = 0.25
)
{
std::vector<full_object_detection> faces(1, face);
save_face_chips(img, faces, chip_filename, size, padding);
}
void bind_face_recognition(py::module &m)
{
{
typedef std::vector<full_object_detection> type;
py::bind_vector<type>(m, "full_object_detections", "An array of full_object_detection objects.")
.def("clear", &type::clear)
.def("resize", resize<type>)
.def("extend", extend_vector_with_python_list<full_object_detection>)
.def(py::pickle(&getstate<type>, &setstate<type>));
}
{
py::class_<face_recognition_model_v1>(m, "face_recognition_model_v1", "This object maps human faces into 128D vectors where pictures of the same person are mapped near to each other and pictures of different people are mapped far apart. The constructor loads the face recognition model from a file. The model file is available here: http://dlib.net/files/dlib_face_recognition_resnet_model_v1.dat.bz2")
.def(py::init<std::string>())
.def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptor,
py::arg("img"), py::arg("face"), py::arg("num_jitters")=0, py::arg("padding")=0.25,
"Takes an image and a full_object_detection that references a face in that image and converts it into a 128D face descriptor. "
"If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor. "
"Optionally allows to override default padding of 0.25 around the face."
)
.def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptor_from_aligned_image,
py::arg("img"), py::arg("num_jitters")=0,
"Takes an aligned face image of size 150x150 and converts it into a 128D face descriptor."
"Note that the alignment should be done in the same way dlib.get_face_chip does it."
"If num_jitters>1 then image will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor. "
)
.def("compute_face_descriptor", &face_recognition_model_v1::compute_face_descriptors,
py::arg("img"), py::arg("faces"), py::arg("num_jitters")=0, py::arg("padding")=0.25,
"Takes an image and an array of full_object_detections that reference faces in that image and converts them into 128D face descriptors. "
"If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor. "
"Optionally allows to override default padding of 0.25 around the face."
)
.def("compute_face_descriptor", &face_recognition_model_v1::batch_compute_face_descriptors,
py::arg("batch_img"), py::arg("batch_faces"), py::arg("num_jitters")=0, py::arg("padding")=0.25,
"Takes an array of images and an array of arrays of full_object_detections. `batch_faces[i]` must be an array of full_object_detections corresponding to the image `batch_img[i]`, "
"referencing faces in that image. Every face will be converted into 128D face descriptors. "
"If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor. "
"Optionally allows to override default padding of 0.25 around the face."
)
.def("compute_face_descriptor", &face_recognition_model_v1::batch_compute_face_descriptors_from_aligned_images,
py::arg("batch_img"), py::arg("num_jitters")=0,
"Takes an array of aligned images of faces of size 150_x_150."
"Note that the alignment should be done in the same way dlib.get_face_chip does it."
"Every face will be converted into 128D face descriptors. "
"If num_jitters>1 then each face will be randomly jittered slightly num_jitters times, each run through the 128D projection, and the average used as the face descriptor. "
);
}
m.def("save_face_chip", &save_face_chip,
"Takes an image and a full_object_detection that references a face in that image and saves the face with the specified file name prefix. The face will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
py::arg("img"), py::arg("face"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
);
m.def("save_face_chips", &save_face_chips,
"Takes an image and a full_object_detections object that reference faces in that image and saves the faces with the specified file name prefix. The faces will be rotated upright and scaled to 150x150 pixels or with the optional specified size and padding.",
py::arg("img"), py::arg("faces"), py::arg("chip_filename"), py::arg("size")=150, py::arg("padding")=0.25
);
m.def("chinese_whispers_clustering", &chinese_whispers_clustering, py::arg("descriptors"), py::arg("threshold"),
"Takes a list of descriptors and returns a list that contains a label for each descriptor. Clustering is done using dlib::chinese_whispers."
);
m.def("chinese_whispers", &chinese_whispers_raw, py::arg("edges"),
"Given a graph with vertices represented as numbers indexed from 0, this algorithm takes a list of edges and returns back a list that contains a labels (found clusters) for each vertex. "
"Edges are tuples with either 2 elements (integers presenting indexes of connected vertices) or 3 elements, where additional one element is float which presents distance weight of the edge). "
"Offers direct access to dlib::chinese_whispers."
);
}
|