File size: 39,843 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
// Copyright (C) 2018 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include "dlib/pixel.h"
#include <dlib/image_transforms.h>
#include <dlib/image_processing.h>
using namespace dlib;
using namespace std;
namespace py = pybind11;
// ----------------------------------------------------------------------------------------
string print_rgb_pixel_str(const rgb_pixel& p)
{
std::ostringstream sout;
sout << "red: "<< (int)p.red
<< ", green: "<< (int)p.green
<< ", blue: "<< (int)p.blue;
return sout.str();
}
string print_rgb_pixel_repr(const rgb_pixel& p)
{
std::ostringstream sout;
sout << "rgb_pixel(" << (int)p.red << "," << (int)p.green << "," << (int)p.blue << ")";
return sout.str();
}
// ----------------------------------------------------------------------------------------
template <typename T>
numpy_image<unsigned char> py_threshold_image2(
const numpy_image<T>& in_img,
typename pixel_traits<T>::basic_pixel_type thresh
)
{
numpy_image<unsigned char> out_img;
threshold_image(in_img, out_img, thresh);
return out_img;
}
template <typename T>
numpy_image<unsigned char> py_threshold_image(
const numpy_image<T>& in_img
)
{
numpy_image<unsigned char> out_img;
threshold_image(in_img, out_img);
return out_img;
}
// ----------------------------------------------------------------------------------------
template <typename T>
typename pixel_traits<T>::basic_pixel_type py_partition_pixels (
const numpy_image<T>& img
)
{
return partition_pixels(img);
}
template <typename T>
py::tuple py_partition_pixels2 (
const numpy_image<T>& img,
int num_thresholds
)
{
DLIB_CASSERT(1 <= num_thresholds && num_thresholds <= 6);
typename pixel_traits<T>::basic_pixel_type t1,t2,t3,t4,t5,t6;
switch(num_thresholds)
{
case 1: partition_pixels(img,t1); return py::make_tuple(t1);
case 2: partition_pixels(img,t1,t2); return py::make_tuple(t1,t2);
case 3: partition_pixels(img,t1,t2,t3); return py::make_tuple(t1,t2,t3);
case 4: partition_pixels(img,t1,t2,t3,t4); return py::make_tuple(t1,t2,t3,t4);
case 5: partition_pixels(img,t1,t2,t3,t4,t5); return py::make_tuple(t1,t2,t3,t4,t5);
case 6: partition_pixels(img,t1,t2,t3,t4,t5,t6); return py::make_tuple(t1,t2,t3,t4,t5,t6);
}
DLIB_CASSERT(false, "This should never happen.");
}
// ----------------------------------------------------------------------------------------
template <typename T>
py::tuple py_gaussian_blur (
const numpy_image<T>& img,
double sigma = 1,
int max_size = 1001
)
{
numpy_image<T> out;
auto rect = gaussian_blur(img, out, sigma, max_size);
return py::make_tuple(out, rect);
}
template <typename T>
py::tuple py_label_connected_blobs (
const numpy_image<T>& img,
bool zero_pixels_are_background,
int neighborhood_connectivity,
bool connected_if_both_not_zero
)
{
DLIB_CASSERT(neighborhood_connectivity == 4 ||
neighborhood_connectivity == 8 ||
neighborhood_connectivity == 24);
unsigned long num_blobs = 0;
numpy_image<uint32_t> labels;
if (zero_pixels_are_background && neighborhood_connectivity == 4 && connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, ::zero_pixels_are_background(), neighbors_4(), ::connected_if_both_not_zero(), labels);
else if (zero_pixels_are_background && neighborhood_connectivity == 4 && !connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, ::zero_pixels_are_background(), neighbors_4(), connected_if_equal(), labels);
else if (!zero_pixels_are_background && neighborhood_connectivity == 4 && connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, nothing_is_background(), neighbors_4(), ::connected_if_both_not_zero(), labels);
else if (!zero_pixels_are_background && neighborhood_connectivity == 4 && !connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, nothing_is_background(), neighbors_4(), connected_if_equal(), labels);
else if (zero_pixels_are_background && neighborhood_connectivity == 8 && connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, ::zero_pixels_are_background(), neighbors_8(), ::connected_if_both_not_zero(), labels);
else if (zero_pixels_are_background && neighborhood_connectivity == 8 && !connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, ::zero_pixels_are_background(), neighbors_8(), connected_if_equal(), labels);
else if (!zero_pixels_are_background && neighborhood_connectivity == 8 && connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, nothing_is_background(), neighbors_8(), ::connected_if_both_not_zero(), labels);
else if (!zero_pixels_are_background && neighborhood_connectivity == 8 && !connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, nothing_is_background(), neighbors_8(), connected_if_equal(), labels);
else if (zero_pixels_are_background && neighborhood_connectivity == 24 && connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, ::zero_pixels_are_background(), neighbors_24(), ::connected_if_both_not_zero(), labels);
else if (zero_pixels_are_background && neighborhood_connectivity == 24 && !connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, ::zero_pixels_are_background(), neighbors_24(), connected_if_equal(), labels);
else if (!zero_pixels_are_background && neighborhood_connectivity == 24 && connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, nothing_is_background(), neighbors_24(), ::connected_if_both_not_zero(), labels);
else if (!zero_pixels_are_background && neighborhood_connectivity == 24 && !connected_if_both_not_zero )
num_blobs = label_connected_blobs(img, nothing_is_background(), neighbors_24(), connected_if_equal(), labels);
else
DLIB_CASSERT(false, "this should never happen");
return py::make_tuple(labels, num_blobs);
}
// ----------------------------------------------------------------------------------------
template <typename T>
py::tuple py_label_connected_blobs_watershed (
const numpy_image<T>& img,
const T& background_thresh,
const double smoothing
)
{
numpy_image<uint32_t> labels;
auto num_blobs = label_connected_blobs_watershed(img, labels, background_thresh, smoothing);
return py::make_tuple(labels, num_blobs);
}
template <typename T>
py::tuple py_label_connected_blobs_watershed2 (
const numpy_image<T>& img
)
{
numpy_image<uint32_t> labels;
auto num_blobs = label_connected_blobs_watershed(img, labels);
return py::make_tuple(labels, num_blobs);
}
// ----------------------------------------------------------------------------------------
template <typename T>
numpy_image<rgb_pixel> py_randomly_color_image (
const numpy_image<T>& img
)
{
numpy_image<rgb_pixel> temp;
matrix<T> itemp;
assign_image(itemp, numpy_image<T>(img));
assign_image(temp, randomly_color_image(itemp));
return temp;
}
// ----------------------------------------------------------------------------------------
template <typename T>
numpy_image<rgb_pixel> py_jet (
const numpy_image<T>& img
)
{
numpy_image<rgb_pixel> temp;
matrix<T> itemp;
assign_image(itemp, numpy_image<T>(img));
assign_image(temp, jet(itemp));
return temp;
}
// ----------------------------------------------------------------------------------------
template <typename T>
py::array convert_image (
const numpy_image<T>& img,
const string& dtype
)
{
if (dtype == "uint8") {numpy_image<uint8_t> out; assign_image(out, img); return out;}
if (dtype == "uint16") {numpy_image<uint16_t> out; assign_image(out, img); return out;}
if (dtype == "uint32") {numpy_image<uint32_t> out; assign_image(out, img); return out;}
if (dtype == "uint64") {numpy_image<uint64_t> out; assign_image(out, img); return out;}
if (dtype == "int8") {numpy_image<int8_t> out; assign_image(out, img); return out;}
if (dtype == "int16") {numpy_image<int16_t> out; assign_image(out, img); return out;}
if (dtype == "int32") {numpy_image<int32_t> out; assign_image(out, img); return out;}
if (dtype == "int64") {numpy_image<int64_t> out; assign_image(out, img); return out;}
if (dtype == "float32") {numpy_image<float> out; assign_image(out, img); return out;}
if (dtype == "float64") {numpy_image<double> out; assign_image(out, img); return out;}
if (dtype == "float") {numpy_image<float> out; assign_image(out, img); return out;}
if (dtype == "double") {numpy_image<double> out; assign_image(out, img); return out;}
if (dtype == "rgb_pixel"){numpy_image<rgb_pixel> out; assign_image(out, img); return out;}
throw dlib::error("convert_image() called with invalid dtype, must be one of these strings: \n"
"uint8, int8, uint16, int16, uint32, int32, uint64, int64, float32, float, float64, double, or rgb_pixel");
}
py::array as_grayscale(
const py::array& img
)
{
if (is_image<rgb_pixel>(img))
{
numpy_image<unsigned char> out;
assign_image(out, numpy_image<rgb_pixel>(img));
return out;
}
else
{
return img;
}
}
// ----------------------------------------------------------------------------------------
numpy_image<unsigned char> py_skeleton(
numpy_image<unsigned char>& img
)
{
skeleton(img);
return img;
}
// ----------------------------------------------------------------------------------------
void bind_image_classes(py::module& m)
{
py::class_<rgb_pixel>(m, "rgb_pixel")
.def(py::init<unsigned char,unsigned char,unsigned char>(), py::arg("red"), py::arg("green"), py::arg("blue"))
.def("__str__", &print_rgb_pixel_str)
.def("__repr__", &print_rgb_pixel_repr)
.def_readwrite("red", &rgb_pixel::red)
.def_readwrite("green", &rgb_pixel::green)
.def_readwrite("blue", &rgb_pixel::blue);
const char* docs = "Thresholds img and returns the result. Pixels in img with grayscale values >= partition_pixels(img) \n"
"have an output value of 255 and all others have a value of 0.";
m.def("threshold_image", &py_threshold_image<unsigned char>, py::arg("img") );
m.def("threshold_image", &py_threshold_image<uint16_t>, py::arg("img") );
m.def("threshold_image", &py_threshold_image<uint32_t>, py::arg("img") );
m.def("threshold_image", &py_threshold_image<float>, py::arg("img") );
m.def("threshold_image", &py_threshold_image<double>, py::arg("img") );
m.def("threshold_image", &py_threshold_image<rgb_pixel>,docs, py::arg("img") );
docs = "Thresholds img and returns the result. Pixels in img with grayscale values >= thresh \n"
"have an output value of 255 and all others have a value of 0.";
m.def("threshold_image", &py_threshold_image2<unsigned char>, py::arg("img"), py::arg("thresh") );
m.def("threshold_image", &py_threshold_image2<uint16_t>, py::arg("img"), py::arg("thresh") );
m.def("threshold_image", &py_threshold_image2<uint32_t>, py::arg("img"), py::arg("thresh") );
m.def("threshold_image", &py_threshold_image2<float>, py::arg("img"), py::arg("thresh") );
m.def("threshold_image", &py_threshold_image2<double>, py::arg("img"), py::arg("thresh") );
m.def("threshold_image", &py_threshold_image2<rgb_pixel>,docs, py::arg("img"), py::arg("thresh") );
docs =
"Finds a threshold value that would be reasonable to use with \n\
threshold_image(img, threshold). It does this by finding the threshold that \n\
partitions the pixels in img into two groups such that the sum of absolute \n\
deviations between each pixel and the mean of its group is minimized.";
m.def("partition_pixels", &py_partition_pixels<rgb_pixel>, py::arg("img") );
m.def("partition_pixels", &py_partition_pixels<unsigned char>, py::arg("img") );
m.def("partition_pixels", &py_partition_pixels<uint16_t>, py::arg("img") );
m.def("partition_pixels", &py_partition_pixels<uint32_t>, py::arg("img") );
m.def("partition_pixels", &py_partition_pixels<float>, py::arg("img") );
m.def("partition_pixels", &py_partition_pixels<double>,docs, py::arg("img") );
docs =
"This version of partition_pixels() finds multiple partitions rather than just \n\
one partition. It does this by first partitioning the pixels just as the \n\
above partition_pixels(img) does. Then it forms a new image with only pixels \n\
>= that first partition value and recursively partitions this new image. \n\
However, the recursion is implemented in an efficient way which is faster than \n\
explicitly forming these images and calling partition_pixels(), but the \n\
output is the same as if you did. For example, suppose you called \n\
[t1,t2,t2] = partition_pixels(img,3). Then we would have: \n\
- t1 == partition_pixels(img) \n\
- t2 == partition_pixels(an image with only pixels with values >= t1 in it) \n\
- t3 == partition_pixels(an image with only pixels with values >= t2 in it)" ;
m.def("partition_pixels", &py_partition_pixels2<rgb_pixel>, py::arg("img"), py::arg("num_thresholds") );
m.def("partition_pixels", &py_partition_pixels2<unsigned char>, py::arg("img"), py::arg("num_thresholds") );
m.def("partition_pixels", &py_partition_pixels2<uint16_t>, py::arg("img"), py::arg("num_thresholds") );
m.def("partition_pixels", &py_partition_pixels2<uint32_t>, py::arg("img"), py::arg("num_thresholds") );
m.def("partition_pixels", &py_partition_pixels2<float>, py::arg("img"), py::arg("num_thresholds") );
m.def("partition_pixels", &py_partition_pixels2<double>,docs, py::arg("img"), py::arg("num_thresholds") );
docs =
"requires \n\
- sigma > 0 \n\
- max_size > 0 \n\
- max_size is an odd number \n\
ensures \n\
- Filters img with a Gaussian filter of sigma width. The actual spatial filter will \n\
be applied to pixel blocks that are at most max_size wide and max_size tall (note that \n\
this function will automatically select a smaller block size as appropriate). The \n\
results are returned. We also return a rectangle which indicates what pixels \n\
in the returned image are considered non-border pixels and therefore contain \n\
output from the filter. E.g. \n\
- filtered_img,rect = gaussian_blur(img) \n\
would give you the filtered image and the rectangle in question. \n\
- The filter is applied to each color channel independently. \n\
- Pixels close enough to the edge of img to not have the filter still fit \n\
inside the image are set to zero. \n\
- The returned image has the same dimensions as the input image.";
/*!
requires
- sigma > 0
- max_size > 0
- max_size is an odd number
ensures
- Filters img with a Gaussian filter of sigma width. The actual spatial filter will
be applied to pixel blocks that are at most max_size wide and max_size tall (note that
this function will automatically select a smaller block size as appropriate). The
results are returned. We also return a rectangle which indicates what pixels
in the returned image are considered non-border pixels and therefore contain
output from the filter. E.g.
- filtered_img,rect = gaussian_blur(img)
would give you the filtered image and the rectangle in question.
- The filter is applied to each color channel independently.
- Pixels close enough to the edge of img to not have the filter still fit
inside the image are set to zero.
- The returned image has the same dimensions as the input image.
!*/
m.def("gaussian_blur", &py_gaussian_blur<rgb_pixel>,py::arg("img"), py::arg("sigma"), py::arg("max_size")=1000 );
m.def("gaussian_blur", &py_gaussian_blur<unsigned char>,py::arg("img"), py::arg("sigma"), py::arg("max_size")=1000 );
m.def("gaussian_blur", &py_gaussian_blur<uint16>,py::arg("img"), py::arg("sigma"), py::arg("max_size")=1000 );
m.def("gaussian_blur", &py_gaussian_blur<uint32>,py::arg("img"), py::arg("sigma"), py::arg("max_size")=1000 );
m.def("gaussian_blur", &py_gaussian_blur<float>, py::arg("img"), py::arg("sigma"), py::arg("max_size")=1000 );
m.def("gaussian_blur", &py_gaussian_blur<double>,docs, py::arg("img"), py::arg("sigma"), py::arg("max_size")=1000 );
docs =
"requires \n\
- all pixels in img are set to either 255 or 0. \n\
ensures \n\
- This function computes the skeletonization of img and stores the result in \n\
#img. That is, given a binary image, we progressively thin the binary blobs \n\
(composed of on_pixel values) until only a single pixel wide skeleton of the \n\
original blobs remains. \n\
- Doesn't change the shape or size of img.";
/*!
requires
- all pixels in img are set to either 255 or 0.
ensures
- This function computes the skeletonization of img and stores the result in
img (i.e. it works in place and therefore modifies the supplied img). That
is, given a binary image, we progressively thin the binary blobs (composed of
on_pixel values) until only a single pixel wide skeleton of the original
blobs remains.
- Doesn't change the shape or size of img.
- Returns img. Note that the returned object is the same object as the input
object.
!*/
m.def("skeleton", py_skeleton, docs, py::arg("img"));
docs =
"requires \n\
- neighborhood_connectivity == 4, 8, or 24 \n\
ensures \n\
- This function labels each of the connected blobs in img with a unique integer \n\
label. \n\
- An image can be thought of as a graph where pixels A and B are connected if \n\
they are close to each other and satisfy some criterion like having the same \n\
value or both being non-zero. Then this function can be understood as \n\
labeling all the connected components of this pixel graph such that all \n\
pixels in a component get the same label while pixels in different components \n\
get different labels. \n\
- If zero_pixels_are_background==true then there is a special background component \n\
and all pixels with value 0 are assigned to it. Moreover, all such background pixels \n\
will always get a blob id of 0 regardless of any other considerations. \n\
- This function returns a label image and a count of the number of blobs found. \n\
I.e., if you ran this function like: \n\
label_img, num_blobs = label_connected_blobs(img) \n\
You would obtain the noted label image and number of blobs. \n\
- The output label_img has the same dimensions as the input image. \n\
- for all valid r and c: \n\
- label_img[r][c] == the blob label number for pixel img[r][c]. \n\
- label_img[r][c] >= 0 \n\
- if (img[r][c]==0) then \n\
- label_img[r][c] == 0 \n\
- else \n\
- label_img[r][c] != 0 \n\
- if (len(img) != 0) then \n\
- The returned num_blobs will be == label_img.max()+1 \n\
(i.e. returns a number one greater than the maximum blob id number, \n\
this is the number of blobs found.) \n\
- else \n\
- num_blobs will be 0. \n\
- blob labels are contiguous, therefore, the number returned by this function is \n\
the number of blobs in the image (including the background blob).";
/*!
requires
- neighborhood_connectivity == 4, 8, or 24
ensures
- This function labels each of the connected blobs in img with a unique integer
label.
- An image can be thought of as a graph where pixels A and B are connected if
they are close to each other and satisfy some criterion like having the same
value or both being non-zero. Then this function can be understood as
labeling all the connected components of this pixel graph such that all
pixels in a component get the same label while pixels in different components
get different labels.
- If zero_pixels_are_background==true then there is a special background component
and all pixels with value 0 are assigned to it. Moreover, all such background pixels
will always get a blob id of 0 regardless of any other considerations.
- This function returns a label image and a count of the number of blobs found.
I.e., if you ran this function like:
label_img, num_blobs = label_connected_blobs(img)
You would obtain the noted label image and number of blobs.
- The output label_img has the same dimensions as the input image.
- for all valid r and c:
- label_img[r][c] == the blob label number for pixel img[r][c].
- label_img[r][c] >= 0
- if (img[r][c]==0) then
- label_img[r][c] == 0
- else
- label_img[r][c] != 0
- if (len(img) != 0) then
- The returned num_blobs will be == label_img.max()+1
(i.e. returns a number one greater than the maximum blob id number,
this is the number of blobs found.)
- else
- num_blobs will be 0.
- blob labels are contiguous, therefore, the number returned by this function is
the number of blobs in the image (including the background blob).
!*/
m.def("label_connected_blobs", py_label_connected_blobs<unsigned char>,
py::arg("img"),py::arg("zero_pixels_are_background")=true,py::arg("neighborhood_connectivity")=8,py::arg("connected_if_both_not_zero")=false);
m.def("label_connected_blobs", py_label_connected_blobs<uint16_t>,
py::arg("img"),py::arg("zero_pixels_are_background")=true,py::arg("neighborhood_connectivity")=8,py::arg("connected_if_both_not_zero")=false);
m.def("label_connected_blobs", py_label_connected_blobs<uint32_t>,
py::arg("img"),py::arg("zero_pixels_are_background")=true,py::arg("neighborhood_connectivity")=8,py::arg("connected_if_both_not_zero")=false);
m.def("label_connected_blobs", py_label_connected_blobs<uint64_t>,
py::arg("img"),py::arg("zero_pixels_are_background")=true,py::arg("neighborhood_connectivity")=8,py::arg("connected_if_both_not_zero")=false);
m.def("label_connected_blobs", py_label_connected_blobs<float>,
py::arg("img"),py::arg("zero_pixels_are_background")=true,py::arg("neighborhood_connectivity")=8,py::arg("connected_if_both_not_zero")=false);
m.def("label_connected_blobs", py_label_connected_blobs<double>, docs,
py::arg("img"),py::arg("zero_pixels_are_background")=true,py::arg("neighborhood_connectivity")=8,py::arg("connected_if_both_not_zero")=false);
docs =
"requires \n\
- smoothing >= 0 \n\
ensures \n\
- This routine performs a watershed segmentation of the given input image and \n\
labels each resulting flooding region with a unique integer label. It does \n\
this by marking the brightest pixels as sources of flooding and then flood \n\
fills the image outward from those sources. Each flooded area is labeled \n\
with the identity of the source pixel and flooding stops when another flooded \n\
area is reached or pixels with values < background_thresh are encountered. \n\
- The flooding will also overrun a source pixel if that source pixel has yet to \n\
label any neighboring pixels. This behavior helps to mitigate spurious \n\
splits of objects due to noise. You can further control this behavior by \n\
setting the smoothing parameter. The flooding will take place on an image \n\
that has been Gaussian blurred with a sigma==smoothing. So setting smoothing \n\
to a larger number will in general cause more regions to be merged together. \n\
Note that the smoothing parameter has no effect on the interpretation of \n\
background_thresh since the decision of \"background or not background\" is \n\
always made relative to the unsmoothed input image. \n\
- This function returns a tuple of the labeled image and number of blobs found. \n\
i.e. you can call it like this: \n\
label_img, num_blobs = label_connected_blobs_watershed(img,background_thresh,smoothing) \n\
- The returned label_img will have the same dimensions as img. \n\
- for all valid r and c: \n\
- if (img[r][c] < background_thresh) then \n\
- label_img[r][c] == 0, (i.e. the pixel is labeled as background) \n\
- else \n\
- label_img[r][c] == an integer value indicating the identity of the segment \n\
containing the pixel img[r][c]. \n\
- The returned num_blobs is the number of labeled segments, including the \n\
background segment. Therefore, the returned number is 1+(the max value in \n\
label_img).";
/*!
requires
- smoothing >= 0
ensures
- This routine performs a watershed segmentation of the given input image and
labels each resulting flooding region with a unique integer label. It does
this by marking the brightest pixels as sources of flooding and then flood
fills the image outward from those sources. Each flooded area is labeled
with the identity of the source pixel and flooding stops when another flooded
area is reached or pixels with values < background_thresh are encountered.
- The flooding will also overrun a source pixel if that source pixel has yet to
label any neighboring pixels. This behavior helps to mitigate spurious
splits of objects due to noise. You can further control this behavior by
setting the smoothing parameter. The flooding will take place on an image
that has been Gaussian blurred with a sigma==smoothing. So setting smoothing
to a larger number will in general cause more regions to be merged together.
Note that the smoothing parameter has no effect on the interpretation of
background_thresh since the decision of "background or not background" is
always made relative to the unsmoothed input image.
- This function returns a tuple of the labeled image and number of blobs found.
i.e. you can call it like this:
label_img, num_blobs = label_connected_blobs_watershed(img,background_thresh,smoothing)
- The returned label_img will have the same dimensions as img.
- for all valid r and c:
- if (img[r][c] < background_thresh) then
- label_img[r][c] == 0, (i.e. the pixel is labeled as background)
- else
- label_img[r][c] == an integer value indicating the identity of the segment
containing the pixel img[r][c].
- The returned num_blobs is the number of labeled segments, including the
background segment. Therefore, the returned number is 1+(the max value in
label_img).
!*/
m.def("label_connected_blobs_watershed", py_label_connected_blobs_watershed<unsigned char>, py::arg("img"),py::arg("background_thresh"),py::arg("smoothing")=0);
m.def("label_connected_blobs_watershed", py_label_connected_blobs_watershed<uint16_t>, py::arg("img"),py::arg("background_thresh"),py::arg("smoothing")=0);
m.def("label_connected_blobs_watershed", py_label_connected_blobs_watershed<uint32_t>, py::arg("img"),py::arg("background_thresh"),py::arg("smoothing")=0);
m.def("label_connected_blobs_watershed", py_label_connected_blobs_watershed<float>, py::arg("img"),py::arg("background_thresh"),py::arg("smoothing")=0);
m.def("label_connected_blobs_watershed", py_label_connected_blobs_watershed<double>, docs, py::arg("img"),py::arg("background_thresh"),py::arg("smoothing")=0);
docs = "This version of label_connected_blobs_watershed simple invokes: \n"
" return label_connected_blobs_watershed(img, partition_pixels(img))";
m.def("label_connected_blobs_watershed", py_label_connected_blobs_watershed2<unsigned char>, py::arg("img"));
m.def("label_connected_blobs_watershed", py_label_connected_blobs_watershed2<uint16_t>, py::arg("img"));
m.def("label_connected_blobs_watershed", py_label_connected_blobs_watershed2<uint32_t>, py::arg("img"));
m.def("label_connected_blobs_watershed", py_label_connected_blobs_watershed2<float>, py::arg("img"));
m.def("label_connected_blobs_watershed", py_label_connected_blobs_watershed2<double>, docs, py::arg("img"));
docs =
"Converts a grayscale image into a jet colored image. This is an image where dark \n\
pixels are dark blue and larger values become light blue, then yellow, and then \n\
finally red as they approach the maximum pixel values." ;
m.def("jet", py_jet<unsigned char>, py::arg("img"));
m.def("jet", py_jet<uint16_t>, py::arg("img"));
m.def("jet", py_jet<uint32_t>, py::arg("img"));
m.def("jet", py_jet<float>, py::arg("img"));
m.def("jet", py_jet<double>, docs, py::arg("img"));
docs =
"- randomly generates a mapping from gray level pixel values \n\
to the RGB pixel space and then uses this mapping to create \n\
a colored version of img. Returns an image which represents \n\
this colored version of img. \n\
- black pixels in img will remain black in the output image. ";
/*!
- randomly generates a mapping from gray level pixel values
to the RGB pixel space and then uses this mapping to create
a colored version of img. Returns an image which represents
this colored version of img.
- black pixels in img will remain black in the output image.
!*/
m.def("randomly_color_image", py_randomly_color_image<unsigned char>, py::arg("img"));
m.def("randomly_color_image", py_randomly_color_image<uint16_t>, py::arg("img"));
m.def("randomly_color_image", py_randomly_color_image<uint32_t>, docs, py::arg("img"));
docs =
"requires \n\
- all pixels in img are set to either 255 or 0. \n\
(i.e. it must be a binary image) \n\
ensures \n\
- This routine finds endpoints of lines in a thinned binary image. For \n\
example, if the image was produced by skeleton() or something like a Canny \n\
edge detector then you can use find_line_endpoints() to find the pixels \n\
sitting on the ends of lines.";
/*!
requires
- all pixels in img are set to either 255 or 0.
(i.e. it must be a binary image)
ensures
- This routine finds endpoints of lines in a thinned binary image. For
example, if the image was produced by skeleton() or something like a Canny
edge detector then you can use find_line_endpoints() to find the pixels
sitting on the ends of lines.
!*/
m.def("find_line_endpoints", find_line_endpoints<numpy_image<unsigned char>>, docs, py::arg("img"));
m.def("get_rect", [](const py::array& img){ return rectangle(0,0,(long)img.shape(1)-1,(long)img.shape(0)-1); },
"returns a rectangle(0,0,img.shape(1)-1,img.shape(0)-1). Therefore, it is the rectangle that bounds the image.",
py::arg("img") );
const char* grad_docs =
"- Let VALID_AREA = shrink_rect(get_rect(img),get_scale()). \n\
- This routine computes the requested gradient of img at each location in VALID_AREA. \n\
The gradients are returned in a new image of the same dimensions as img. All pixels \n\
outside VALID_AREA are set to 0. VALID_AREA is also returned. I.e. we return a tuple \n\
where the first element is the gradient image and the second is VALID_AREA.";
const char* filt_docs =
"- Returns the filter used by the indicated derivative to compute the image gradient. \n\
That is, the output gradients are found by cross correlating the returned filter with \n\
the input image. \n\
- The returned filter has get_scale()*2+1 rows and columns." ;
const char* class_docs =
"This class is a tool for computing first and second derivatives of an \n\
image. It does this by fitting a quadratic surface around each pixel and \n\
then computing the gradients of that quadratic surface. For the details \n\
see the paper: \n\
Quadratic models for curved line detection in SAR CCD by Davis E. King \n\
and Rhonda D. Phillips \n\
\n\
This technique gives very accurate gradient estimates and is also very fast \n\
since the entire gradient estimation procedure, for each type of gradient, \n\
is accomplished by cross-correlating the image with a single separable \n\
filter. This means you can compute gradients at very large scales (e.g. by \n\
fitting the quadratic to a large window, like a 99x99 window) and it still \n\
runs very quickly.";
py::class_<image_gradients>(m, "image_gradients", class_docs)
.def(py::init<long>(), "Creates this class with the provided scale. i.e. get_scale()==scale. \nscale must be >= 1.", py::arg("scale"))
.def(py::init<>(), "Creates this class with a scale of 1. i.e. get_scale()==1")
.def("gradient_x", [](image_gradients& g, const numpy_image<unsigned char>& img){
numpy_image<float> out;
auto rect=g.gradient_x(img,out);
return py::make_tuple(out,rect);
}, py::arg("img"))
.def("gradient_x", [](image_gradients& g, const numpy_image<float>& img){
numpy_image<float> out;
auto rect=g.gradient_x(img,out);
return py::make_tuple(out,rect);
}, grad_docs, py::arg("img"))
.def("gradient_y", [](image_gradients& g, const numpy_image<unsigned char>& img){
numpy_image<float> out;
auto rect=g.gradient_y(img,out);
return py::make_tuple(out,rect);
}, py::arg("img"))
.def("gradient_y", [](image_gradients& g, const numpy_image<float>& img){
numpy_image<float> out;
auto rect=g.gradient_y(img,out);
return py::make_tuple(out,rect);
}, grad_docs, py::arg("img"))
.def("gradient_xx", [](image_gradients& g, const numpy_image<unsigned char>& img){
numpy_image<float> out;
auto rect=g.gradient_xx(img,out);
return py::make_tuple(out,rect);
}, py::arg("img"))
.def("gradient_xx", [](image_gradients& g, const numpy_image<float>& img){
numpy_image<float> out;
auto rect=g.gradient_xx(img,out);
return py::make_tuple(out,rect);
}, grad_docs, py::arg("img"))
.def("gradient_xy", [](image_gradients& g, const numpy_image<unsigned char>& img){
numpy_image<float> out;
auto rect=g.gradient_xy(img,out);
return py::make_tuple(out,rect);
}, py::arg("img"))
.def("gradient_xy", [](image_gradients& g, const numpy_image<float>& img){
numpy_image<float> out;
auto rect=g.gradient_xy(img,out);
return py::make_tuple(out,rect);
}, grad_docs, py::arg("img"))
.def("gradient_yy", [](image_gradients& g, const numpy_image<unsigned char>& img){
numpy_image<float> out;
auto rect=g.gradient_yy(img,out);
return py::make_tuple(out,rect);
}, py::arg("img"))
.def("gradient_yy", [](image_gradients& g, const numpy_image<float>& img){
numpy_image<float> out;
auto rect=g.gradient_yy(img,out);
return py::make_tuple(out,rect);
}, grad_docs, py::arg("img"))
.def("get_x_filter", [](image_gradients& g){ return numpy_image<float>(g.get_x_filter()); }, filt_docs)
.def("get_y_filter", [](image_gradients& g){ return numpy_image<float>(g.get_y_filter()); }, filt_docs)
.def("get_xx_filter", [](image_gradients& g){ return numpy_image<float>(g.get_xx_filter()); }, filt_docs)
.def("get_xy_filter", [](image_gradients& g){ return numpy_image<float>(g.get_xy_filter()); }, filt_docs)
.def("get_yy_filter", [](image_gradients& g){ return numpy_image<float>(g.get_yy_filter()); }, filt_docs)
.def("get_scale", &image_gradients::get_scale,
"When we estimate a gradient we do so by fitting a quadratic filter to a window of size \n\
get_scale()*2+1 centered on each pixel. Therefore, the scale parameter controls the size \n\
of gradients we will find. For example, a very large scale will cause the gradient_xx() \n\
to be insensitive to high frequency noise in the image while smaller scales would be more \n\
sensitive to such fluctuations in the image."
);
docs =
"Converts an image to a target pixel type. dtype must be a string containing one of the following: \n\
uint8, int8, uint16, int16, uint32, int32, uint64, int64, float32, float, float64, double, or rgb_pixel \n\
\n\
When converting from a color space with more than 255 values the pixel intensity is \n\
saturated at the minimum and maximum pixel values of the target pixel type. For \n\
example, if you convert a float valued image to uint8 then float values will be \n\
truncated to integers and values larger than 255 are converted to 255 while values less \n\
than 0 are converted to 0.";
/*!
Converts an image to a target pixel type. dtype must be a string containing one of the following:
uint8, int8, uint16, int16, uint32, int32, uint64, int64, float32, float, float64, double, or rgb_pixel
When converting from a color space with more than 255 values the pixel intensity is
saturated at the minimum and maximum pixel values of the target pixel type. For
example, if you convert a float valued image to uint8 then float values will be
truncated to integers and values larger than 255 are converted to 255 while values less
than 0 are converted to 0.
!*/
m.def("convert_image", convert_image<uint8_t>, py::arg("img"), py::arg("dtype"));
m.def("convert_image", convert_image<uint16_t>, py::arg("img"), py::arg("dtype"));
m.def("convert_image", convert_image<uint32_t>, py::arg("img"), py::arg("dtype"));
m.def("convert_image", convert_image<uint64_t>, py::arg("img"), py::arg("dtype"));
m.def("convert_image", convert_image<int8_t>, py::arg("img"), py::arg("dtype"));
m.def("convert_image", convert_image<int16_t>, py::arg("img"), py::arg("dtype"));
m.def("convert_image", convert_image<int32_t>, py::arg("img"), py::arg("dtype"));
m.def("convert_image", convert_image<int64_t>, py::arg("img"), py::arg("dtype"));
m.def("convert_image", convert_image<float>, py::arg("img"), py::arg("dtype"));
m.def("convert_image", convert_image<double>, py::arg("img"), py::arg("dtype"));
m.def("convert_image", convert_image<rgb_pixel>, docs, py::arg("img"), py::arg("dtype"));
m.def("as_grayscale", &as_grayscale,
"Convert an image to 8bit grayscale. If it's already a grayscale image do nothing and just return img.", py::arg("img"));
}
|