File size: 12,304 Bytes
9375c9a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
// Copyright (C) 2013 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#include "opaque_types.h"
#include <dlib/python.h>
#include "testing_results.h"
#include <dlib/matrix.h>
#include <dlib/svm_threaded.h>
using namespace dlib;
using namespace std;
typedef matrix<double,0,1> sample_type;
typedef std::vector<std::pair<unsigned long,double> > sparse_vect;
template <typename trainer_type>
typename trainer_type::trained_function_type train (
const trainer_type& trainer,
const std::vector<typename trainer_type::sample_type>& samples,
const std::vector<double>& labels
)
{
pyassert(is_binary_classification_problem(samples,labels), "Invalid inputs");
return trainer.train(samples, labels);
}
template <typename trainer_type>
void set_epsilon ( trainer_type& trainer, double eps)
{
pyassert(eps > 0, "epsilon must be > 0");
trainer.set_epsilon(eps);
}
template <typename trainer_type>
double get_epsilon ( const trainer_type& trainer) { return trainer.get_epsilon(); }
template <typename trainer_type>
void set_cache_size ( trainer_type& trainer, long cache_size)
{
pyassert(cache_size > 0, "cache size must be > 0");
trainer.set_cache_size(cache_size);
}
template <typename trainer_type>
long get_cache_size ( const trainer_type& trainer) { return trainer.get_cache_size(); }
template <typename trainer_type>
void set_c ( trainer_type& trainer, double C)
{
pyassert(C > 0, "C must be > 0");
trainer.set_c(C);
}
template <typename trainer_type>
void set_c_class1 ( trainer_type& trainer, double C)
{
pyassert(C > 0, "C must be > 0");
trainer.set_c_class1(C);
}
template <typename trainer_type>
void set_c_class2 ( trainer_type& trainer, double C)
{
pyassert(C > 0, "C must be > 0");
trainer.set_c_class2(C);
}
template <typename trainer_type>
double get_c_class1 ( const trainer_type& trainer) { return trainer.get_c_class1(); }
template <typename trainer_type>
double get_c_class2 ( const trainer_type& trainer) { return trainer.get_c_class2(); }
template <typename trainer_type>
py::class_<trainer_type> setup_trainer_eps (
py::module& m,
const std::string& name
)
{
return py::class_<trainer_type>(m, name.c_str())
.def("train", train<trainer_type>)
.def_property("epsilon", get_epsilon<trainer_type>, set_epsilon<trainer_type>);
}
template <typename trainer_type>
py::class_<trainer_type> setup_trainer_eps_c (
py::module& m,
const std::string& name
)
{
return setup_trainer_eps<trainer_type>(m, name)
.def("set_c", set_c<trainer_type>)
.def_property("c_class1", get_c_class1<trainer_type>, set_c_class1<trainer_type>)
.def_property("c_class2", get_c_class2<trainer_type>, set_c_class2<trainer_type>);
}
template <typename trainer_type>
py::class_<trainer_type> setup_trainer_eps_c_cache (
py::module& m,
const std::string& name
)
{
return setup_trainer_eps_c<trainer_type>(m, name)
.def_property("cache_size", get_cache_size<trainer_type>, set_cache_size<trainer_type>);
}
template <typename trainer_type>
void set_gamma (
trainer_type& trainer,
double gamma
)
{
pyassert(gamma > 0, "gamma must be > 0");
trainer.set_kernel(typename trainer_type::kernel_type(gamma));
}
template <typename trainer_type>
double get_gamma (
const trainer_type& trainer
)
{
return trainer.get_kernel().gamma;
}
// ----------------------------------------------------------------------------------------
template <
typename trainer_type
>
const binary_test _cross_validate_trainer (
const trainer_type& trainer,
const std::vector<typename trainer_type::sample_type>& x,
const std::vector<double>& y,
const unsigned long folds
)
{
pyassert(is_binary_classification_problem(x,y), "Training data does not make a valid training set.");
pyassert(1 < folds && folds <= x.size(), "Invalid number of folds given.");
return cross_validate_trainer(trainer, x, y, folds);
}
template <
typename trainer_type
>
const binary_test _cross_validate_trainer_t (
const trainer_type& trainer,
const std::vector<typename trainer_type::sample_type>& x,
const std::vector<double>& y,
const unsigned long folds,
const unsigned long num_threads
)
{
pyassert(is_binary_classification_problem(x,y), "Training data does not make a valid training set.");
pyassert(1 < folds && folds <= x.size(), "Invalid number of folds given.");
pyassert(1 < num_threads, "The number of threads specified must not be zero.");
return cross_validate_trainer_threaded(trainer, x, y, folds, num_threads);
}
// ----------------------------------------------------------------------------------------
void bind_svm_c_trainer(py::module& m)
{
namespace py = pybind11;
// svm_c
{
typedef svm_c_trainer<radial_basis_kernel<sample_type> > T;
setup_trainer_eps_c_cache<T>(m, "svm_c_trainer_radial_basis")
.def(py::init())
.def_property("gamma", get_gamma<T>, set_gamma<T>);
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef svm_c_trainer<sparse_radial_basis_kernel<sparse_vect> > T;
setup_trainer_eps_c_cache<T>(m, "svm_c_trainer_sparse_radial_basis")
.def(py::init())
.def_property("gamma", get_gamma<T>, set_gamma<T>);
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef svm_c_trainer<histogram_intersection_kernel<sample_type> > T;
setup_trainer_eps_c_cache<T>(m, "svm_c_trainer_histogram_intersection")
.def(py::init());
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef svm_c_trainer<sparse_histogram_intersection_kernel<sparse_vect> > T;
setup_trainer_eps_c_cache<T>(m, "svm_c_trainer_sparse_histogram_intersection")
.def(py::init());
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
// svm_c_linear
{
typedef svm_c_linear_trainer<linear_kernel<sample_type> > T;
setup_trainer_eps_c<T>(m, "svm_c_trainer_linear")
.def(py::init())
.def_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
.def_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
.def_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
.def_property_readonly("has_prior", &T::has_prior)
.def("set_prior", &T::set_prior)
.def("be_verbose", &T::be_verbose)
.def("be_quiet", &T::be_quiet);
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef svm_c_linear_trainer<sparse_linear_kernel<sparse_vect> > T;
setup_trainer_eps_c<T>(m, "svm_c_trainer_sparse_linear")
.def(py::init())
.def_property("max_iterations", &T::get_max_iterations, &T::set_max_iterations)
.def_property("force_last_weight_to_1", &T::forces_last_weight_to_1, &T::force_last_weight_to_1)
.def_property("learns_nonnegative_weights", &T::learns_nonnegative_weights, &T::set_learns_nonnegative_weights)
.def_property_readonly("has_prior", &T::has_prior)
.def("set_prior", &T::set_prior)
.def("be_verbose", &T::be_verbose)
.def("be_quiet", &T::be_quiet);
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
// rvm
{
typedef rvm_trainer<radial_basis_kernel<sample_type> > T;
setup_trainer_eps<T>(m, "rvm_trainer_radial_basis")
.def(py::init())
.def_property("gamma", get_gamma<T>, set_gamma<T>);
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef rvm_trainer<sparse_radial_basis_kernel<sparse_vect> > T;
setup_trainer_eps<T>(m, "rvm_trainer_sparse_radial_basis")
.def(py::init())
.def_property("gamma", get_gamma<T>, set_gamma<T>);
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef rvm_trainer<histogram_intersection_kernel<sample_type> > T;
setup_trainer_eps<T>(m, "rvm_trainer_histogram_intersection")
.def(py::init());
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef rvm_trainer<sparse_histogram_intersection_kernel<sparse_vect> > T;
setup_trainer_eps<T>(m, "rvm_trainer_sparse_histogram_intersection")
.def(py::init());
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
// rvm linear
{
typedef rvm_trainer<linear_kernel<sample_type> > T;
setup_trainer_eps<T>(m, "rvm_trainer_linear")
.def(py::init());
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
{
typedef rvm_trainer<sparse_linear_kernel<sparse_vect> > T;
setup_trainer_eps<T>(m, "rvm_trainer_sparse_linear")
.def(py::init());
m.def("cross_validate_trainer", _cross_validate_trainer<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"));
m.def("cross_validate_trainer_threaded", _cross_validate_trainer_t<T>,
py::arg("trainer"),py::arg("x"),py::arg("y"),py::arg("folds"),py::arg("num_threads"));
}
}
|