File size: 18,169 Bytes
9375c9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
// Copyright (C) 2013  Davis E. King ([email protected])
// License: Boost Software License   See LICENSE.txt for the full license.

#include "opaque_types.h"
#include <dlib/python.h>
#include <dlib/matrix.h>
#include <dlib/geometry.h>
#include <dlib/image_transforms.h>
#include <pybind11/stl_bind.h>
#include "indexing.h"

using namespace dlib;
using namespace std;

typedef matrix<double,0,1> cv;


void cv_set_size(cv& m, long s)
{
    m.set_size(s);
    m = 0;
}

double dotprod ( const cv& a, const cv& b)
{
    return dot(a,b);
}

string cv__str__(const cv& v)
{
    ostringstream sout;
    for (long i = 0; i < v.size(); ++i)
    {
        sout << v(i);
        if (i+1 < v.size())
            sout << "\n";
    }
    return sout.str();
}

string cv__repr__ (const cv& v)
{
    std::ostringstream sout;
    sout << "dlib.vector([";
    for (long i = 0; i < v.size(); ++i)
    {
        sout << v(i);
        if (i+1 < v.size())
            sout << ", ";
    }
    sout << "])";
    return sout.str();
}

std::shared_ptr<cv> cv_from_object(py::object obj)
{
    try {
        long nr = obj.cast<long>();
        auto temp = std::make_shared<cv>(nr);
        *temp = 0;
        return temp;
    } catch(py::cast_error&) {
        py::list li = obj.cast<py::list>();
        const long nr = len(obj);
        auto temp = std::make_shared<cv>(nr);
        for ( long r = 0; r < nr; ++r)
        {
            (*temp)(r) = li[r].cast<double>();
        }
        return temp;
    }
}

long cv__len__(cv& c)
{
    return c.size();
}


void cv__setitem__(cv& c, long p, double val)
{
    if (p < 0) {
        p = c.size() + p; // negative index
    }
    if (p > c.size()-1) {
        PyErr_SetString( PyExc_IndexError, "index out of range"
        );
        throw py::error_already_set();
    }
    c(p) = val;
}

double cv__getitem__(cv& m, long r)
{
    if (r < 0) {
        r = m.size() + r; // negative index
    }
    if (r > m.size()-1 || r < 0) {
        PyErr_SetString( PyExc_IndexError, "index out of range"
        );
        throw py::error_already_set();
    }
    return m(r);
}


cv cv__getitem2__(cv& m, py::slice r)
{
    size_t start, stop, step, slicelength;
    if (!r.compute(m.size(), &start, &stop, &step, &slicelength))
        throw py::error_already_set();

    cv temp(slicelength);

    for (size_t i = 0; i < slicelength; ++i) {
         temp(i) = m(start); start += step;
    }
    return temp;
}

py::tuple cv_get_matrix_size(cv& m)
{
    return py::make_tuple(m.nr(), m.nc());
}

// ----------------------------------------------------------------------------------------

string point_transform_projective__repr__ (const point_transform_projective& tform)
{
    std::ostringstream sout;
    sout << "point_transform_projective(\n" << csv << tform.get_m() << ")";
    return sout.str();
}

string point_transform_projective__str__(const point_transform_projective& tform)
{
    std::ostringstream sout;
    sout << "(" << csv << tform.get_m() << ")";
    return sout.str();
}

point_transform_projective init_point_transform_projective (
    const numpy_image<double>& m_
)
{
    const_image_view<numpy_image<double>> m(m_);
    DLIB_CASSERT(m.nr() == 3 && m.nc() == 3,
        "The matrix used to construct a point_transform_projective object must be 3x3.");

    return point_transform_projective(mat(m));
}

// ----------------------------------------------------------------------------------------

string point__repr__ (const point& p)
{
    std::ostringstream sout;
    sout << "point(" << p.x() << ", " << p.y() << ")";
    return sout.str();
}

string point__str__(const point& p)
{
    std::ostringstream sout;
    sout << "(" << p.x() << ", " << p.y() << ")";
    return sout.str();
}

string dpoint__repr__ (const dpoint& p)
{
    std::ostringstream sout;
    sout << "dpoint(" << p.x() << ", " << p.y() << ")";
    return sout.str();
}

string dpoint__str__(const dpoint& p)
{
    std::ostringstream sout;
    sout << "(" << p.x() << ", " << p.y() << ")";
    return sout.str();
}

long point_x(const point& p) { return p.x(); }
long point_y(const point& p) { return p.y(); }
double dpoint_x(const dpoint& p) { return p.x(); }
double dpoint_y(const dpoint& p) { return p.y(); }

// ----------------------------------------------------------------------------------------

template <typename T>
dlib::vector<T,2> numpy_to_dlib_vect (
    const py::array_t<T>& v
)
/*!
    ensures
        - converts a numpy array with 2 elements into a dlib::vector<T,2>
!*/
{
    DLIB_CASSERT(v.size() == 2, "You can only convert a numpy array to a dlib point or dpoint if it has just 2 elements.");
    DLIB_CASSERT(v.ndim() == 1 || v.ndim() == 2, "The input needs to be interpretable as a row or column vector.");
    dpoint temp;
    if (v.ndim() == 1)
    {
        temp.x() = v.at(0);
        temp.y() = v.at(1);
    }
    else if (v.shape(0) == 2)
    {
        temp.x() = v.at(0,0);
        temp.y() = v.at(1,0);
    }
    else
    {
        temp.x() = v.at(0,0);
        temp.y() = v.at(0,1);
    }
    return temp;
}

// ----------------------------------------------------------------------------------------

point_transform_projective py_find_projective_transform (
    const std::vector<dpoint>& from_points,
    const std::vector<dpoint>& to_points
)
{
    DLIB_CASSERT(from_points.size() == to_points.size(),
        "from_points and to_points must have the same number of points.");
    DLIB_CASSERT(from_points.size() >= 4, 
        "You need at least 4 points to find a projective transform.");
    return find_projective_transform(from_points, to_points);
}

template <typename T>
point_transform_projective py_find_projective_transform2 (
    const numpy_image<T>& from_points_,
    const numpy_image<T>& to_points_
)
{
    const_image_view<numpy_image<T>> from_points(from_points_);
    const_image_view<numpy_image<T>> to_points(to_points_);

    DLIB_CASSERT(from_points.nc() == 2 && to_points.nc() == 2, 
        "Both from_points and to_points must be arrays with 2 columns.");
    DLIB_CASSERT(from_points.nr() == to_points.nr(),
        "from_points and to_points must have the same number of rows.");
    DLIB_CASSERT(from_points.nr() >= 4, 
        "You need at least 4 rows in the input matrices to find a projective transform.");
                 
    std::vector<dpoint> from, to;
    for (long r = 0; r < from_points.nr(); ++r)
    {
        from.push_back(dpoint(from_points[r][0], from_points[r][1]));
        to.push_back(dpoint(to_points[r][0], to_points[r][1]));
    }

    return find_projective_transform(from, to);
}

// ----------------------------------------------------------------------------------------

void register_point_transform_projective(
    py::module& m
)
{
                
    py::class_<point_transform_projective>(m, "point_transform_projective", 
        "This is an object that takes 2D points and applies a projective transformation to them.")
            .def(py::init<>(),
"ensures \n\
    - This object will perform the identity transform.  That is, given a point \n\
      as input it will return the same point as output.  Therefore, self.m == a 3x3 identity matrix." 
        /*!
            ensures
                - This object will perform the identity transform.  That is, given a point
                  as input it will return the same point as output.  Therefore, self.m == a 3x3 identity matrix.
        !*/
                )
            .def(py::init<>(&init_point_transform_projective), py::arg("m"),
"ensures \n\
    - self.m == m" 
                )
            .def("__repr__", &point_transform_projective__repr__)
            .def("__str__", &point_transform_projective__str__)
            .def("__call__", [](const point_transform_projective& tform, const dpoint& p){return tform(p);}, py::arg("p"),
"ensures \n\
    - Applies the projective transformation defined by this object's constructor \n\
      to p and returns the result.  To define this precisely: \n\
        - let p_h == the point p in homogeneous coordinates.  That is: \n\
            - p_h.x == p.x \n\
            - p_h.y == p.y \n\
            - p_h.z == 1  \n\
        - let x == m*p_h  \n\
        - Then this function returns the value x/x.z" 
        /*!
            ensures
                - Applies the projective transformation defined by this object's constructor
                  to p and returns the result.  To define this precisely:
                    - let p_h == the point p in homogeneous coordinates.  That is:
                        - p_h.x == p.x
                        - p_h.y == p.y
                        - p_h.z == 1 
                    - let x == m*p_h 
                    - Then this function returns the value x/x.z
        !*/
                )
            .def_property_readonly("m", [](const point_transform_projective& tform){numpy_image<double> tmp; assign_image(tmp,tform.get_m()); return tmp;},
                "m is the 3x3 matrix that defines the projective transformation.")
            .def(py::pickle(&getstate<point_transform_projective>, &setstate<point_transform_projective>));


    m.def("inv", [](const point_transform_projective& tform){return inv(tform); }, py::arg("trans"),
"ensures \n\
    - If trans is an invertible transformation then this function returns a new \n\
      transformation that is the inverse of trans. " 
    /*!
        ensures
            - If trans is an invertible transformation then this function returns a new
              transformation that is the inverse of trans. 
    !*/
        );


    m.def("find_projective_transform", &py_find_projective_transform, py::arg("from_points"), py::arg("to_points"),
"requires \n\
    - len(from_points) == len(to_points) \n\
    - len(from_points) >= 4 \n\
ensures \n\
    - returns a point_transform_projective object, T, such that for all valid i: \n\
        length(T(from_points[i]) - to_points[i]) \n\
      is minimized as often as possible.  That is, this function finds the projective \n\
      transform that maps points in from_points to points in to_points.  If no \n\
      projective transform exists which performs this mapping exactly then the one \n\
      which minimizes the mean squared error is selected. " 
    /*!
        requires
            - len(from_points) == len(to_points)
            - len(from_points) >= 4
        ensures
            - returns a point_transform_projective object, T, such that for all valid i:
                length(T(from_points[i]) - to_points[i])
              is minimized as often as possible.  That is, this function finds the projective
              transform that maps points in from_points to points in to_points.  If no
              projective transform exists which performs this mapping exactly then the one
              which minimizes the mean squared error is selected. 
    !*/
        );

    const char* docs = 
"requires \n\
    - from_points and to_points have two columns and the same number of rows. \n\
      Moreover, they have at least 4 rows. \n\
ensures \n\
    - returns a point_transform_projective object, T, such that for all valid i: \n\
        length(T(dpoint(from_points[i])) - dpoint(to_points[i])) \n\
      is minimized as often as possible.  That is, this function finds the projective \n\
      transform that maps points in from_points to points in to_points.  If no \n\
      projective transform exists which performs this mapping exactly then the one \n\
      which minimizes the mean squared error is selected. ";
    /*!
        requires
            - from_points and to_points have two columns and the same number of rows.
              Moreover, they have at least 4 rows.
        ensures
            - returns a point_transform_projective object, T, such that for all valid i:
                length(T(dpoint(from_points[i])) - dpoint(to_points[i]))
              is minimized as often as possible.  That is, this function finds the projective
              transform that maps points in from_points to points in to_points.  If no
              projective transform exists which performs this mapping exactly then the one
              which minimizes the mean squared error is selected. 
    !*/
    m.def("find_projective_transform", &py_find_projective_transform2<float>, py::arg("from_points"), py::arg("to_points"), docs);
    m.def("find_projective_transform", &py_find_projective_transform2<double>, py::arg("from_points"), py::arg("to_points"), docs);

}

// ----------------------------------------------------------------------------------------

double py_polygon_area(
    const std::vector<dpoint>& pts
)
{
    return polygon_area(pts);
}

double py_polygon_area2(
    const py::list& pts
)
{
    std::vector<dpoint> temp(len(pts));
    for (size_t i = 0; i < temp.size(); ++i)
        temp[i] = pts[i].cast<dpoint>();

    return polygon_area(temp);
}

// ----------------------------------------------------------------------------------------

void bind_vector(py::module& m)
{
    {
    py::class_<cv, std::shared_ptr<cv>>(m, "vector", "This object represents the mathematical idea of a column vector.")
        .def(py::init())
        .def("set_size", &cv_set_size)
        .def("resize", &cv_set_size)
        .def(py::init(&cv_from_object))
        .def("__repr__", &cv__repr__)
        .def("__str__", &cv__str__)
        .def("__len__", &cv__len__)
        .def("__getitem__", &cv__getitem__)
        .def("__getitem__", &cv__getitem2__)
        .def("__setitem__", &cv__setitem__)
        .def_property_readonly("shape", &cv_get_matrix_size)
        .def(py::pickle(&getstate<cv>, &setstate<cv>));

    m.def("dot", &dotprod, "Compute the dot product between two dense column vectors.");
    }
    {
    typedef point type;
    py::class_<type>(m, "point", "This object represents a single point of integer coordinates that maps directly to a dlib::point.")
            .def(py::init<long,long>(), py::arg("x"), py::arg("y"))
            .def(py::init<dpoint>(), py::arg("p"))
            .def(py::init<>(&numpy_to_dlib_vect<long>), py::arg("v"))
            .def(py::init<>(&numpy_to_dlib_vect<float>), py::arg("v"))
            .def(py::init<>(&numpy_to_dlib_vect<double>), py::arg("v"))
            .def("__repr__", &point__repr__)
            .def("__str__", &point__str__)
            .def(py::self + py::self)
            .def(py::self - py::self)
            .def(py::self / double())
            .def(py::self * double())
            .def(double() * py::self)
            .def("normalize", &type::normalize, "Returns a unit normalized copy of this vector.")
            .def_property("x", &point_x, [](point& p, long x){p.x()=x;}, "The x-coordinate of the point.")
            .def_property("y", &point_y, [](point& p, long y){p.y()=y;}, "The y-coordinate of the point.")
            .def(py::pickle(&getstate<type>, &setstate<type>));
    }
    {
    typedef std::vector<point> type;
    py::bind_vector<type>(m, "points", "An array of point objects.")
        .def(py::init<size_t>(), py::arg("initial_size"))
        .def("clear", &type::clear)
        .def("resize", resize<type>)
        .def("extend", extend_vector_with_python_list<point>)
        .def(py::pickle(&getstate<type>, &setstate<type>));
    }

    {
    typedef dpoint type;
    py::class_<type>(m, "dpoint", "This object represents a single point of floating point coordinates that maps directly to a dlib::dpoint.")
            .def(py::init<double,double>(), py::arg("x"), py::arg("y"))
            .def(py::init<point>(), py::arg("p"))
            .def(py::init<>(&numpy_to_dlib_vect<long>), py::arg("v"))
            .def(py::init<>(&numpy_to_dlib_vect<float>), py::arg("v"))
            .def(py::init<>(&numpy_to_dlib_vect<double>), py::arg("v"))
            .def("__repr__", &dpoint__repr__)
            .def("__str__", &dpoint__str__)
            .def("normalize", &type::normalize, "Returns a unit normalized copy of this vector.")
            .def_property("x", &dpoint_x, [](dpoint& p, double x){p.x()=x;}, "The x-coordinate of the dpoint.")
            .def_property("y", &dpoint_y, [](dpoint& p, double y){p.y()=y;}, "The y-coordinate of the dpoint.")
            .def(py::self + py::self)
            .def(py::self - py::self)
            .def(py::self / double())
            .def(py::self * double())
            .def(double() * py::self)
            .def(py::pickle(&getstate<type>, &setstate<type>));
    }
    {
    typedef std::vector<dpoint> type;
    py::bind_vector<type>(m, "dpoints", "An array of dpoint objects.")
        .def(py::init<size_t>(), py::arg("initial_size"))
        .def("clear", &type::clear)
        .def("resize", resize<type>)
        .def("extend", extend_vector_with_python_list<dpoint>)
        .def(py::pickle(&getstate<type>, &setstate<type>));
    }

    m.def("length", [](const point& p){return length(p); }, 
        "returns the distance from p to the origin, i.e. the L2 norm of p.", py::arg("p"));
    m.def("length", [](const dpoint& p){return length(p); }, 
        "returns the distance from p to the origin, i.e. the L2 norm of p.", py::arg("p"));

    m.def("dot", [](const point& a, const point& b){return dot(a,b); },  "Returns the dot product of the points a and b.", py::arg("a"), py::arg("b"));
    m.def("dot", [](const dpoint& a, const dpoint& b){return dot(a,b); },  "Returns the dot product of the points a and b.", py::arg("a"), py::arg("b"));

    register_point_transform_projective(m);

    m.def("polygon_area", &py_polygon_area, py::arg("pts"));
    m.def("polygon_area", &py_polygon_area2, py::arg("pts"),
"ensures \n\
    - If you walk the points pts in order to make a closed polygon, what is its \n\
      area?  This function returns that area.  It uses the shoelace formula to \n\
      compute the result and so works for general non-self-intersecting polygons." 
    /*!
        ensures
            - If you walk the points pts in order to make a closed polygon, what is its
              area?  This function returns that area.  It uses the shoelace formula to
              compute the result and so works for general non-self-intersecting polygons.
    !*/
        );

}