|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <dlib/image_processing/frontal_face_detector.h> |
|
#include <dlib/image_processing.h> |
|
#include <dlib/console_progress_indicator.h> |
|
#include <dlib/data_io.h> |
|
#include <dlib/statistics.h> |
|
#include <iostream> |
|
|
|
using namespace dlib; |
|
using namespace std; |
|
|
|
|
|
|
|
std::vector<std::vector<double> > get_interocular_distances ( |
|
const std::vector<std::vector<full_object_detection> >& objects |
|
); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template < |
|
typename image_array_type, |
|
typename T |
|
> |
|
void add_image_left_right_flips_5points ( |
|
image_array_type& images, |
|
std::vector<std::vector<T> >& objects |
|
) |
|
{ |
|
|
|
DLIB_ASSERT( images.size() == objects.size(), |
|
"\t void add_image_left_right_flips()" |
|
<< "\n\t Invalid inputs were given to this function." |
|
<< "\n\t images.size(): " << images.size() |
|
<< "\n\t objects.size(): " << objects.size() |
|
); |
|
|
|
typename image_array_type::value_type temp; |
|
std::vector<T> rects; |
|
|
|
const unsigned long num = images.size(); |
|
for (unsigned long j = 0; j < num; ++j) |
|
{ |
|
const point_transform_affine tran = flip_image_left_right(images[j], temp); |
|
|
|
rects.clear(); |
|
for (unsigned long i = 0; i < objects[j].size(); ++i) |
|
{ |
|
rects.push_back(impl::tform_object(tran, objects[j][i])); |
|
|
|
DLIB_CASSERT(rects.back().num_parts() == 5); |
|
swap(rects.back().part(0), rects.back().part(2)); |
|
swap(rects.back().part(1), rects.back().part(3)); |
|
} |
|
|
|
images.push_back(temp); |
|
objects.push_back(rects); |
|
} |
|
} |
|
|
|
|
|
|
|
int main(int argc, char** argv) |
|
{ |
|
try |
|
{ |
|
if (argc != 2) |
|
{ |
|
cout << "give the path to the training data folder" << endl; |
|
return 0; |
|
} |
|
const std::string faces_directory = argv[1]; |
|
dlib::array<array2d<unsigned char> > images_train, images_test; |
|
std::vector<std::vector<full_object_detection> > faces_train, faces_test; |
|
|
|
std::vector<std::string> parts_list; |
|
load_image_dataset(images_train, faces_train, faces_directory+"/train_cleaned.xml", parts_list); |
|
load_image_dataset(images_test, faces_test, faces_directory+"/test_cleaned.xml"); |
|
|
|
add_image_left_right_flips_5points(images_train, faces_train); |
|
add_image_left_right_flips_5points(images_test, faces_test); |
|
add_image_rotations(linspace(-20,20,3)*pi/180.0,images_train, faces_train); |
|
|
|
cout << "num training images: "<< images_train.size() << endl; |
|
|
|
for (auto& part : parts_list) |
|
cout << part << endl; |
|
|
|
shape_predictor_trainer trainer; |
|
trainer.set_oversampling_amount(40); |
|
trainer.set_num_test_splits(150); |
|
trainer.set_feature_pool_size(800); |
|
trainer.set_num_threads(4); |
|
trainer.set_cascade_depth(15); |
|
trainer.be_verbose(); |
|
|
|
|
|
shape_predictor sp = trainer.train(images_train, faces_train); |
|
|
|
serialize("shape_predictor_5_face_landmarks.dat") << sp; |
|
|
|
cout << "mean training error: "<< |
|
test_shape_predictor(sp, images_train, faces_train, get_interocular_distances(faces_train)) << endl; |
|
|
|
cout << "mean testing error: "<< |
|
test_shape_predictor(sp, images_test, faces_test, get_interocular_distances(faces_test)) << endl; |
|
|
|
} |
|
catch (exception& e) |
|
{ |
|
cout << "\nexception thrown!" << endl; |
|
cout << e.what() << endl; |
|
} |
|
} |
|
|
|
|
|
|
|
double interocular_distance ( |
|
const full_object_detection& det |
|
) |
|
{ |
|
dlib::vector<double,2> l, r; |
|
|
|
l = (det.part(0) + det.part(1))/2; |
|
|
|
r = (det.part(2) + det.part(3))/2; |
|
|
|
return length(l-r); |
|
} |
|
|
|
std::vector<std::vector<double> > get_interocular_distances ( |
|
const std::vector<std::vector<full_object_detection> >& objects |
|
) |
|
{ |
|
std::vector<std::vector<double> > temp(objects.size()); |
|
for (unsigned long i = 0; i < objects.size(); ++i) |
|
{ |
|
for (unsigned long j = 0; j < objects[i].size(); ++j) |
|
{ |
|
temp[i].push_back(interocular_distance(objects[i][j])); |
|
} |
|
} |
|
return temp; |
|
} |
|
|
|
|
|
|
|
|