/* | |
* jmemmgr.c | |
* | |
* Copyright (C) 1991-1997, Thomas G. Lane. | |
* Modified 2011 by Guido Vollbeding. | |
* This file is part of the Independent JPEG Group's software. | |
* For conditions of distribution and use, see the accompanying README file. | |
* | |
* This file contains the JPEG system-independent memory management | |
* routines. This code is usable across a wide variety of machines; most | |
* of the system dependencies have been isolated in a separate file. | |
* The major functions provided here are: | |
* * pool-based allocation and freeing of memory; | |
* * policy decisions about how to divide available memory among the | |
* virtual arrays; | |
* * control logic for swapping virtual arrays between main memory and | |
* backing storage. | |
* The separate system-dependent file provides the actual backing-storage | |
* access code, and it contains the policy decision about how much total | |
* main memory to use. | |
* This file is system-dependent in the sense that some of its functions | |
* are unnecessary in some systems. For example, if there is enough virtual | |
* memory so that backing storage will never be used, much of the virtual | |
* array control logic could be removed. (Of course, if you have that much | |
* memory then you shouldn't care about a little bit of unused code...) | |
*/ | |
extern char * getenv JPP((const char * name)); | |
/* | |
* Some important notes: | |
* The allocation routines provided here must never return NULL. | |
* They should exit to error_exit if unsuccessful. | |
* | |
* It's not a good idea to try to merge the sarray and barray routines, | |
* even though they are textually almost the same, because samples are | |
* usually stored as bytes while coefficients are shorts or ints. Thus, | |
* in machines where byte pointers have a different representation from | |
* word pointers, the resulting machine code could not be the same. | |
*/ | |
/* | |
* Many machines require storage alignment: longs must start on 4-byte | |
* boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc() | |
* always returns pointers that are multiples of the worst-case alignment | |
* requirement, and we had better do so too. | |
* There isn't any really portable way to determine the worst-case alignment | |
* requirement. This module assumes that the alignment requirement is | |
* multiples of sizeof(ALIGN_TYPE). | |
* By default, we define ALIGN_TYPE as double. This is necessary on some | |
* workstations (where doubles really do need 8-byte alignment) and will work | |
* fine on nearly everything. If your machine has lesser alignment needs, | |
* you can save a few bytes by making ALIGN_TYPE smaller. | |
* The only place I know of where this will NOT work is certain Macintosh | |
* 680x0 compilers that define double as a 10-byte IEEE extended float. | |
* Doing 10-byte alignment is counterproductive because longwords won't be | |
* aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have | |
* such a compiler. | |
*/ | |
/* | |
* We allocate objects from "pools", where each pool is gotten with a single | |
* request to jpeg_get_small() or jpeg_get_large(). There is no per-object | |
* overhead within a pool, except for alignment padding. Each pool has a | |
* header with a link to the next pool of the same class. | |
* Small and large pool headers are identical except that the latter's | |
* link pointer must be FAR on 80x86 machines. | |
* Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE | |
* field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple | |
* of the alignment requirement of ALIGN_TYPE. | |
*/ | |
typedef union small_pool_struct * small_pool_ptr; | |
typedef union small_pool_struct { | |
struct { | |
small_pool_ptr next; /* next in list of pools */ | |
size_t bytes_used; /* how many bytes already used within pool */ | |
size_t bytes_left; /* bytes still available in this pool */ | |
} hdr; | |
ALIGN_TYPE dummy; /* included in union to ensure alignment */ | |
} small_pool_hdr; | |
typedef union large_pool_struct FAR * large_pool_ptr; | |
typedef union large_pool_struct { | |
struct { | |
large_pool_ptr next; /* next in list of pools */ | |
size_t bytes_used; /* how many bytes already used within pool */ | |
size_t bytes_left; /* bytes still available in this pool */ | |
} hdr; | |
ALIGN_TYPE dummy; /* included in union to ensure alignment */ | |
} large_pool_hdr; | |
/* | |
* Here is the full definition of a memory manager object. | |
*/ | |
typedef struct { | |
struct jpeg_memory_mgr pub; /* public fields */ | |
/* Each pool identifier (lifetime class) names a linked list of pools. */ | |
small_pool_ptr small_list[JPOOL_NUMPOOLS]; | |
large_pool_ptr large_list[JPOOL_NUMPOOLS]; | |
/* Since we only have one lifetime class of virtual arrays, only one | |
* linked list is necessary (for each datatype). Note that the virtual | |
* array control blocks being linked together are actually stored somewhere | |
* in the small-pool list. | |
*/ | |
jvirt_sarray_ptr virt_sarray_list; | |
jvirt_barray_ptr virt_barray_list; | |
/* This counts total space obtained from jpeg_get_small/large */ | |
long total_space_allocated; | |
/* alloc_sarray and alloc_barray set this value for use by virtual | |
* array routines. | |
*/ | |
JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */ | |
} my_memory_mgr; | |
typedef my_memory_mgr * my_mem_ptr; | |
/* | |
* The control blocks for virtual arrays. | |
* Note that these blocks are allocated in the "small" pool area. | |
* System-dependent info for the associated backing store (if any) is hidden | |
* inside the backing_store_info struct. | |
*/ | |
struct jvirt_sarray_control { | |
JSAMPARRAY mem_buffer; /* => the in-memory buffer */ | |
JDIMENSION rows_in_array; /* total virtual array height */ | |
JDIMENSION samplesperrow; /* width of array (and of memory buffer) */ | |
JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */ | |
JDIMENSION rows_in_mem; /* height of memory buffer */ | |
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ | |
JDIMENSION cur_start_row; /* first logical row # in the buffer */ | |
JDIMENSION first_undef_row; /* row # of first uninitialized row */ | |
boolean pre_zero; /* pre-zero mode requested? */ | |
boolean dirty; /* do current buffer contents need written? */ | |
boolean b_s_open; /* is backing-store data valid? */ | |
jvirt_sarray_ptr next; /* link to next virtual sarray control block */ | |
backing_store_info b_s_info; /* System-dependent control info */ | |
}; | |
struct jvirt_barray_control { | |
JBLOCKARRAY mem_buffer; /* => the in-memory buffer */ | |
JDIMENSION rows_in_array; /* total virtual array height */ | |
JDIMENSION blocksperrow; /* width of array (and of memory buffer) */ | |
JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */ | |
JDIMENSION rows_in_mem; /* height of memory buffer */ | |
JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */ | |
JDIMENSION cur_start_row; /* first logical row # in the buffer */ | |
JDIMENSION first_undef_row; /* row # of first uninitialized row */ | |
boolean pre_zero; /* pre-zero mode requested? */ | |
boolean dirty; /* do current buffer contents need written? */ | |
boolean b_s_open; /* is backing-store data valid? */ | |
jvirt_barray_ptr next; /* link to next virtual barray control block */ | |
backing_store_info b_s_info; /* System-dependent control info */ | |
}; | |
LOCAL(void) | |
print_mem_stats (j_common_ptr cinfo, int pool_id) | |
{ | |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
small_pool_ptr shdr_ptr; | |
large_pool_ptr lhdr_ptr; | |
/* Since this is only a debugging stub, we can cheat a little by using | |
* fprintf directly rather than going through the trace message code. | |
* This is helpful because message parm array can't handle longs. | |
*/ | |
fprintf(stderr, "Freeing pool %d, total space = %ld\n", | |
pool_id, mem->total_space_allocated); | |
for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; | |
lhdr_ptr = lhdr_ptr->hdr.next) { | |
fprintf(stderr, " Large chunk used %ld\n", | |
(long) lhdr_ptr->hdr.bytes_used); | |
} | |
for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; | |
shdr_ptr = shdr_ptr->hdr.next) { | |
fprintf(stderr, " Small chunk used %ld free %ld\n", | |
(long) shdr_ptr->hdr.bytes_used, | |
(long) shdr_ptr->hdr.bytes_left); | |
} | |
} | |
LOCAL(void) | |
out_of_memory (j_common_ptr cinfo, int which) | |
/* Report an out-of-memory error and stop execution */ | |
/* If we compiled MEM_STATS support, report alloc requests before dying */ | |
{ | |
cinfo->err->trace_level = 2; /* force self_destruct to report stats */ | |
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); | |
} | |
/* | |
* Allocation of "small" objects. | |
* | |
* For these, we use pooled storage. When a new pool must be created, | |
* we try to get enough space for the current request plus a "slop" factor, | |
* where the slop will be the amount of leftover space in the new pool. | |
* The speed vs. space tradeoff is largely determined by the slop values. | |
* A different slop value is provided for each pool class (lifetime), | |
* and we also distinguish the first pool of a class from later ones. | |
* NOTE: the values given work fairly well on both 16- and 32-bit-int | |
* machines, but may be too small if longs are 64 bits or more. | |
*/ | |
static const size_t first_pool_slop[JPOOL_NUMPOOLS] = | |
{ | |
1600, /* first PERMANENT pool */ | |
16000 /* first IMAGE pool */ | |
}; | |
static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = | |
{ | |
0, /* additional PERMANENT pools */ | |
5000 /* additional IMAGE pools */ | |
}; | |
METHODDEF(void *) | |
alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | |
/* Allocate a "small" object */ | |
{ | |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
small_pool_ptr hdr_ptr, prev_hdr_ptr; | |
char * data_ptr; | |
size_t odd_bytes, min_request, slop; | |
/* Check for unsatisfiable request (do now to ensure no overflow below) */ | |
if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) | |
out_of_memory(cinfo, 1); /* request exceeds malloc's ability */ | |
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | |
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); | |
if (odd_bytes > 0) | |
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; | |
/* See if space is available in any existing pool */ | |
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | |
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
prev_hdr_ptr = NULL; | |
hdr_ptr = mem->small_list[pool_id]; | |
while (hdr_ptr != NULL) { | |
if (hdr_ptr->hdr.bytes_left >= sizeofobject) | |
break; /* found pool with enough space */ | |
prev_hdr_ptr = hdr_ptr; | |
hdr_ptr = hdr_ptr->hdr.next; | |
} | |
/* Time to make a new pool? */ | |
if (hdr_ptr == NULL) { | |
/* min_request is what we need now, slop is what will be leftover */ | |
min_request = sizeofobject + SIZEOF(small_pool_hdr); | |
if (prev_hdr_ptr == NULL) /* first pool in class? */ | |
slop = first_pool_slop[pool_id]; | |
else | |
slop = extra_pool_slop[pool_id]; | |
/* Don't ask for more than MAX_ALLOC_CHUNK */ | |
if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) | |
slop = (size_t) (MAX_ALLOC_CHUNK-min_request); | |
/* Try to get space, if fail reduce slop and try again */ | |
for (;;) { | |
hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); | |
if (hdr_ptr != NULL) | |
break; | |
slop /= 2; | |
if (slop < MIN_SLOP) /* give up when it gets real small */ | |
out_of_memory(cinfo, 2); /* jpeg_get_small failed */ | |
} | |
mem->total_space_allocated += min_request + slop; | |
/* Success, initialize the new pool header and add to end of list */ | |
hdr_ptr->hdr.next = NULL; | |
hdr_ptr->hdr.bytes_used = 0; | |
hdr_ptr->hdr.bytes_left = sizeofobject + slop; | |
if (prev_hdr_ptr == NULL) /* first pool in class? */ | |
mem->small_list[pool_id] = hdr_ptr; | |
else | |
prev_hdr_ptr->hdr.next = hdr_ptr; | |
} | |
/* OK, allocate the object from the current pool */ | |
data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ | |
data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ | |
hdr_ptr->hdr.bytes_used += sizeofobject; | |
hdr_ptr->hdr.bytes_left -= sizeofobject; | |
return (void *) data_ptr; | |
} | |
/* | |
* Allocation of "large" objects. | |
* | |
* The external semantics of these are the same as "small" objects, | |
* except that FAR pointers are used on 80x86. However the pool | |
* management heuristics are quite different. We assume that each | |
* request is large enough that it may as well be passed directly to | |
* jpeg_get_large; the pool management just links everything together | |
* so that we can free it all on demand. | |
* Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY | |
* structures. The routines that create these structures (see below) | |
* deliberately bunch rows together to ensure a large request size. | |
*/ | |
METHODDEF(void FAR *) | |
alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | |
/* Allocate a "large" object */ | |
{ | |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
large_pool_ptr hdr_ptr; | |
size_t odd_bytes; | |
/* Check for unsatisfiable request (do now to ensure no overflow below) */ | |
if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) | |
out_of_memory(cinfo, 3); /* request exceeds malloc's ability */ | |
/* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | |
odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); | |
if (odd_bytes > 0) | |
sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; | |
/* Always make a new pool */ | |
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | |
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + | |
SIZEOF(large_pool_hdr)); | |
if (hdr_ptr == NULL) | |
out_of_memory(cinfo, 4); /* jpeg_get_large failed */ | |
mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); | |
/* Success, initialize the new pool header and add to list */ | |
hdr_ptr->hdr.next = mem->large_list[pool_id]; | |
/* We maintain space counts in each pool header for statistical purposes, | |
* even though they are not needed for allocation. | |
*/ | |
hdr_ptr->hdr.bytes_used = sizeofobject; | |
hdr_ptr->hdr.bytes_left = 0; | |
mem->large_list[pool_id] = hdr_ptr; | |
return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ | |
} | |
/* | |
* Creation of 2-D sample arrays. | |
* The pointers are in near heap, the samples themselves in FAR heap. | |
* | |
* To minimize allocation overhead and to allow I/O of large contiguous | |
* blocks, we allocate the sample rows in groups of as many rows as possible | |
* without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. | |
* NB: the virtual array control routines, later in this file, know about | |
* this chunking of rows. The rowsperchunk value is left in the mem manager | |
* object so that it can be saved away if this sarray is the workspace for | |
* a virtual array. | |
*/ | |
METHODDEF(JSAMPARRAY) | |
alloc_sarray (j_common_ptr cinfo, int pool_id, | |
JDIMENSION samplesperrow, JDIMENSION numrows) | |
/* Allocate a 2-D sample array */ | |
{ | |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
JSAMPARRAY result; | |
JSAMPROW workspace; | |
JDIMENSION rowsperchunk, currow, i; | |
long ltemp; | |
/* Calculate max # of rows allowed in one allocation chunk */ | |
ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / | |
((long) samplesperrow * SIZEOF(JSAMPLE)); | |
if (ltemp <= 0) | |
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | |
if (ltemp < (long) numrows) | |
rowsperchunk = (JDIMENSION) ltemp; | |
else | |
rowsperchunk = numrows; | |
mem->last_rowsperchunk = rowsperchunk; | |
/* Get space for row pointers (small object) */ | |
result = (JSAMPARRAY) alloc_small(cinfo, pool_id, | |
(size_t) (numrows * SIZEOF(JSAMPROW))); | |
/* Get the rows themselves (large objects) */ | |
currow = 0; | |
while (currow < numrows) { | |
rowsperchunk = MIN(rowsperchunk, numrows - currow); | |
workspace = (JSAMPROW) alloc_large(cinfo, pool_id, | |
(size_t) ((size_t) rowsperchunk * (size_t) samplesperrow | |
* SIZEOF(JSAMPLE))); | |
for (i = rowsperchunk; i > 0; i--) { | |
result[currow++] = workspace; | |
workspace += samplesperrow; | |
} | |
} | |
return result; | |
} | |
/* | |
* Creation of 2-D coefficient-block arrays. | |
* This is essentially the same as the code for sample arrays, above. | |
*/ | |
METHODDEF(JBLOCKARRAY) | |
alloc_barray (j_common_ptr cinfo, int pool_id, | |
JDIMENSION blocksperrow, JDIMENSION numrows) | |
/* Allocate a 2-D coefficient-block array */ | |
{ | |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
JBLOCKARRAY result; | |
JBLOCKROW workspace; | |
JDIMENSION rowsperchunk, currow, i; | |
long ltemp; | |
/* Calculate max # of rows allowed in one allocation chunk */ | |
ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / | |
((long) blocksperrow * SIZEOF(JBLOCK)); | |
if (ltemp <= 0) | |
ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | |
if (ltemp < (long) numrows) | |
rowsperchunk = (JDIMENSION) ltemp; | |
else | |
rowsperchunk = numrows; | |
mem->last_rowsperchunk = rowsperchunk; | |
/* Get space for row pointers (small object) */ | |
result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, | |
(size_t) (numrows * SIZEOF(JBLOCKROW))); | |
/* Get the rows themselves (large objects) */ | |
currow = 0; | |
while (currow < numrows) { | |
rowsperchunk = MIN(rowsperchunk, numrows - currow); | |
workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, | |
(size_t) ((size_t) rowsperchunk * (size_t) blocksperrow | |
* SIZEOF(JBLOCK))); | |
for (i = rowsperchunk; i > 0; i--) { | |
result[currow++] = workspace; | |
workspace += blocksperrow; | |
} | |
} | |
return result; | |
} | |
/* | |
* About virtual array management: | |
* | |
* The above "normal" array routines are only used to allocate strip buffers | |
* (as wide as the image, but just a few rows high). Full-image-sized buffers | |
* are handled as "virtual" arrays. The array is still accessed a strip at a | |
* time, but the memory manager must save the whole array for repeated | |
* accesses. The intended implementation is that there is a strip buffer in | |
* memory (as high as is possible given the desired memory limit), plus a | |
* backing file that holds the rest of the array. | |
* | |
* The request_virt_array routines are told the total size of the image and | |
* the maximum number of rows that will be accessed at once. The in-memory | |
* buffer must be at least as large as the maxaccess value. | |
* | |
* The request routines create control blocks but not the in-memory buffers. | |
* That is postponed until realize_virt_arrays is called. At that time the | |
* total amount of space needed is known (approximately, anyway), so free | |
* memory can be divided up fairly. | |
* | |
* The access_virt_array routines are responsible for making a specific strip | |
* area accessible (after reading or writing the backing file, if necessary). | |
* Note that the access routines are told whether the caller intends to modify | |
* the accessed strip; during a read-only pass this saves having to rewrite | |
* data to disk. The access routines are also responsible for pre-zeroing | |
* any newly accessed rows, if pre-zeroing was requested. | |
* | |
* In current usage, the access requests are usually for nonoverlapping | |
* strips; that is, successive access start_row numbers differ by exactly | |
* num_rows = maxaccess. This means we can get good performance with simple | |
* buffer dump/reload logic, by making the in-memory buffer be a multiple | |
* of the access height; then there will never be accesses across bufferload | |
* boundaries. The code will still work with overlapping access requests, | |
* but it doesn't handle bufferload overlaps very efficiently. | |
*/ | |
METHODDEF(jvirt_sarray_ptr) | |
request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | |
JDIMENSION samplesperrow, JDIMENSION numrows, | |
JDIMENSION maxaccess) | |
/* Request a virtual 2-D sample array */ | |
{ | |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
jvirt_sarray_ptr result; | |
/* Only IMAGE-lifetime virtual arrays are currently supported */ | |
if (pool_id != JPOOL_IMAGE) | |
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
/* get control block */ | |
result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, | |
SIZEOF(struct jvirt_sarray_control)); | |
result->mem_buffer = NULL; /* marks array not yet realized */ | |
result->rows_in_array = numrows; | |
result->samplesperrow = samplesperrow; | |
result->maxaccess = maxaccess; | |
result->pre_zero = pre_zero; | |
result->b_s_open = FALSE; /* no associated backing-store object */ | |
result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ | |
mem->virt_sarray_list = result; | |
return result; | |
} | |
METHODDEF(jvirt_barray_ptr) | |
request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | |
JDIMENSION blocksperrow, JDIMENSION numrows, | |
JDIMENSION maxaccess) | |
/* Request a virtual 2-D coefficient-block array */ | |
{ | |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
jvirt_barray_ptr result; | |
/* Only IMAGE-lifetime virtual arrays are currently supported */ | |
if (pool_id != JPOOL_IMAGE) | |
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
/* get control block */ | |
result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, | |
SIZEOF(struct jvirt_barray_control)); | |
result->mem_buffer = NULL; /* marks array not yet realized */ | |
result->rows_in_array = numrows; | |
result->blocksperrow = blocksperrow; | |
result->maxaccess = maxaccess; | |
result->pre_zero = pre_zero; | |
result->b_s_open = FALSE; /* no associated backing-store object */ | |
result->next = mem->virt_barray_list; /* add to list of virtual arrays */ | |
mem->virt_barray_list = result; | |
return result; | |
} | |
METHODDEF(void) | |
realize_virt_arrays (j_common_ptr cinfo) | |
/* Allocate the in-memory buffers for any unrealized virtual arrays */ | |
{ | |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
long space_per_minheight, maximum_space, avail_mem; | |
long minheights, max_minheights; | |
jvirt_sarray_ptr sptr; | |
jvirt_barray_ptr bptr; | |
/* Compute the minimum space needed (maxaccess rows in each buffer) | |
* and the maximum space needed (full image height in each buffer). | |
* These may be of use to the system-dependent jpeg_mem_available routine. | |
*/ | |
space_per_minheight = 0; | |
maximum_space = 0; | |
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | |
if (sptr->mem_buffer == NULL) { /* if not realized yet */ | |
space_per_minheight += (long) sptr->maxaccess * | |
(long) sptr->samplesperrow * SIZEOF(JSAMPLE); | |
maximum_space += (long) sptr->rows_in_array * | |
(long) sptr->samplesperrow * SIZEOF(JSAMPLE); | |
} | |
} | |
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | |
if (bptr->mem_buffer == NULL) { /* if not realized yet */ | |
space_per_minheight += (long) bptr->maxaccess * | |
(long) bptr->blocksperrow * SIZEOF(JBLOCK); | |
maximum_space += (long) bptr->rows_in_array * | |
(long) bptr->blocksperrow * SIZEOF(JBLOCK); | |
} | |
} | |
if (space_per_minheight <= 0) | |
return; /* no unrealized arrays, no work */ | |
/* Determine amount of memory to actually use; this is system-dependent. */ | |
avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, | |
mem->total_space_allocated); | |
/* If the maximum space needed is available, make all the buffers full | |
* height; otherwise parcel it out with the same number of minheights | |
* in each buffer. | |
*/ | |
if (avail_mem >= maximum_space) | |
max_minheights = 1000000000L; | |
else { | |
max_minheights = avail_mem / space_per_minheight; | |
/* If there doesn't seem to be enough space, try to get the minimum | |
* anyway. This allows a "stub" implementation of jpeg_mem_available(). | |
*/ | |
if (max_minheights <= 0) | |
max_minheights = 1; | |
} | |
/* Allocate the in-memory buffers and initialize backing store as needed. */ | |
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | |
if (sptr->mem_buffer == NULL) { /* if not realized yet */ | |
minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; | |
if (minheights <= max_minheights) { | |
/* This buffer fits in memory */ | |
sptr->rows_in_mem = sptr->rows_in_array; | |
} else { | |
/* It doesn't fit in memory, create backing store. */ | |
sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); | |
jpeg_open_backing_store(cinfo, & sptr->b_s_info, | |
(long) sptr->rows_in_array * | |
(long) sptr->samplesperrow * | |
(long) SIZEOF(JSAMPLE)); | |
sptr->b_s_open = TRUE; | |
} | |
sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, | |
sptr->samplesperrow, sptr->rows_in_mem); | |
sptr->rowsperchunk = mem->last_rowsperchunk; | |
sptr->cur_start_row = 0; | |
sptr->first_undef_row = 0; | |
sptr->dirty = FALSE; | |
} | |
} | |
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | |
if (bptr->mem_buffer == NULL) { /* if not realized yet */ | |
minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; | |
if (minheights <= max_minheights) { | |
/* This buffer fits in memory */ | |
bptr->rows_in_mem = bptr->rows_in_array; | |
} else { | |
/* It doesn't fit in memory, create backing store. */ | |
bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); | |
jpeg_open_backing_store(cinfo, & bptr->b_s_info, | |
(long) bptr->rows_in_array * | |
(long) bptr->blocksperrow * | |
(long) SIZEOF(JBLOCK)); | |
bptr->b_s_open = TRUE; | |
} | |
bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, | |
bptr->blocksperrow, bptr->rows_in_mem); | |
bptr->rowsperchunk = mem->last_rowsperchunk; | |
bptr->cur_start_row = 0; | |
bptr->first_undef_row = 0; | |
bptr->dirty = FALSE; | |
} | |
} | |
} | |
LOCAL(void) | |
do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) | |
/* Do backing store read or write of a virtual sample array */ | |
{ | |
long bytesperrow, file_offset, byte_count, rows, thisrow, i; | |
bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); | |
file_offset = ptr->cur_start_row * bytesperrow; | |
/* Loop to read or write each allocation chunk in mem_buffer */ | |
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | |
/* One chunk, but check for short chunk at end of buffer */ | |
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); | |
/* Transfer no more than is currently defined */ | |
thisrow = (long) ptr->cur_start_row + i; | |
rows = MIN(rows, (long) ptr->first_undef_row - thisrow); | |
/* Transfer no more than fits in file */ | |
rows = MIN(rows, (long) ptr->rows_in_array - thisrow); | |
if (rows <= 0) /* this chunk might be past end of file! */ | |
break; | |
byte_count = rows * bytesperrow; | |
if (writing) | |
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | |
(void FAR *) ptr->mem_buffer[i], | |
file_offset, byte_count); | |
else | |
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | |
(void FAR *) ptr->mem_buffer[i], | |
file_offset, byte_count); | |
file_offset += byte_count; | |
} | |
} | |
LOCAL(void) | |
do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) | |
/* Do backing store read or write of a virtual coefficient-block array */ | |
{ | |
long bytesperrow, file_offset, byte_count, rows, thisrow, i; | |
bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); | |
file_offset = ptr->cur_start_row * bytesperrow; | |
/* Loop to read or write each allocation chunk in mem_buffer */ | |
for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | |
/* One chunk, but check for short chunk at end of buffer */ | |
rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); | |
/* Transfer no more than is currently defined */ | |
thisrow = (long) ptr->cur_start_row + i; | |
rows = MIN(rows, (long) ptr->first_undef_row - thisrow); | |
/* Transfer no more than fits in file */ | |
rows = MIN(rows, (long) ptr->rows_in_array - thisrow); | |
if (rows <= 0) /* this chunk might be past end of file! */ | |
break; | |
byte_count = rows * bytesperrow; | |
if (writing) | |
(*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | |
(void FAR *) ptr->mem_buffer[i], | |
file_offset, byte_count); | |
else | |
(*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | |
(void FAR *) ptr->mem_buffer[i], | |
file_offset, byte_count); | |
file_offset += byte_count; | |
} | |
} | |
METHODDEF(JSAMPARRAY) | |
access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, | |
JDIMENSION start_row, JDIMENSION num_rows, | |
boolean writable) | |
/* Access the part of a virtual sample array starting at start_row */ | |
/* and extending for num_rows rows. writable is true if */ | |
/* caller intends to modify the accessed area. */ | |
{ | |
JDIMENSION end_row = start_row + num_rows; | |
JDIMENSION undef_row; | |
/* debugging check */ | |
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | |
ptr->mem_buffer == NULL) | |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
/* Make the desired part of the virtual array accessible */ | |
if (start_row < ptr->cur_start_row || | |
end_row > ptr->cur_start_row+ptr->rows_in_mem) { | |
if (! ptr->b_s_open) | |
ERREXIT(cinfo, JERR_VIRTUAL_BUG); | |
/* Flush old buffer contents if necessary */ | |
if (ptr->dirty) { | |
do_sarray_io(cinfo, ptr, TRUE); | |
ptr->dirty = FALSE; | |
} | |
/* Decide what part of virtual array to access. | |
* Algorithm: if target address > current window, assume forward scan, | |
* load starting at target address. If target address < current window, | |
* assume backward scan, load so that target area is top of window. | |
* Note that when switching from forward write to forward read, will have | |
* start_row = 0, so the limiting case applies and we load from 0 anyway. | |
*/ | |
if (start_row > ptr->cur_start_row) { | |
ptr->cur_start_row = start_row; | |
} else { | |
/* use long arithmetic here to avoid overflow & unsigned problems */ | |
long ltemp; | |
ltemp = (long) end_row - (long) ptr->rows_in_mem; | |
if (ltemp < 0) | |
ltemp = 0; /* don't fall off front end of file */ | |
ptr->cur_start_row = (JDIMENSION) ltemp; | |
} | |
/* Read in the selected part of the array. | |
* During the initial write pass, we will do no actual read | |
* because the selected part is all undefined. | |
*/ | |
do_sarray_io(cinfo, ptr, FALSE); | |
} | |
/* Ensure the accessed part of the array is defined; prezero if needed. | |
* To improve locality of access, we only prezero the part of the array | |
* that the caller is about to access, not the entire in-memory array. | |
*/ | |
if (ptr->first_undef_row < end_row) { | |
if (ptr->first_undef_row < start_row) { | |
if (writable) /* writer skipped over a section of array */ | |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
undef_row = start_row; /* but reader is allowed to read ahead */ | |
} else { | |
undef_row = ptr->first_undef_row; | |
} | |
if (writable) | |
ptr->first_undef_row = end_row; | |
if (ptr->pre_zero) { | |
size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); | |
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | |
end_row -= ptr->cur_start_row; | |
while (undef_row < end_row) { | |
FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | |
undef_row++; | |
} | |
} else { | |
if (! writable) /* reader looking at undefined data */ | |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
} | |
} | |
/* Flag the buffer dirty if caller will write in it */ | |
if (writable) | |
ptr->dirty = TRUE; | |
/* Return address of proper part of the buffer */ | |
return ptr->mem_buffer + (start_row - ptr->cur_start_row); | |
} | |
METHODDEF(JBLOCKARRAY) | |
access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, | |
JDIMENSION start_row, JDIMENSION num_rows, | |
boolean writable) | |
/* Access the part of a virtual block array starting at start_row */ | |
/* and extending for num_rows rows. writable is true if */ | |
/* caller intends to modify the accessed area. */ | |
{ | |
JDIMENSION end_row = start_row + num_rows; | |
JDIMENSION undef_row; | |
/* debugging check */ | |
if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | |
ptr->mem_buffer == NULL) | |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
/* Make the desired part of the virtual array accessible */ | |
if (start_row < ptr->cur_start_row || | |
end_row > ptr->cur_start_row+ptr->rows_in_mem) { | |
if (! ptr->b_s_open) | |
ERREXIT(cinfo, JERR_VIRTUAL_BUG); | |
/* Flush old buffer contents if necessary */ | |
if (ptr->dirty) { | |
do_barray_io(cinfo, ptr, TRUE); | |
ptr->dirty = FALSE; | |
} | |
/* Decide what part of virtual array to access. | |
* Algorithm: if target address > current window, assume forward scan, | |
* load starting at target address. If target address < current window, | |
* assume backward scan, load so that target area is top of window. | |
* Note that when switching from forward write to forward read, will have | |
* start_row = 0, so the limiting case applies and we load from 0 anyway. | |
*/ | |
if (start_row > ptr->cur_start_row) { | |
ptr->cur_start_row = start_row; | |
} else { | |
/* use long arithmetic here to avoid overflow & unsigned problems */ | |
long ltemp; | |
ltemp = (long) end_row - (long) ptr->rows_in_mem; | |
if (ltemp < 0) | |
ltemp = 0; /* don't fall off front end of file */ | |
ptr->cur_start_row = (JDIMENSION) ltemp; | |
} | |
/* Read in the selected part of the array. | |
* During the initial write pass, we will do no actual read | |
* because the selected part is all undefined. | |
*/ | |
do_barray_io(cinfo, ptr, FALSE); | |
} | |
/* Ensure the accessed part of the array is defined; prezero if needed. | |
* To improve locality of access, we only prezero the part of the array | |
* that the caller is about to access, not the entire in-memory array. | |
*/ | |
if (ptr->first_undef_row < end_row) { | |
if (ptr->first_undef_row < start_row) { | |
if (writable) /* writer skipped over a section of array */ | |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
undef_row = start_row; /* but reader is allowed to read ahead */ | |
} else { | |
undef_row = ptr->first_undef_row; | |
} | |
if (writable) | |
ptr->first_undef_row = end_row; | |
if (ptr->pre_zero) { | |
size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); | |
undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | |
end_row -= ptr->cur_start_row; | |
while (undef_row < end_row) { | |
FMEMZERO((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | |
undef_row++; | |
} | |
} else { | |
if (! writable) /* reader looking at undefined data */ | |
ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | |
} | |
} | |
/* Flag the buffer dirty if caller will write in it */ | |
if (writable) | |
ptr->dirty = TRUE; | |
/* Return address of proper part of the buffer */ | |
return ptr->mem_buffer + (start_row - ptr->cur_start_row); | |
} | |
/* | |
* Release all objects belonging to a specified pool. | |
*/ | |
METHODDEF(void) | |
free_pool (j_common_ptr cinfo, int pool_id) | |
{ | |
my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | |
small_pool_ptr shdr_ptr; | |
large_pool_ptr lhdr_ptr; | |
size_t space_freed; | |
if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | |
ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */ | |
if (cinfo->err->trace_level > 1) | |
print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ | |
/* If freeing IMAGE pool, close any virtual arrays first */ | |
if (pool_id == JPOOL_IMAGE) { | |
jvirt_sarray_ptr sptr; | |
jvirt_barray_ptr bptr; | |
for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | |
if (sptr->b_s_open) { /* there may be no backing store */ | |
sptr->b_s_open = FALSE; /* prevent recursive close if error */ | |
(*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); | |
} | |
} | |
mem->virt_sarray_list = NULL; | |
for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | |
if (bptr->b_s_open) { /* there may be no backing store */ | |
bptr->b_s_open = FALSE; /* prevent recursive close if error */ | |
(*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); | |
} | |
} | |
mem->virt_barray_list = NULL; | |
} | |
/* Release large objects */ | |
lhdr_ptr = mem->large_list[pool_id]; | |
mem->large_list[pool_id] = NULL; | |
while (lhdr_ptr != NULL) { | |
large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; | |
space_freed = lhdr_ptr->hdr.bytes_used + | |
lhdr_ptr->hdr.bytes_left + | |
SIZEOF(large_pool_hdr); | |
jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); | |
mem->total_space_allocated -= space_freed; | |
lhdr_ptr = next_lhdr_ptr; | |
} | |
/* Release small objects */ | |
shdr_ptr = mem->small_list[pool_id]; | |
mem->small_list[pool_id] = NULL; | |
while (shdr_ptr != NULL) { | |
small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; | |
space_freed = shdr_ptr->hdr.bytes_used + | |
shdr_ptr->hdr.bytes_left + | |
SIZEOF(small_pool_hdr); | |
jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); | |
mem->total_space_allocated -= space_freed; | |
shdr_ptr = next_shdr_ptr; | |
} | |
} | |
/* | |
* Close up shop entirely. | |
* Note that this cannot be called unless cinfo->mem is non-NULL. | |
*/ | |
METHODDEF(void) | |
self_destruct (j_common_ptr cinfo) | |
{ | |
int pool; | |
/* Close all backing store, release all memory. | |
* Releasing pools in reverse order might help avoid fragmentation | |
* with some (brain-damaged) malloc libraries. | |
*/ | |
for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | |
free_pool(cinfo, pool); | |
} | |
/* Release the memory manager control block too. */ | |
jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); | |
cinfo->mem = NULL; /* ensures I will be called only once */ | |
jpeg_mem_term(cinfo); /* system-dependent cleanup */ | |
} | |
/* | |
* Memory manager initialization. | |
* When this is called, only the error manager pointer is valid in cinfo! | |
*/ | |
GLOBAL(void) | |
jinit_memory_mgr (j_common_ptr cinfo) | |
{ | |
my_mem_ptr mem; | |
long max_to_use; | |
int pool; | |
size_t test_mac; | |
cinfo->mem = NULL; /* for safety if init fails */ | |
/* Check for configuration errors. | |
* SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably | |
* doesn't reflect any real hardware alignment requirement. | |
* The test is a little tricky: for X>0, X and X-1 have no one-bits | |
* in common if and only if X is a power of 2, ie has only one one-bit. | |
* Some compilers may give an "unreachable code" warning here; ignore it. | |
*/ | |
if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) | |
ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); | |
/* MAX_ALLOC_CHUNK must be representable as type size_t, and must be | |
* a multiple of SIZEOF(ALIGN_TYPE). | |
* Again, an "unreachable code" warning may be ignored here. | |
* But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. | |
*/ | |
test_mac = (size_t) MAX_ALLOC_CHUNK; | |
if ((long) test_mac != MAX_ALLOC_CHUNK || | |
(MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) | |
ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); | |
max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ | |
/* Attempt to allocate memory manager's control block */ | |
mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); | |
if (mem == NULL) { | |
jpeg_mem_term(cinfo); /* system-dependent cleanup */ | |
ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); | |
} | |
/* OK, fill in the method pointers */ | |
mem->pub.alloc_small = alloc_small; | |
mem->pub.alloc_large = alloc_large; | |
mem->pub.alloc_sarray = alloc_sarray; | |
mem->pub.alloc_barray = alloc_barray; | |
mem->pub.request_virt_sarray = request_virt_sarray; | |
mem->pub.request_virt_barray = request_virt_barray; | |
mem->pub.realize_virt_arrays = realize_virt_arrays; | |
mem->pub.access_virt_sarray = access_virt_sarray; | |
mem->pub.access_virt_barray = access_virt_barray; | |
mem->pub.free_pool = free_pool; | |
mem->pub.self_destruct = self_destruct; | |
/* Make MAX_ALLOC_CHUNK accessible to other modules */ | |
mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; | |
/* Initialize working state */ | |
mem->pub.max_memory_to_use = max_to_use; | |
for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | |
mem->small_list[pool] = NULL; | |
mem->large_list[pool] = NULL; | |
} | |
mem->virt_sarray_list = NULL; | |
mem->virt_barray_list = NULL; | |
mem->total_space_allocated = SIZEOF(my_memory_mgr); | |
/* Declare ourselves open for business */ | |
cinfo->mem = & mem->pub; | |
/* Check for an environment variable JPEGMEM; if found, override the | |
* default max_memory setting from jpeg_mem_init. Note that the | |
* surrounding application may again override this value. | |
* If your system doesn't support getenv(), define NO_GETENV to disable | |
* this feature. | |
*/ | |
{ char * memenv; | |
if ((memenv = getenv("JPEGMEM")) != NULL) { | |
char ch = 'x'; | |
if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { | |
if (ch == 'm' || ch == 'M') | |
max_to_use *= 1000L; | |
mem->pub.max_memory_to_use = max_to_use * 1000L; | |
} | |
} | |
} | |
} | |