AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
raw
history blame
26.3 kB
// Copyright (C) 2017 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_FiND_GLOBAL_MAXIMUM_hH_
#define DLIB_FiND_GLOBAL_MAXIMUM_hH_
#include "find_max_global_abstract.h"
#include "global_function_search.h"
#include "../metaprogramming.h"
#include <utility>
#include <chrono>
#include <memory>
#include <thread>
#include <functional>
#include "../threads/thread_pool_extension.h"
#include "../statistics/statistics.h"
#include "../enable_if.h"
namespace dlib
{
namespace gopt_impl
{
// ----------------------------------------------------------------------------------------
class disable_decay_to_scalar
{
const matrix<double,0,1>& a;
public:
disable_decay_to_scalar(const matrix<double,0,1>& a) : a(a){}
operator const matrix<double,0,1>&() const { return a;}
};
template <typename T, size_t... indices>
auto _cwv (
T&& f,
const matrix<double,0,1>& a,
compile_time_integer_list<indices...>
) -> decltype(f(a(indices-1)...))
{
DLIB_CASSERT(a.size() == sizeof...(indices),
"You invoked dlib::call_function_and_expand_args(f,a) but the number of arguments expected by f() doesn't match the size of 'a'. "
<< "Expected " << sizeof...(indices) << " arguments but got " << a.size() << "."
);
return f(a(indices-1)...);
}
// Visual studio, as of November 2017, doesn't support C++11 and can't compile this code.
// So we write the terrible garbage in the #else for visual studio. When Visual Studio supports C++11 I'll update this #ifdef to use the C++11 code.
#ifndef _MSC_VER
template <size_t max_unpack>
struct call_function_and_expand_args
{
template <typename T>
static auto go(T&& f, const matrix<double,0,1>& a) -> decltype(_cwv(std::forward<T>(f),a,typename make_compile_time_integer_range<max_unpack>::type()))
{
return _cwv(std::forward<T>(f),a,typename make_compile_time_integer_range<max_unpack>::type());
}
template <typename T>
static auto go(T&& f, const matrix<double,0,1>& a) -> decltype(call_function_and_expand_args<max_unpack-1>::template go(std::forward<T>(f),a))
{
return call_function_and_expand_args<max_unpack-1>::go(std::forward<T>(f),a);
}
};
template <>
struct call_function_and_expand_args<0>
{
template <typename T>
static auto go(T&& f, const matrix<double,0,1>& a) -> decltype(f(disable_decay_to_scalar(a)))
{
return f(disable_decay_to_scalar(a));
}
};
#else
template <size_t max_unpack>
struct call_function_and_expand_args
{
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(disable_decay_to_scalar(a))) {return f(disable_decay_to_scalar(a)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0))) { DLIB_CASSERT(a.size() == 1); return f(a(0)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0),a(1))) { DLIB_CASSERT(a.size() == 2); return f(a(0),a(1)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0), a(1), a(2))) { DLIB_CASSERT(a.size() == 3); return f(a(0), a(1),a(2)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0), a(1), a(2), a(3))) { DLIB_CASSERT(a.size() == 4); return f(a(0), a(1), a(2), a(3)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0), a(1), a(2), a(3), a(4))) { DLIB_CASSERT(a.size() == 5); return f(a(0), a(1), a(2), a(3), a(4)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0), a(1), a(2), a(3), a(4), a(5))) { DLIB_CASSERT(a.size() == 6); return f(a(0), a(1), a(2), a(3), a(4), a(5)); }
template <typename T> static auto go(T&& f, const matrix<double, 0, 1>& a) -> decltype(f(a(0), a(1), a(2), a(3), a(4), a(5), a(6))) { DLIB_CASSERT(a.size() == 7); return f(a(0), a(1), a(2), a(3), a(4), a(5), a(6)); }
};
#endif
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
template <typename T>
auto call_function_and_expand_args(
T&& f,
const matrix<double,0,1>& a
) -> decltype(gopt_impl::call_function_and_expand_args<40>::go(f,a))
{
// unpack up to 40 parameters when calling f()
return gopt_impl::call_function_and_expand_args<40>::go(std::forward<T>(f),a);
}
// ----------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------
struct max_function_calls
{
max_function_calls() = default;
explicit max_function_calls(size_t max_calls) : max_calls(max_calls) {}
size_t max_calls = std::numeric_limits<size_t>::max();
};
// ----------------------------------------------------------------------------------------
const auto FOREVER = std::chrono::hours(24*365*290); // 290 years
using stop_condition = std::function<bool(double)>;
const stop_condition never_stop_early = [](double) { return false; };
// ----------------------------------------------------------------------------------------
namespace impl
{
template <
typename funct
>
std::pair<size_t,function_evaluation> find_max_global (
double ymult,
thread_pool& tp,
std::vector<funct>& functions,
std::vector<function_spec> specs,
const max_function_calls num,
const std::chrono::nanoseconds max_runtime = FOREVER,
double solver_epsilon = 0,
std::vector<std::vector<function_evaluation>> initial_function_evals = {},
stop_condition should_stop = never_stop_early
)
{
// Decide which parameters should be searched on a log scale. Basically, it's
// common for machine learning models to have parameters that should be searched on
// a log scale (e.g. SVM C). These parameters are usually identifiable because
// they have bounds like [1e-5 1e10], that is, they span a very large range of
// magnitudes from really small to really big. So there we are going to check for
// that and if we find parameters with that kind of bound constraints we will
// transform them to a log scale automatically.
std::vector<std::vector<bool>> log_scale(specs.size());
for (size_t i = 0; i < specs.size(); ++i)
{
for (long j = 0; j < specs[i].lower.size(); ++j)
{
if (!specs[i].is_integer_variable[j] && specs[i].lower(j) > 0 && specs[i].upper(j)/specs[i].lower(j) >= 1000)
{
log_scale[i].push_back(true);
specs[i].lower(j) = std::log(specs[i].lower(j));
specs[i].upper(j) = std::log(specs[i].upper(j));
}
else
{
log_scale[i].push_back(false);
}
}
}
if (initial_function_evals.empty())
{
initial_function_evals.resize(specs.size());
}
for (auto& evals : initial_function_evals) {
for (auto& eval : evals) {
eval.y *= ymult;
}
}
global_function_search opt(specs, {initial_function_evals});
opt.set_solver_epsilon(solver_epsilon);
running_stats_decayed<double> objective_funct_eval_time(functions.size()*5);
std::mutex eval_time_mutex;
using namespace std::chrono;
const auto time_to_stop = steady_clock::now() + max_runtime;
//atomic<bool> doesn't support .fetch_or, use std::atomic<int> instead
std::atomic<int> this_should_stop{false};
double max_solver_overhead_time = 0;
// Now run the main solver loop.
for (size_t i = 0; i < num.max_calls && steady_clock::now() < time_to_stop && !this_should_stop.load(); ++i)
{
const auto get_next_x_start_time = steady_clock::now();
auto next = std::make_shared<function_evaluation_request>(opt.get_next_x());
const auto get_next_x_runtime = steady_clock::now() - get_next_x_start_time;
auto execute_call = [&functions,&ymult,&log_scale,&eval_time_mutex,&objective_funct_eval_time,next,&should_stop,&this_should_stop]() {
matrix<double,0,1> x = next->x();
// Undo any log-scaling that was applied to the variables before we pass them
// to the functions being optimized.
for (long j = 0; j < x.size(); ++j)
{
if (log_scale[next->function_idx()][j])
x(j) = std::exp(x(j));
}
const auto funct_eval_start = steady_clock::now();
double y = ymult*call_function_and_expand_args(functions[next->function_idx()], x);
const double funct_eval_runtime = duration_cast<nanoseconds>(steady_clock::now() - funct_eval_start).count();
this_should_stop.fetch_or(should_stop(y*ymult));
next->set(y);
std::lock_guard<std::mutex> lock(eval_time_mutex);
objective_funct_eval_time.add(funct_eval_runtime);
};
tp.add_task_by_value(execute_call);
std::lock_guard<std::mutex> lock(eval_time_mutex);
const double obj_funct_time = objective_funct_eval_time.mean()/std::max(1ul,tp.num_threads_in_pool());
const double solver_overhead_time = duration_cast<nanoseconds>(get_next_x_runtime).count();
max_solver_overhead_time = std::max(max_solver_overhead_time, solver_overhead_time);
// Don't start thinking about the logic below until we have at least 5 objective
// function samples for each objective function. This way we have a decent idea how
// fast these things are. The solver overhead is really small initially so none of
// the stuff below really matters in the beginning anyway.
if (objective_funct_eval_time.current_n() > functions.size()*5)
{
// If calling opt.get_next_x() is taking a long time relative to how long it takes
// to evaluate the objective function then we should spend less time grinding on the
// internal details of the optimizer and more time running the actual objective
// function. E.g. if we could just run 2x more objective function calls in the same
// amount of time then we should just do that. The main slowness in the solver is
// from the Monte Carlo sampling, which we can turn down if the objective function
// is really fast to evaluate. This is because the point of the Monte Carlo part is
// to try really hard to avoid calls to really expensive objective functions. But
// if the objective function is not expensive then we should just call it.
if (obj_funct_time < solver_overhead_time)
{
// Reduce the amount of Monte Carlo sampling we do. If it goes low enough
// we will disable it altogether.
const size_t new_val = static_cast<size_t>(std::floor(opt.get_monte_carlo_upper_bound_sample_num()*0.8));
opt.set_monte_carlo_upper_bound_sample_num(std::max<size_t>(1, new_val));
// At this point just disable the upper bounding Monte Carlo search stuff and
// use only pure random search since the objective function is super cheap to
// evaluate, making this more fancy search a waste of time.
if (opt.get_monte_carlo_upper_bound_sample_num() == 1)
{
opt.set_pure_random_search_probability(1);
}
} else if (obj_funct_time > 1.5*max_solver_overhead_time) // Consider reenabling
{
// The Monte Carlo overhead grows over time as the solver accumulates more
// information about the objective function. So we only want to reenable it
// or make it bigger if the objective function really is more expensive. So
// we compare to the max solver runtime we have seen so far. If the
// objective function has suddenly gotten more expensive then we start to
// turn the Monte Carlo modeling back on.
const size_t new_val = static_cast<size_t>(std::ceil(opt.get_monte_carlo_upper_bound_sample_num()*1.28));
opt.set_monte_carlo_upper_bound_sample_num(std::min<size_t>(5000, new_val));
// Set this back to its default value.
opt.set_pure_random_search_probability(0.02);
}
}
}
tp.wait_for_all_tasks();
matrix<double,0,1> x;
double y;
size_t function_idx;
opt.get_best_function_eval(x,y,function_idx);
// Undo any log-scaling that was applied to the variables before we output them.
for (long j = 0; j < x.size(); ++j)
{
if (log_scale[function_idx][j])
x(j) = std::exp(x(j));
}
return std::make_pair(function_idx, function_evaluation(x,y/ymult));
}
// This overload allows the order of max_runtime and num to be reversed.
template <
typename funct,
typename ...Args
>
std::pair<size_t,function_evaluation> find_max_global (
double ymult,
thread_pool& tp,
std::vector<funct>& functions,
std::vector<function_spec> specs,
const std::chrono::nanoseconds max_runtime,
const max_function_calls num,
double solver_epsilon = 0,
Args&& ...args
)
{
return find_max_global(ymult, tp, functions, std::move(specs), num, max_runtime, solver_epsilon, std::forward<Args>(args)...);
}
// This overload allows the num argument to be skipped.
template <
typename funct,
typename ...Args
>
std::pair<size_t,function_evaluation> find_max_global (
double ymult,
thread_pool& tp,
std::vector<funct>& functions,
std::vector<function_spec> specs,
const std::chrono::nanoseconds max_runtime,
double solver_epsilon = 0,
Args&& ...args
)
{
return find_max_global(ymult, tp, functions, std::move(specs), max_function_calls(), max_runtime, solver_epsilon, std::forward<Args>(args)...);
}
// This overload allows the max_runtime argument to be skipped.
template <
typename funct,
typename ...Args
>
std::pair<size_t,function_evaluation> find_max_global (
double ymult,
thread_pool& tp,
std::vector<funct>& functions,
std::vector<function_spec> specs,
const max_function_calls num,
double solver_epsilon,
Args&& ...args
)
{
return find_max_global(ymult, tp, functions, std::move(specs), num, FOREVER, solver_epsilon, std::forward<Args>(args)...);
}
// This overload makes the thread_pool argument optional.
template <
typename funct,
typename ...Args
>
std::pair<size_t,function_evaluation> find_max_global (
double ymult,
std::vector<funct>& functions,
Args&& ...args
)
{
// disabled, don't use any threads
thread_pool tp(0);
return find_max_global(ymult, tp, functions, std::forward<Args>(args)...);
}
// The point of normalize() is to handle some of the overloaded argument types in
// find_max_global() instances below and turn them into the argument types expected by
// find_max_global() above.
template <typename T>
const T& normalize(const T& item)
{
return item;
}
inline std::vector<std::vector<function_evaluation>> normalize(
const std::vector<function_evaluation>& initial_function_evals
)
{
return {initial_function_evals};
}
}
// ----------------------------------------------------------------------------------------
template <
typename funct,
typename ...Args
>
std::pair<size_t,function_evaluation> find_max_global (
std::vector<funct>& functions,
std::vector<function_spec> specs,
Args&& ...args
)
{
return impl::find_max_global(+1, functions, std::move(specs), std::forward<Args>(args)...);
}
template <
typename funct,
typename ...Args
>
std::pair<size_t,function_evaluation> find_min_global (
std::vector<funct>& functions,
std::vector<function_spec> specs,
Args&& ...args
)
{
return impl::find_max_global(-1, functions, std::move(specs), std::forward<Args>(args)...);
}
template <
typename funct,
typename ...Args
>
std::pair<size_t,function_evaluation> find_max_global (
thread_pool& tp,
std::vector<funct>& functions,
std::vector<function_spec> specs,
Args&& ...args
)
{
return impl::find_max_global(+1, tp, functions, std::move(specs), std::forward<Args>(args)...);
}
template <
typename funct,
typename ...Args
>
std::pair<size_t,function_evaluation> find_min_global (
thread_pool& tp,
std::vector<funct>& functions,
std::vector<function_spec> specs,
Args&& ...args
)
{
return impl::find_max_global(-1, tp, functions, std::move(specs), std::forward<Args>(args)...);
}
// ----------------------------------------------------------------------------------------
// Overloads that take function objects and simple matrix bounds instead of function_specs.
template <
typename funct,
typename ...Args
>
function_evaluation find_max_global (
funct f,
const matrix<double,0,1>& bound1,
const matrix<double,0,1>& bound2,
const std::vector<bool>& is_integer_variable,
Args&& ...args
)
{
std::vector<funct> functions(1,std::move(f));
std::vector<function_spec> specs(1, function_spec(bound1, bound2, is_integer_variable));
return find_max_global(functions, std::move(specs), impl::normalize(args)...).second;
}
template <
typename funct,
typename ...Args
>
function_evaluation find_min_global (
funct f,
const matrix<double,0,1>& bound1,
const matrix<double,0,1>& bound2,
const std::vector<bool>& is_integer_variable,
Args&& ...args
)
{
std::vector<funct> functions(1,std::move(f));
std::vector<function_spec> specs(1, function_spec(bound1, bound2, is_integer_variable));
return find_min_global(functions, std::move(specs), impl::normalize(args)...).second;
}
template <
typename funct,
typename ...Args
>
function_evaluation find_max_global (
thread_pool& tp,
funct f,
const matrix<double,0,1>& bound1,
const matrix<double,0,1>& bound2,
const std::vector<bool>& is_integer_variable,
Args&& ...args
)
{
std::vector<funct> functions(1,std::move(f));
std::vector<function_spec> specs(1, function_spec(bound1, bound2, is_integer_variable));
return find_max_global(tp, functions, std::move(specs), impl::normalize(args)...).second;
}
template <
typename funct,
typename ...Args
>
function_evaluation find_min_global (
thread_pool& tp,
funct f,
const matrix<double,0,1>& bound1,
const matrix<double,0,1>& bound2,
const std::vector<bool>& is_integer_variable,
Args&& ...args
)
{
std::vector<funct> functions(1,std::move(f));
std::vector<function_spec> specs(1, function_spec(bound1, bound2, is_integer_variable));
return find_min_global(tp, functions, std::move(specs), impl::normalize(args)...).second;
}
// ----------------------------------------------------------------------------------------
// overloads that are the same as above, but is_integer_variable defaulted to false for all parameters.
template <
typename funct,
typename T,
typename ...Args
>
typename disable_if<std::is_same<T,std::vector<bool>>, function_evaluation>::type
find_max_global (
funct f,
const matrix<double,0,1>& bound1,
const matrix<double,0,1>& bound2,
const T& arg,
Args&& ...args
)
{
const std::vector<bool> is_integer_variable(bound1.size(),false);
return find_max_global(std::move(f), bound1, bound2, is_integer_variable, arg, impl::normalize(args)...);
}
template <
typename funct,
typename T,
typename ...Args
>
typename disable_if<std::is_same<T,std::vector<bool>>, function_evaluation>::type
find_min_global (
funct f,
const matrix<double,0,1>& bound1,
const matrix<double,0,1>& bound2,
const T& arg,
Args&& ...args
)
{
const std::vector<bool> is_integer_variable(bound1.size(),false);
return find_min_global(std::move(f), bound1, bound2, is_integer_variable, arg, impl::normalize(args)...);
}
template <
typename funct,
typename T,
typename ...Args
>
typename disable_if<std::is_same<T,std::vector<bool>>, function_evaluation>::type
find_max_global (
thread_pool& tp,
funct f,
const matrix<double,0,1>& bound1,
const matrix<double,0,1>& bound2,
const T& arg,
Args&& ...args
)
{
const std::vector<bool> is_integer_variable(bound1.size(),false);
return find_max_global(tp, std::move(f), bound1, bound2, is_integer_variable, arg, impl::normalize(args)...);
}
template <
typename funct,
typename T,
typename ...Args
>
typename disable_if<std::is_same<T,std::vector<bool>>, function_evaluation>::type
find_min_global (
thread_pool& tp,
funct f,
const matrix<double,0,1>& bound1,
const matrix<double,0,1>& bound2,
const T& arg,
Args&& ...args
)
{
const std::vector<bool> is_integer_variable(bound1.size(),false);
return find_min_global(tp, std::move(f), bound1, bound2, is_integer_variable, arg, impl::normalize(args)...);
}
// ----------------------------------------------------------------------------------------
// overloads for a function taking a single scalar.
template <
typename funct,
typename T,
typename ...Args
>
function_evaluation find_max_global (
funct f,
const double bound1,
const double bound2,
const T& arg,
Args&& ...args
)
{
return find_max_global(std::move(f), matrix<double,0,1>({bound1}), matrix<double,0,1>({bound2}), arg, impl::normalize(args)...);
}
template <
typename funct,
typename T,
typename ...Args
>
function_evaluation find_min_global (
funct f,
const double bound1,
const double bound2,
const T& arg,
Args&& ...args
)
{
return find_min_global(std::move(f), matrix<double,0,1>({bound1}), matrix<double,0,1>({bound2}), arg, impl::normalize(args)...);
}
template <
typename funct,
typename T,
typename ...Args
>
function_evaluation find_max_global (
thread_pool& tp,
funct f,
const double bound1,
const double bound2,
const T& arg,
Args&& ...args
)
{
return find_max_global(tp, std::move(f), matrix<double,0,1>({bound1}), matrix<double,0,1>({bound2}), arg, impl::normalize(args)...);
}
template <
typename funct,
typename T,
typename ...Args
>
function_evaluation find_min_global (
thread_pool& tp,
funct f,
const double bound1,
const double bound2,
const T& arg,
Args&& ...args
)
{
return find_min_global(tp, std::move(f), matrix<double,0,1>({bound1}), matrix<double,0,1>({bound2}), arg, impl::normalize(args)...);
}
// ----------------------------------------------------------------------------------------
}
#endif // DLIB_FiND_GLOBAL_MAXIMUM_hH_