|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include <dlib/dnn.h> |
|
#include <iostream> |
|
#include <dlib/data_io.h> |
|
#include <dlib/image_transforms.h> |
|
#include <dlib/dir_nav.h> |
|
#include <iterator> |
|
#include <thread> |
|
|
|
using namespace std; |
|
using namespace dlib; |
|
|
|
|
|
|
|
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET> |
|
using residual = add_prev1<block<N,BN,1,tag1<SUBNET>>>; |
|
|
|
template <template <int,template<typename>class,int,typename> class block, int N, template<typename>class BN, typename SUBNET> |
|
using residual_down = add_prev2<avg_pool<2,2,2,2,skip1<tag2<block<N,BN,2,tag1<SUBNET>>>>>>; |
|
|
|
template <int N, template <typename> class BN, int stride, typename SUBNET> |
|
using block = BN<con<N,3,3,1,1,relu<BN<con<N,3,3,stride,stride,SUBNET>>>>>; |
|
|
|
|
|
template <int N, typename SUBNET> using res = relu<residual<block,N,bn_con,SUBNET>>; |
|
template <int N, typename SUBNET> using ares = relu<residual<block,N,affine,SUBNET>>; |
|
template <int N, typename SUBNET> using res_down = relu<residual_down<block,N,bn_con,SUBNET>>; |
|
template <int N, typename SUBNET> using ares_down = relu<residual_down<block,N,affine,SUBNET>>; |
|
|
|
|
|
|
|
|
|
template <typename SUBNET> using level1 = res<512,res<512,res_down<512,SUBNET>>>; |
|
template <typename SUBNET> using level2 = res<256,res<256,res<256,res<256,res<256,res_down<256,SUBNET>>>>>>; |
|
template <typename SUBNET> using level3 = res<128,res<128,res<128,res_down<128,SUBNET>>>>; |
|
template <typename SUBNET> using level4 = res<64,res<64,res<64,SUBNET>>>; |
|
|
|
template <typename SUBNET> using alevel1 = ares<512,ares<512,ares_down<512,SUBNET>>>; |
|
template <typename SUBNET> using alevel2 = ares<256,ares<256,ares<256,ares<256,ares<256,ares_down<256,SUBNET>>>>>>; |
|
template <typename SUBNET> using alevel3 = ares<128,ares<128,ares<128,ares_down<128,SUBNET>>>>; |
|
template <typename SUBNET> using alevel4 = ares<64,ares<64,ares<64,SUBNET>>>; |
|
|
|
|
|
using net_type = loss_multiclass_log<fc<1000,avg_pool_everything< |
|
level1< |
|
level2< |
|
level3< |
|
level4< |
|
max_pool<3,3,2,2,relu<bn_con<con<64,7,7,2,2, |
|
input_rgb_image_sized<227> |
|
>>>>>>>>>>>; |
|
|
|
|
|
using anet_type = loss_multiclass_log<fc<1000,avg_pool_everything< |
|
alevel1< |
|
alevel2< |
|
alevel3< |
|
alevel4< |
|
max_pool<3,3,2,2,relu<affine<con<64,7,7,2,2, |
|
input_rgb_image_sized<227> |
|
>>>>>>>>>>>; |
|
|
|
|
|
|
|
rectangle make_random_cropping_rect_resnet( |
|
const matrix<rgb_pixel>& img, |
|
dlib::rand& rnd |
|
) |
|
{ |
|
|
|
double mins = 0.466666666, maxs = 0.875; |
|
auto scale = mins + rnd.get_random_double()*(maxs-mins); |
|
auto size = scale*std::min(img.nr(), img.nc()); |
|
rectangle rect(size, size); |
|
|
|
point offset(rnd.get_random_32bit_number()%(img.nc()-rect.width()), |
|
rnd.get_random_32bit_number()%(img.nr()-rect.height())); |
|
return move_rect(rect, offset); |
|
} |
|
|
|
|
|
|
|
void randomly_crop_image ( |
|
const matrix<rgb_pixel>& img, |
|
matrix<rgb_pixel>& crop, |
|
dlib::rand& rnd |
|
) |
|
{ |
|
auto rect = make_random_cropping_rect_resnet(img, rnd); |
|
|
|
|
|
extract_image_chip(img, chip_details(rect, chip_dims(227,227)), crop); |
|
|
|
|
|
if (rnd.get_random_double() > 0.5) |
|
crop = fliplr(crop); |
|
|
|
|
|
apply_random_color_offset(crop, rnd); |
|
} |
|
|
|
void randomly_crop_images ( |
|
const matrix<rgb_pixel>& img, |
|
dlib::array<matrix<rgb_pixel>>& crops, |
|
dlib::rand& rnd, |
|
long num_crops |
|
) |
|
{ |
|
std::vector<chip_details> dets; |
|
for (long i = 0; i < num_crops; ++i) |
|
{ |
|
auto rect = make_random_cropping_rect_resnet(img, rnd); |
|
dets.push_back(chip_details(rect, chip_dims(227,227))); |
|
} |
|
|
|
extract_image_chips(img, dets, crops); |
|
|
|
for (auto&& img : crops) |
|
{ |
|
|
|
if (rnd.get_random_double() > 0.5) |
|
img = fliplr(img); |
|
|
|
|
|
apply_random_color_offset(img, rnd); |
|
} |
|
} |
|
|
|
|
|
|
|
struct image_info |
|
{ |
|
string filename; |
|
string label; |
|
long numeric_label; |
|
}; |
|
|
|
std::vector<image_info> get_imagenet_train_listing( |
|
const std::string& images_folder |
|
) |
|
{ |
|
std::vector<image_info> results; |
|
image_info temp; |
|
temp.numeric_label = 0; |
|
|
|
auto subdirs = directory(images_folder).get_dirs(); |
|
|
|
std::sort(subdirs.begin(), subdirs.end()); |
|
for (auto subdir : subdirs) |
|
{ |
|
|
|
temp.label = subdir.name(); |
|
for (auto image_file : subdir.get_files()) |
|
{ |
|
temp.filename = image_file; |
|
results.push_back(temp); |
|
} |
|
++temp.numeric_label; |
|
} |
|
return results; |
|
} |
|
|
|
std::vector<image_info> get_imagenet_val_listing( |
|
const std::string& imagenet_root_dir, |
|
const std::string& validation_images_file |
|
) |
|
{ |
|
ifstream fin(validation_images_file); |
|
string label, filename; |
|
std::vector<image_info> results; |
|
image_info temp; |
|
temp.numeric_label = -1; |
|
while(fin >> label >> filename) |
|
{ |
|
temp.filename = imagenet_root_dir+"/"+filename; |
|
if (!file_exists(temp.filename)) |
|
{ |
|
cerr << "file doesn't exist! " << temp.filename << endl; |
|
exit(1); |
|
} |
|
if (label != temp.label) |
|
++temp.numeric_label; |
|
|
|
temp.label = label; |
|
results.push_back(temp); |
|
} |
|
|
|
return results; |
|
} |
|
|
|
|
|
|
|
int main(int argc, char** argv) try |
|
{ |
|
if (argc != 3) |
|
{ |
|
cout << "To run this program you need a copy of the imagenet ILSVRC2015 dataset and" << endl; |
|
cout << "also the file http://dlib.net/files/imagenet2015_validation_images.txt.bz2" << endl; |
|
cout << endl; |
|
cout << "With those things, you call this program like this: " << endl; |
|
cout << "./dnn_imagenet_train_ex /path/to/ILSVRC2015 imagenet2015_validation_images.txt" << endl; |
|
return 1; |
|
} |
|
|
|
cout << "\nSCANNING IMAGENET DATASET\n" << endl; |
|
|
|
auto listing = get_imagenet_train_listing(string(argv[1])+"/Data/CLS-LOC/train/"); |
|
cout << "images in dataset: " << listing.size() << endl; |
|
const auto number_of_classes = listing.back().numeric_label+1; |
|
if (listing.size() == 0 || number_of_classes != 1000) |
|
{ |
|
cout << "Didn't find the imagenet dataset. " << endl; |
|
return 1; |
|
} |
|
|
|
set_dnn_prefer_smallest_algorithms(); |
|
|
|
|
|
const double initial_learning_rate = 0.1; |
|
const double weight_decay = 0.0001; |
|
const double momentum = 0.9; |
|
|
|
net_type net; |
|
dnn_trainer<net_type> trainer(net,sgd(weight_decay, momentum)); |
|
trainer.be_verbose(); |
|
trainer.set_learning_rate(initial_learning_rate); |
|
trainer.set_synchronization_file("imagenet_trainer_state_file.dat", std::chrono::minutes(10)); |
|
|
|
|
|
trainer.set_iterations_without_progress_threshold(20000); |
|
|
|
|
|
set_all_bn_running_stats_window_sizes(net, 1000); |
|
|
|
std::vector<matrix<rgb_pixel>> samples; |
|
std::vector<unsigned long> labels; |
|
|
|
|
|
|
|
|
|
|
|
dlib::pipe<std::pair<image_info,matrix<rgb_pixel>>> data(200); |
|
auto f = [&data, &listing](time_t seed) |
|
{ |
|
dlib::rand rnd(time(0)+seed); |
|
matrix<rgb_pixel> img; |
|
std::pair<image_info, matrix<rgb_pixel>> temp; |
|
while(data.is_enabled()) |
|
{ |
|
temp.first = listing[rnd.get_random_32bit_number()%listing.size()]; |
|
load_image(img, temp.first.filename); |
|
randomly_crop_image(img, temp.second, rnd); |
|
data.enqueue(temp); |
|
} |
|
}; |
|
std::thread data_loader1([f](){ f(1); }); |
|
std::thread data_loader2([f](){ f(2); }); |
|
std::thread data_loader3([f](){ f(3); }); |
|
std::thread data_loader4([f](){ f(4); }); |
|
|
|
|
|
|
|
while(trainer.get_learning_rate() >= initial_learning_rate*1e-3) |
|
{ |
|
samples.clear(); |
|
labels.clear(); |
|
|
|
|
|
std::pair<image_info, matrix<rgb_pixel>> img; |
|
while(samples.size() < 160) |
|
{ |
|
data.dequeue(img); |
|
|
|
samples.push_back(std::move(img.second)); |
|
labels.push_back(img.first.numeric_label); |
|
} |
|
|
|
trainer.train_one_step(samples, labels); |
|
} |
|
|
|
|
|
|
|
data.disable(); |
|
data_loader1.join(); |
|
data_loader2.join(); |
|
data_loader3.join(); |
|
data_loader4.join(); |
|
|
|
|
|
trainer.get_net(); |
|
|
|
net.clean(); |
|
cout << "saving network" << endl; |
|
serialize("resnet34.dnn") << net; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
softmax<anet_type::subnet_type> snet; snet.subnet() = net.subnet(); |
|
|
|
cout << "Testing network on imagenet validation dataset..." << endl; |
|
int num_right = 0; |
|
int num_wrong = 0; |
|
int num_right_top1 = 0; |
|
int num_wrong_top1 = 0; |
|
dlib::rand rnd(time(0)); |
|
|
|
for (auto l : get_imagenet_val_listing(argv[1], argv[2])) |
|
{ |
|
dlib::array<matrix<rgb_pixel>> images; |
|
matrix<rgb_pixel> img; |
|
load_image(img, l.filename); |
|
|
|
|
|
const int num_crops = 16; |
|
randomly_crop_images(img, images, rnd, num_crops); |
|
|
|
matrix<float,1,1000> p = sum_rows(mat(snet(images.begin(), images.end())))/num_crops; |
|
|
|
|
|
if (index_of_max(p) == l.numeric_label) |
|
++num_right_top1; |
|
else |
|
++num_wrong_top1; |
|
|
|
|
|
bool found_match = false; |
|
for (int k = 0; k < 5; ++k) |
|
{ |
|
long predicted_label = index_of_max(p); |
|
p(predicted_label) = 0; |
|
if (predicted_label == l.numeric_label) |
|
{ |
|
found_match = true; |
|
break; |
|
} |
|
|
|
} |
|
if (found_match) |
|
++num_right; |
|
else |
|
++num_wrong; |
|
} |
|
cout << "val top5 accuracy: " << num_right/(double)(num_right+num_wrong) << endl; |
|
cout << "val top1 accuracy: " << num_right_top1/(double)(num_right_top1+num_wrong_top1) << endl; |
|
} |
|
catch(std::exception& e) |
|
{ |
|
cout << e.what() << endl; |
|
} |
|
|
|
|