|
<html><head><title>dlib C++ Library - modularity_clustering_abstract.h</title></head><body bgcolor='white'><pre> |
|
<font color='#009900'>// Copyright (C) 2012 Davis E. King ([email protected]) |
|
</font><font color='#009900'>// License: Boost Software License See LICENSE.txt for the full license. |
|
</font><font color='#0000FF'>#undef</font> DLIB_MODULARITY_ClUSTERING_ABSTRACT_Hh_ |
|
<font color='#0000FF'>#ifdef</font> DLIB_MODULARITY_ClUSTERING_ABSTRACT_Hh_ |
|
|
|
<font color='#0000FF'>#include</font> <font color='#5555FF'><</font>vector<font color='#5555FF'>></font> |
|
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='../graph_utils/ordered_sample_pair_abstract.h.html'>../graph_utils/ordered_sample_pair_abstract.h</a>" |
|
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='../graph_utils/sample_pair_abstract.h.html'>../graph_utils/sample_pair_abstract.h</a>" |
|
|
|
<font color='#0000FF'>namespace</font> dlib |
|
<b>{</b> |
|
|
|
<font color='#009900'>// ----------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='modularity'></a>modularity</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>sample_pair<font color='#5555FF'>></font><font color='#5555FF'>&</font> edges, |
|
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>></font><font color='#5555FF'>&</font> labels |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- labels.size() == max_index_plus_one(edges) |
|
- for all valid i: |
|
- 0 <= edges[i].distance() < std::numeric_limits<double>::infinity() |
|
ensures |
|
- Interprets edges as an undirected graph. That is, it contains the edges on |
|
the said graph and the sample_pair::distance() values define the edge weights |
|
(larger values indicating a stronger edge connection between the nodes). |
|
- This function returns the modularity value obtained when the given input |
|
graph is broken into subgraphs according to the contents of labels. In |
|
particular, we say that two nodes with indices i and j are in the same |
|
subgraph or community if and only if labels[i] == labels[j]. |
|
- Duplicate edges are interpreted as if there had been just one edge with a |
|
distance value equal to the sum of all the duplicate edge's distance values. |
|
- See the paper Modularity and community structure in networks by M. E. J. Newman |
|
for a detailed definition. |
|
!*/</font> |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'><u>double</u></font> <b><a name='modularity'></a>modularity</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>ordered_sample_pair<font color='#5555FF'>></font><font color='#5555FF'>&</font> edges, |
|
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>></font><font color='#5555FF'>&</font> labels |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- labels.size() == max_index_plus_one(edges) |
|
- for all valid i: |
|
- 0 <= edges[i].distance() < std::numeric_limits<double>::infinity() |
|
ensures |
|
- Interprets edges as a directed graph. That is, it contains the edges on the |
|
said graph and the ordered_sample_pair::distance() values define the edge |
|
weights (larger values indicating a stronger edge connection between the |
|
nodes). Note that, generally, modularity is only really defined for |
|
undirected graphs. Therefore, the "directed graph" given to this function |
|
should have symmetric edges between all nodes. The reason this function is |
|
provided at all is because sometimes a vector of ordered_sample_pair objects |
|
is a useful representation of an undirected graph. |
|
- This function returns the modularity value obtained when the given input |
|
graph is broken into subgraphs according to the contents of labels. In |
|
particular, we say that two nodes with indices i and j are in the same |
|
subgraph or community if and only if labels[i] == labels[j]. |
|
- Duplicate edges are interpreted as if there had been just one edge with a |
|
distance value equal to the sum of all the duplicate edge's distance values. |
|
- See the paper Modularity and community structure in networks by M. E. J. Newman |
|
for a detailed definition. |
|
!*/</font> |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='newman_cluster'></a>newman_cluster</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>ordered_sample_pair<font color='#5555FF'>></font><font color='#5555FF'>&</font> edges, |
|
std::vector<font color='#5555FF'><</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>></font><font color='#5555FF'>&</font> labels, |
|
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> eps <font color='#5555FF'>=</font> <font color='#979000'>1e</font><font color='#5555FF'>-</font><font color='#979000'>4</font>, |
|
<font color='#0000FF'>const</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> max_iterations <font color='#5555FF'>=</font> <font color='#979000'>2000</font> |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- is_ordered_by_index(edges) == true |
|
- for all valid i: |
|
- 0 <= edges[i].distance() < std::numeric_limits<double>::infinity() |
|
ensures |
|
- This function performs the clustering algorithm described in the paper |
|
Modularity and community structure in networks by M. E. J. Newman. |
|
- This function interprets edges as a graph and attempts to find the labeling |
|
that maximizes modularity(edges, #labels). |
|
- returns the number of clusters found. |
|
- #labels.size() == max_index_plus_one(edges) |
|
- for all valid i: |
|
- #labels[i] == the cluster ID of the node with index i in the graph. |
|
- 0 <= #labels[i] < the number of clusters found |
|
(i.e. cluster IDs are assigned contiguously and start at 0) |
|
- The main computation of the algorithm is involved in finding an eigenvector |
|
of a certain matrix. To do this, we use the power iteration. In particular, |
|
each time we try to find an eigenvector we will let the power iteration loop |
|
at most max_iterations times or until it reaches an accuracy of eps. |
|
Whichever comes first. |
|
!*/</font> |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='newman_cluster'></a>newman_cluster</b> <font face='Lucida Console'>(</font> |
|
<font color='#0000FF'>const</font> std::vector<font color='#5555FF'><</font>sample_pair<font color='#5555FF'>></font><font color='#5555FF'>&</font> edges, |
|
std::vector<font color='#5555FF'><</font><font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font><font color='#5555FF'>></font><font color='#5555FF'>&</font> labels, |
|
<font color='#0000FF'>const</font> <font color='#0000FF'><u>double</u></font> eps <font color='#5555FF'>=</font> <font color='#979000'>1e</font><font color='#5555FF'>-</font><font color='#979000'>4</font>, |
|
<font color='#0000FF'>const</font> <font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> max_iterations <font color='#5555FF'>=</font> <font color='#979000'>2000</font> |
|
<font face='Lucida Console'>)</font>; |
|
<font color='#009900'>/*! |
|
requires |
|
- for all valid i: |
|
- 0 <= edges[i].distance() < std::numeric_limits<double>::infinity() |
|
ensures |
|
- This function is identical to the above newman_cluster() routine except that |
|
it operates on a vector of sample_pair objects instead of |
|
ordered_sample_pairs. Therefore, this is simply a convenience routine. In |
|
particular, it is implemented by transforming the given edges into |
|
ordered_sample_pairs and then calling the newman_cluster() routine defined |
|
above. |
|
!*/</font> |
|
|
|
<font color='#009900'>// ---------------------------------------------------------------------------------------- |
|
</font> |
|
<b>}</b> |
|
|
|
<font color='#0000FF'>#endif</font> <font color='#009900'>// DLIB_MODULARITY_ClUSTERING_ABSTRACT_Hh_ |
|
</font> |
|
|
|
</pre></body></html> |