Aging_MouthReplace / dlibs /docs /dlib /cuda /tensor_abstract.h.html
AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
raw
history blame
47.1 kB
<html><!-- Created using the cpp_pretty_printer from the dlib C++ library. See http://dlib.net for updates. --><head><title>dlib C++ Library - tensor_abstract.h</title></head><body bgcolor='white'><pre>
<font color='#009900'>// Copyright (C) 2015 Davis E. King ([email protected])
</font><font color='#009900'>// License: Boost Software License See LICENSE.txt for the full license.
</font><font color='#0000FF'>#undef</font> DLIB_DNn_TENSOR_ABSTRACT_H_
<font color='#0000FF'>#ifdef</font> DLIB_DNn_TENSOR_ABSTRACT_H_
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='../matrix.h.html'>../matrix.h</a>"
<font color='#0000FF'>#include</font> "<a style='text-decoration:none' href='../any/any_abstract.h.html'>../any/any_abstract.h</a>"
<font color='#0000FF'>namespace</font> dlib
<b>{</b>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='tensor'></a>tensor</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object represents a 4D array of float values, all stored contiguously
in memory. Importantly, it keeps two copies of the floats, one on the host
CPU side and another on the GPU device side. It automatically performs the
necessary host/device transfers to keep these two copies of the data in
sync.
All transfers to the device happen asynchronously with respect to the
default CUDA stream so that CUDA kernel computations can overlap with data
transfers. However, any transfers from the device to the host happen
synchronously in the default CUDA stream. Therefore, you should perform
all your CUDA kernel launches on the default stream so that transfers back
to the host do not happen before the relevant computations have completed.
If DLIB_USE_CUDA is not #defined then this object will not use CUDA at all.
Instead, it will simply store one host side memory block of floats.
Finally, the convention in dlib code is to interpret the tensor as a set of
num_samples() 3D arrays, each of dimension k() by nr() by nc(). Also,
while this class does not specify a memory layout, the convention is to
assume that indexing into an element at coordinates (sample,k,r,c) can be
accomplished via:
host()[((sample*t.k() + k)*t.nr() + r)*t.nc() + c]
THREAD SAFETY
Instances of this object are not thread-safe. So don't touch one from
multiple threads at the same time.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#0000FF'>virtual</font> ~<b><a name='tensor'></a>tensor</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='num_samples'></a>num_samples</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the number of 3D arrays of dimension k() by nr() by nc() there
are in this object.
!*/</font>
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='k'></a>k</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the k dimension of this tensor. Generally, we think of a tensor
as containing num_samples() images of nr() by nc() rows and columns, each
with k() channels.
!*/</font>
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='nr'></a>nr</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the number of rows in this tensor.
!*/</font>
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='nc'></a>nc</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the number of columns in this tensor.
!*/</font>
<font color='#0000FF'><u>size_t</u></font> <b><a name='size'></a>size</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns num_samples()*k()*nr()*nc()
(i.e. the total number of floats in this tensor)
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='async_copy_to_device'></a>async_copy_to_device</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- This function does not block.
- if (the host version of the data is newer than the device's copy) then
- Begins asynchronously copying host data to the device.
- A call to device() that happens before the transfer completes will
block until the transfer is complete. That is, it is safe to call
async_copy_to_device() and then immediately call device().
!*/</font>
<font color='#0000FF'>typedef</font> <font color='#0000FF'><u>float</u></font><font color='#5555FF'>*</font> iterator;
<font color='#0000FF'>typedef</font> <font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font><font color='#5555FF'>*</font> const_iterator;
iterator <b><a name='begin'></a>begin</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <b>{</b> <font color='#0000FF'>return</font> <font color='#BB00BB'>host</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <b>}</b>
const_iterator <b><a name='begin'></a>begin</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font> <b>{</b> <font color='#0000FF'>return</font> <font color='#BB00BB'>host</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <b>}</b>
iterator <b><a name='end'></a>end</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <b>{</b> <font color='#0000FF'>return</font> <font color='#BB00BB'>host</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font><font color='#5555FF'>+</font><font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <b>}</b>
const_iterator <b><a name='end'></a>end</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font> <b>{</b> <font color='#0000FF'>return</font> <font color='#BB00BB'>host</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font><font color='#5555FF'>+</font><font color='#BB00BB'>size</font><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>; <b>}</b>
<font color='#009900'>/*!
ensures
- makes a tensor iterable just like the STL containers.
!*/</font>
<font color='#0000FF'>virtual</font> <font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font><font color='#5555FF'>*</font> <b><a name='host'></a>host</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font> <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#009900'>/*!
ensures
- returns a pointer to the host memory block of size() contiguous float
values or nullptr if size()==0.
- if (the host's copy of the data is out of date) then
- copies the data from the device to the host, while this is happening
the call to host() blocks.
!*/</font>
<font color='#0000FF'>virtual</font> <font color='#0000FF'><u>float</u></font><font color='#5555FF'>*</font> <b><a name='host'></a>host</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#009900'>/*!
ensures
- returns a pointer to the host memory block of size() contiguous float
values or nullptr if size()==0.
- if (the host's copy of the data is out of date) then
- copies the data from the device to the host, while this is happening
the call to host() blocks.
- Marks the device side data as out of date so that the next call to
device() will perform a host to device transfer. If you want to begin
the transfer immediately then you can call async_copy_to_device() after
calling host().
!*/</font>
<font color='#0000FF'>virtual</font> <font color='#0000FF'><u>float</u></font><font color='#5555FF'>*</font> <b><a name='host_write_only'></a>host_write_only</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#009900'>/*!
ensures
- This function returns the same pointer as host(), except that it never
performs a device to host memory copy. Instead, it immediately marks the
device side data as out of date, effectively discarding it. Therefore,
the values in the data pointed to by host_write_only() are undefined and
you should only call host_write_only() if you are going to assign to
every memory location in the returned memory block.
!*/</font>
<font color='#0000FF'>virtual</font> <font color='#0000FF'>const</font> <font color='#0000FF'><u>float</u></font><font color='#5555FF'>*</font> <b><a name='device'></a>device</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font> <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#009900'>/*!
requires
- DLIB_USE_CUDA is #defined
ensures
- returns a pointer to the device memory block of size() contiguous float
values or nullptr if size()==0.
- if (the device's copy of the data is out of date) then
- copies the data from the host to the device, while this is happening
the call to device() blocks.
!*/</font>
<font color='#0000FF'>virtual</font> <font color='#0000FF'><u>float</u></font><font color='#5555FF'>*</font> <b><a name='device'></a>device</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#009900'>/*!
requires
- DLIB_USE_CUDA is #defined
ensures
- returns a pointer to the device memory block of size() contiguous float
values or nullptr if size()==0.
- if (the device's copy of the data is out of date) then
- copies the data from the host to the device, while this is happening
the call to device() blocks.
- Marks the host side data as out of date so that the next call to
host() will perform a device to host transfer.
!*/</font>
<font color='#0000FF'>virtual</font> <font color='#0000FF'><u>float</u></font><font color='#5555FF'>*</font> <b><a name='device_write_only'></a>device_write_only</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#009900'>/*!
requires
- DLIB_USE_CUDA is #defined
ensures
- This function returns the same pointer as device(), except that it never
performs a host to device memory copy. Instead, it immediately marks the
host side data as out of date, effectively discarding it. Therefore, the
values in the data pointed to by device_write_only() are undefined and
you should only call device_write_only() if you are going to assign to
every memory location in the returned memory block.
!*/</font>
<font color='#0000FF'>virtual</font> <font color='#0000FF'>const</font> any<font color='#5555FF'>&amp;</font> <b><a name='annotation'></a>annotation</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font> <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#009900'>/*!
ensures
- returns a const reference to the any object in this tensor. The any
object can be used to store any additional annotation you like in a
tensor. However, it should be noted that the annotation() is ignored by
serialize() and therefore not saved when a tensor is serialized.
!*/</font>
<font color='#0000FF'>virtual</font> any<font color='#5555FF'>&amp;</font> <b><a name='annotation'></a>annotation</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#979000'>0</font>;
<font color='#009900'>/*!
ensures
- returns a non-const reference to the any object in this tensor. The any
object can be used to store any additional annotation you like in a
tensor. However, it should be noted that the annotation() is ignored by
serialize() and therefore not saved when a tensor is serialized.
!*/</font>
<font color='#0000FF'><u>int</u></font> <b><a name='device_id'></a>device_id</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the ID of the CUDA device that allocated this memory. I.e. the
number returned by cudaGetDevice() when the memory was allocated.
- If CUDA is not being used then this function always returns 0.
!*/</font>
tensor<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>float</u></font> val
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- sets all elements of this tensor equal to val.
- returns *this
!*/</font>
tensor<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>*</font><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>float</u></font> val
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- pointwise multiplies all elements of *this tensor with val.
- returns *this
!*/</font>
tensor<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>/</font><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>float</u></font> val
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- pointwise divides all elements of *this tensor with val.
- returns *this
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> EXP<font color='#5555FF'>&gt;</font>
tensor<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> matrix_exp<font color='#5555FF'>&lt;</font>EXP<font color='#5555FF'>&gt;</font><font color='#5555FF'>&amp;</font> item
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- num_samples() == item.nr()
- k()*nr()*nc() == item.nc()
- item contains float values
ensures
- Assigns item to *this tensor by performing:
set_ptrm(host(), num_samples(), k()*nr()*nc()) = item;
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> EXP<font color='#5555FF'>&gt;</font>
tensor<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>+</font><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> matrix_exp<font color='#5555FF'>&lt;</font>EXP<font color='#5555FF'>&gt;</font><font color='#5555FF'>&amp;</font> item
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- num_samples() == item.nr()
- k()*nr()*nc() == item.nc()
- item contains float values
ensures
- Adds item to *this tensor by performing:
set_ptrm(host(), num_samples(), k()*nr()*nc()) += item;
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> EXP<font color='#5555FF'>&gt;</font>
tensor<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>-</font><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> matrix_exp<font color='#5555FF'>&lt;</font>EXP<font color='#5555FF'>&gt;</font><font color='#5555FF'>&amp;</font> item
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- num_samples() == item.nr()
- k()*nr()*nc() == item.nc()
- item contains float values
ensures
- Subtracts item from *this tensor by performing:
set_ptrm(host(), num_samples(), k()*nr()*nc()) -= item;
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> EXP<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_sample'></a>set_sample</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> idx,
<font color='#0000FF'>const</font> matrix_exp<font color='#5555FF'>&lt;</font>EXP<font color='#5555FF'>&gt;</font><font color='#5555FF'>&amp;</font> item
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- idx &lt; num_samples()
- k()*nr()*nc() == item.size()
- item contains float values
ensures
- Assigns item to the idx'th sample in *this by performing:
set_ptrm(host()+idx*item.size(), item.nr(), item.nc()) = item;
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> EXP<font color='#5555FF'>&gt;</font>
<font color='#0000FF'><u>void</u></font> <b><a name='add_to_sample'></a>add_to_sample</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>unsigned</u></font> <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> idx,
<font color='#0000FF'>const</font> matrix_exp<font color='#5555FF'>&lt;</font>EXP<font color='#5555FF'>&gt;</font><font color='#5555FF'>&amp;</font> item
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- idx &lt; num_samples()
- k()*nr()*nc() == item.size()
- item contains float values
ensures
- Adds item to the idx'th sample in *this by performing:
set_ptrm(host()+idx*item.size(), item.nr(), item.nc()) += item;
!*/</font>
<font color='#0000FF'>protected</font>:
<font color='#009900'>// You can't move or copy another tensor into *this since that might modify the
</font> <font color='#009900'>// tensor's dimensions. If you want to do that sort of thing then use a
</font> <font color='#009900'>// resizable_tensor.
</font> <b><a name='tensor'></a>tensor</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> item<font face='Lucida Console'>)</font>;
tensor<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font><font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> item<font face='Lucida Console'>)</font>;
<b><a name='tensor'></a>tensor</b><font face='Lucida Console'>(</font>tensor<font color='#5555FF'>&amp;</font><font color='#5555FF'>&amp;</font> item<font face='Lucida Console'>)</font>;
tensor<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font><font face='Lucida Console'>(</font>tensor<font color='#5555FF'>&amp;</font><font color='#5555FF'>&amp;</font> item<font face='Lucida Console'>)</font>;
<b>}</b>;
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>void</u></font> <b><a name='memcpy'></a>memcpy</b> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&amp;</font> dest,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> src
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- dest.size() == src.size()
ensures
- Copies the data in src to dest. If the device data is current on both src
and dest then the copy will happen entirely on the device side.
- It doesn't matter what GPU device is selected by cudaSetDevice(). You can
always copy tensor objects to and from each other regardless.
- This function blocks until the copy has completed.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>bool</u></font> <b><a name='is_vector'></a>is_vector</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> t
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- returns true if and only if one of the following is true:
- t.size() == t.num_samples()
- t.size() == t.k()
- t.size() == t.nr()
- t.size() == t.nc()
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>const</font> matrix_exp <b><a name='mat'></a>mat</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> t,
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> nr,
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> nc
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- nr &gt;= 0
- nc &gt;= 0
- nr*nc == t.size()
ensures
- returns a matrix M such that:
- M.nr() == nr
- m.nc() == nc
- for all valid r and c:
M(r,c) == t.host()[r*nc + c]
(i.e. the tensor is interpreted as a matrix laid out in memory
in row major order)
!*/</font>
<font color='#0000FF'>const</font> matrix_exp <b><a name='mat'></a>mat</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> t
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- if (t.size() != 0) then
- returns mat(t, t.num_samples(), t.size()/t.num_samples())
- else
- returns an empty matrix.
!*/</font>
<font color='#0000FF'>const</font> matrix_exp <b><a name='image_plane'></a>image_plane</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> t,
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> sample <font color='#5555FF'>=</font> <font color='#979000'>0</font>,
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> k <font color='#5555FF'>=</font> <font color='#979000'>0</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- t.size() != 0
- 0 &lt;= sample &lt; t.num_samples()
- 0 &lt;= k &lt; t.k()
ensures
- returns the k-th image plane from the sample-th image in t. That is,
returns a matrix M such that:
- M contains float valued elements.
- M.nr() == t.nr()
- M.nc() == t.nc()
- for all valid r and c:
- M(r,c) == t.host()[((sample*t.k() + k)*t.nr() + r)*t.nc() + c]
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>bool</u></font> <b><a name='have_same_dimensions'></a>have_same_dimensions</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> a,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> b
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- returns true if and only if all of the fallowing are satisfied:
- a.num_samples() == b.num_samples()
- a.k() == b.k()
- a.nr() == b.nr()
- a.nc() == b.nc()
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='resizable_tensor'></a>resizable_tensor</b> : <font color='#0000FF'>public</font> tensor
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object is just a tensor with the additional ability to be resized.
!*/</font>
<font color='#0000FF'>public</font>:
<b><a name='resizable_tensor'></a>resizable_tensor</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #size() == 0
- #num_samples() == 0
- #k() == 0
- #nr() == 0
- #nc() == 0
- #capacity() == 0
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> EXP<font color='#5555FF'>&gt;</font>
<b><a name='resizable_tensor'></a>resizable_tensor</b><font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> matrix_exp<font color='#5555FF'>&lt;</font>EXP<font color='#5555FF'>&gt;</font><font color='#5555FF'>&amp;</font> item
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- item contains float values
ensures
- #num_samples() == item.nr()
- #k() == item.nc()
- #nr() == 1
- #nc() == 1
- Assigns item to *this tensor by performing:
set_ptrm(host(), num_samples(), k()*nr()*nc()) = item;
- #capacity() == size()
!*/</font>
<font color='#0000FF'>explicit</font> <b><a name='resizable_tensor'></a>resizable_tensor</b><font face='Lucida Console'>(</font>
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> n_, <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> k_ <font color='#5555FF'>=</font> <font color='#979000'>1</font>, <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> nr_ <font color='#5555FF'>=</font> <font color='#979000'>1</font>, <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> nc_ <font color='#5555FF'>=</font> <font color='#979000'>1</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- n_ &gt;= 0
- k_ &gt;= 0
- nr_ &gt;= 0
- nc_ &gt;= 0
ensures
- #size() == n_*k_*nr_*nc_
- #num_samples() == n_
- #k() == k_
- #nr() == nr_
- #nc() == nc_
- #capacity() == size()
!*/</font>
<font color='#009900'>// This object is copyable and movable
</font> <b><a name='resizable_tensor'></a>resizable_tensor</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> resizable_tensor<font color='#5555FF'>&amp;</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>;
<b><a name='resizable_tensor'></a>resizable_tensor</b><font face='Lucida Console'>(</font>resizable_tensor<font color='#5555FF'>&amp;</font><font color='#5555FF'>&amp;</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>;
resizable_tensor<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font><font color='#0000FF'>const</font> resizable_tensor<font color='#5555FF'>&amp;</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>;
resizable_tensor<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font>resizable_tensor<font color='#5555FF'>&amp;</font><font color='#5555FF'>&amp;</font><font face='Lucida Console'>)</font> <font color='#5555FF'>=</font> <font color='#0000FF'>default</font>;
<font color='#0000FF'><u>size_t</u></font> <b><a name='capacity'></a>capacity</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
ensures
- returns the total number of floats allocated. This might be different
from the size() since calls to set_size() that make a tensor smaller
don't trigger reallocations. They simply adjust the nominal dimensions
while keeping the same allocated memory block. This makes calls to
set_size() very fast. If you need to deallocate a tensor then use
clear().
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='clear'></a>clear</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #size() == 0
- #num_samples() == 0
- #k() == 0
- #nr() == 0
- #nc() == 0
- #annotation().is_empty() == true
- #capacity() == 0
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='copy_size'></a>copy_size</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> item
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- resizes *this so that: have_same_dimensions(#*this, item)==true
!*/</font>
<font color='#0000FF'><u>void</u></font> <b><a name='set_size'></a>set_size</b><font face='Lucida Console'>(</font>
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> n_, <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> k_ <font color='#5555FF'>=</font> <font color='#979000'>1</font>, <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> nr_ <font color='#5555FF'>=</font> <font color='#979000'>1</font>, <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> nc_ <font color='#5555FF'>=</font> <font color='#979000'>1</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- n_ &gt;= 0
- k_ &gt;= 0
- nr_ &gt;= 0
- nc_ &gt;= 0
ensures
- #size() == n_*k_*nr_*nc_
- #num_samples() == n_
- #k() == k_
- #nr() == nr_
- #nc() == nc_
- #capacity() == max(#size(), capacity())
(i.e. capacity() never goes down when calling set_size().)
!*/</font>
<font color='#0000FF'>template</font> <font color='#5555FF'>&lt;</font><font color='#0000FF'>typename</font> EXP<font color='#5555FF'>&gt;</font>
resizable_tensor<font color='#5555FF'>&amp;</font> <b><a name='operator'></a>operator</b><font color='#5555FF'>=</font> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> matrix_exp<font color='#5555FF'>&lt;</font>EXP<font color='#5555FF'>&gt;</font><font color='#5555FF'>&amp;</font> item
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- item contains float values
ensures
- if (num_samples() == item.nr() &amp;&amp; k()*nr()*nc() == item.nc()) then
- the dimensions of this tensor are not changed
- else
- #num_samples() == item.nr()
- #k() == item.nc()
- #nr() == 1
- #nc() == 1
- Assigns item to *this tensor by performing:
set_ptrm(host(), num_samples(), k()*nr()*nc()) = item;
!*/</font>
<b>}</b>;
<font color='#0000FF'><u>void</u></font> <b><a name='serialize'></a>serialize</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> item, std::ostream<font color='#5555FF'>&amp;</font> out<font face='Lucida Console'>)</font>;
<font color='#0000FF'><u>void</u></font> <b><a name='deserialize'></a>deserialize</b><font face='Lucida Console'>(</font>resizable_tensor<font color='#5555FF'>&amp;</font> item, std::istream<font color='#5555FF'>&amp;</font> in<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
provides serialization support for tensor and resizable_tensor. Note that you can
serialize to/from any combination of tenor and resizable_tensor objects.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'><u>double</u></font> <b><a name='dot'></a>dot</b><font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> a,
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> b
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- a.size() == b.size()
ensures
- returns the dot product between a and b when they are both treated as
a.size() dimensional vectors. That is, this function pointwise multiplies
the vectors together, then sums the result and returns it.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<font color='#0000FF'>class</font> <b><a name='alias_tensor_instance'></a>alias_tensor_instance</b> : <font color='#0000FF'>public</font> tensor
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This object is a tensor that aliases another tensor. That is, it doesn't
have its own block of memory but instead simply holds pointers to the
memory of another tensor object. It therefore allows you to efficiently
break a tensor into pieces and pass those pieces into functions.
An alias_tensor_instance doesn't own the resources it points to in any sense.
So it is important to make sure that the underlying owning tensor doesn't get
destructed before any alias tensors which point to it are destructed.
!*/</font>
<font color='#009900'>// You can't default initialize this object. You can only get instances of it from
</font> <font color='#009900'>// alias_tensor::operator().
</font> <b><a name='alias_tensor_instance'></a>alias_tensor_instance</b><font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<b>}</b>;
<font color='#0000FF'>class</font> <b><a name='alias_tensor_const_instance'></a>alias_tensor_const_instance</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This is essentially a const version of alias_tensor_instance and therefore
represents a tensor. However, due to the mechanics of C++, this object
can't inherit from tensor. So instead it provides a get() and an implicit
conversion to const tensor.
!*/</font>
<font color='#0000FF'>public</font>:
<font color='#009900'>// non-const alias tensors are convertible to const ones.
</font> <b><a name='alias_tensor_const_instance'></a>alias_tensor_const_instance</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> alias_tensor_instance<font color='#5555FF'>&amp;</font> item<font face='Lucida Console'>)</font>;
<font color='#009900'>// Methods that cast the alias to a tensor.
</font> <font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> <b><a name='get'></a>get</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<b><a name='operator'></a>operator</b> <font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> <font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<font color='#0000FF'>private</font>:
<font color='#009900'>// You can't default initialize this object. You can only get instances of it from
</font> <font color='#009900'>// alias_tensor::operator().
</font> <b><a name='alias_tensor_const_instance'></a>alias_tensor_const_instance</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font>;
<b>}</b>;
<font color='#0000FF'>class</font> <b><a name='alias_tensor'></a>alias_tensor</b>
<b>{</b>
<font color='#009900'>/*!
WHAT THIS OBJECT REPRESENTS
This is a tool for creating tensor objects that alias other tensor objects.
That is, it allows you to make a tensor that references the memory space of
another tensor object rather than owning its own memory. This allows you
to do things like interpret a single tensor in different ways or even as a
group of multiple tensors.
!*/</font>
<font color='#0000FF'>public</font>:
<b><a name='alias_tensor'></a>alias_tensor</b> <font face='Lucida Console'>(</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
ensures
- #size() == 0
- #num_samples() == 0
- #k() == 0
- #nr() == 0
- #nc() == 0
!*/</font>
<b><a name='alias_tensor'></a>alias_tensor</b> <font face='Lucida Console'>(</font>
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> n_, <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> k_ <font color='#5555FF'>=</font> <font color='#979000'>1</font>, <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> nr_ <font color='#5555FF'>=</font> <font color='#979000'>1</font>, <font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> nc_ <font color='#5555FF'>=</font> <font color='#979000'>1</font>
<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
requires
- n_ &gt;= 0
- k_ &gt;= 0
- nr_ &gt;= 0
- nc_ &gt;= 0
ensures
- #size() == n_*k_*nr_*nc_
- #num_samples() == n_
- #k() == k_
- #nr() == nr_
- #nc() == nc_
!*/</font>
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='num_samples'></a>num_samples</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='k'></a>k</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='nr'></a>nr</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#0000FF'><u>long</u></font> <font color='#0000FF'><u>long</u></font> <b><a name='nc'></a>nc</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#0000FF'><u>size_t</u></font> <b><a name='size'></a>size</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
alias_tensor_instance <b><a name='operator'></a>operator</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font face='Lucida Console'>(</font>
tensor<font color='#5555FF'>&amp;</font> t,
<font color='#0000FF'><u>size_t</u></font> offset <font color='#5555FF'>=</font> <font color='#979000'>0</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
requires
- offset+size() &lt;= t.size()
ensures
- Returns a tensor that simply aliases the elements of t beginning with t's
offset'th element. Specifically, this function returns an aliasing
tensor T such that:
- T.size() == size()
- T.num_samples() == num_samples()
- T.k() == k()
- T.nr() == nr()
- T.nc() == nc()
- T.host() == t.host()+offset
- T.device() == t.device()+offset
- &amp;T.annotation() == &amp;t.annotation()
!*/</font>
alias_tensor_const_instance <b><a name='operator'></a>operator</b><font face='Lucida Console'>(</font><font face='Lucida Console'>)</font> <font face='Lucida Console'>(</font>
<font color='#0000FF'>const</font> tensor<font color='#5555FF'>&amp;</font> t,
<font color='#0000FF'><u>size_t</u></font> offset <font color='#5555FF'>=</font> <font color='#979000'>0</font>
<font face='Lucida Console'>)</font> <font color='#0000FF'>const</font>;
<font color='#009900'>/*!
requires
- offset+size() &lt;= t.size()
ensures
- This function is identical to the above version of operator() except that
it takes and returns const tensors instead of non-const tensors.
!*/</font>
<b>}</b>;
<font color='#0000FF'><u>void</u></font> <b><a name='serialize'></a>serialize</b><font face='Lucida Console'>(</font><font color='#0000FF'>const</font> alias_tensor<font color='#5555FF'>&amp;</font> item, std::ostream<font color='#5555FF'>&amp;</font> out<font face='Lucida Console'>)</font>;
<font color='#0000FF'><u>void</u></font> <b><a name='deserialize'></a>deserialize</b><font face='Lucida Console'>(</font>alias_tensor<font color='#5555FF'>&amp;</font> item, std::istream<font color='#5555FF'>&amp;</font> in<font face='Lucida Console'>)</font>;
<font color='#009900'>/*!
provides serialization support for alias_tensor.
!*/</font>
<font color='#009900'>// ----------------------------------------------------------------------------------------
</font>
<b>}</b>
<font color='#0000FF'>#endif</font> <font color='#009900'>// DLIB_DNn_TENSOR_ABSTRACT_H_
</font>
</pre></body></html>