Aging_MouthReplace / dlibs /dlib /cuda /cudnn_dlibapi.cpp
AshanGimhana's picture
Upload folder using huggingface_hub
9375c9a verified
raw
history blame
68.7 kB
// Copyright (C) 2015 Davis E. King ([email protected])
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_DNN_CuDNN_CPP_
#define DLIB_DNN_CuDNN_CPP_
#ifdef DLIB_USE_CUDA
#include "cudnn_dlibapi.h"
#include "tensor.h"
#include <cudnn.h>
#include <tuple>
#include <map>
#include <iostream>
#include <string>
#include <vector>
#include "cuda_utils.h"
#include "cpu_dlib.h"
#include "cuda_dlib.h"
#include "tensor_tools.h"
static const char* cudnn_get_error_string(cudnnStatus_t s)
{
switch(s)
{
case CUDNN_STATUS_NOT_INITIALIZED:
return "CUDA Runtime API initialization failed.";
case CUDNN_STATUS_ALLOC_FAILED:
return "CUDA Resources could not be allocated.";
case CUDNN_STATUS_BAD_PARAM:
return "CUDNN_STATUS_BAD_PARAM";
case CUDNN_STATUS_EXECUTION_FAILED:
return "CUDNN_STATUS_EXECUTION_FAILED";
case CUDNN_STATUS_NOT_SUPPORTED:
return "CUDNN_STATUS_NOT_SUPPORTED";
case CUDNN_STATUS_ARCH_MISMATCH:
return "CUDNN_STATUS_ARCH_MISMATCH: Your GPU is too old and not supported by cuDNN";
default:
return "A call to cuDNN failed";
}
}
// Check the return value of a call to the cuDNN runtime for an error condition.
#define CHECK_CUDNN(call) \
do{ \
const cudnnStatus_t error = call; \
if (error != CUDNN_STATUS_SUCCESS) \
{ \
std::ostringstream sout; \
sout << "Error while calling " << #call << " in file " << __FILE__ << ":" << __LINE__ << ". ";\
sout << "code: " << error << ", reason: " << cudnn_get_error_string(error);\
throw dlib::cudnn_error(sout.str()); \
} \
}while(false)
namespace dlib
{
namespace cuda
{
// ------------------------------------------------------------------------------------
static cudnnTensorDescriptor_t descriptor(const tensor& t)
{
return (const cudnnTensorDescriptor_t)t.get_cudnn_tensor_descriptor().get_handle();
}
static cudnnTensorDescriptor_t descriptor(const tensor_descriptor& t)
{
return (const cudnnTensorDescriptor_t)t.get_handle();
}
// ------------------------------------------------------------------------------------
class cudnn_context
{
public:
// not copyable
cudnn_context(const cudnn_context&) = delete;
cudnn_context& operator=(const cudnn_context&) = delete;
cudnn_context()
{
handles.resize(16);
}
~cudnn_context()
{
for (auto h : handles)
{
if (h)
cudnnDestroy(h);
}
}
cudnnHandle_t get_handle (
)
{
int new_device_id;
CHECK_CUDA(cudaGetDevice(&new_device_id));
// make room for more devices if needed
if (new_device_id >= (long)handles.size())
handles.resize(new_device_id+16);
// If we don't have a handle already for this device then make one
if (!handles[new_device_id])
CHECK_CUDNN(cudnnCreate(&handles[new_device_id]));
// Finally, return the handle for the current device
return handles[new_device_id];
}
private:
std::vector<cudnnHandle_t> handles;
};
static cudnnHandle_t context()
{
thread_local cudnn_context c;
return c.get_handle();
}
// ------------------------------------------------------------------------------------
class cudnn_activation_descriptor
{
public:
// not copyable
cudnn_activation_descriptor(const cudnn_activation_descriptor&) = delete;
cudnn_activation_descriptor& operator=(const cudnn_activation_descriptor&) = delete;
cudnn_activation_descriptor(
cudnnActivationMode_t mode,
cudnnNanPropagation_t reluNanOpt,
double reluCeiling
)
{
CHECK_CUDNN(cudnnCreateActivationDescriptor(&handle));
CHECK_CUDNN(cudnnSetActivationDescriptor(handle, mode, reluNanOpt, reluCeiling));
}
~cudnn_activation_descriptor()
{
cudnnDestroyActivationDescriptor(handle);
}
cudnnActivationDescriptor_t get_handle (
)
{
return handle;
}
private:
cudnnActivationDescriptor_t handle;
};
static cudnnActivationDescriptor_t relu_activation_descriptor()
{
thread_local cudnn_activation_descriptor des(CUDNN_ACTIVATION_RELU, CUDNN_PROPAGATE_NAN,0);
return des.get_handle();
}
static cudnnActivationDescriptor_t sigmoid_activation_descriptor()
{
thread_local cudnn_activation_descriptor des(CUDNN_ACTIVATION_SIGMOID, CUDNN_PROPAGATE_NAN,0);
return des.get_handle();
}
static cudnnActivationDescriptor_t tanh_activation_descriptor()
{
thread_local cudnn_activation_descriptor des(CUDNN_ACTIVATION_TANH, CUDNN_PROPAGATE_NAN,0);
return des.get_handle();
}
// ------------------------------------------------------------------------------------
tensor_descriptor::
tensor_descriptor(
) : handle(nullptr)
{
}
tensor_descriptor::
~tensor_descriptor()
{
set_size(0,0,0,0);
}
void tensor_descriptor::
set_size(
int n,
int k,
int nr,
int nc
)
{
if (handle)
{
cudnnDestroyTensorDescriptor((cudnnTensorDescriptor_t)handle);
handle = nullptr;
}
if (n != 0 && nr != 0 && nc != 0 && k != 0)
{
cudnnTensorDescriptor_t h;
CHECK_CUDNN(cudnnCreateTensorDescriptor(&h));
handle = h;
CHECK_CUDNN(cudnnSetTensor4dDescriptor((cudnnTensorDescriptor_t)handle,
CUDNN_TENSOR_NCHW,
CUDNN_DATA_FLOAT,
n,
k,
nr,
nc));
}
}
void tensor_descriptor::
get_size (
int& n,
int& k,
int& nr,
int& nc
) const
{
if (handle)
{
int nStride, cStride, hStride, wStride;
cudnnDataType_t datatype;
CHECK_CUDNN(cudnnGetTensor4dDescriptor((cudnnTensorDescriptor_t)handle,
&datatype,
&n,
&k,
&nr,
&nc,
&nStride,
&cStride,
&hStride,
&wStride));
}
else
{
n = 0;
k = 0;
nr = 0;
nc = 0;
}
}
// ------------------------------------------------------------------------------------
void add(
float beta,
tensor& dest,
float alpha,
const tensor& src
)
{
DLIB_CASSERT(
(have_same_dimensions(src, dest) ||
(src.num_samples()==1 && src.k()==dest.k() && src.nr()==1 && src.nc()==1) ||
(src.num_samples()==1 && src.k()==dest.k() && src.nr()==dest.nr() && src.nc()==dest.nc()) ||
(src.num_samples()==1 && src.k()==1 && src.nr()==dest.nr() && src.nc()==dest.nc()) ||
(src.num_samples()==dest.num_samples() && src.k()==1 && src.nr()==1 && src.nc()==1)) &&
is_same_object(src,dest) == false ,
"\n\t dest.num_samples(): " << dest.num_samples()
<<"\n\t dest.k(): " << dest.k()
<<"\n\t dest.nr(): " << dest.nr()
<<"\n\t dest.nc(): " << dest.nc()
<<"\n\t src.num_samples(): " << src.num_samples()
<<"\n\t src.k(): " << src.k()
<<"\n\t src.nr(): " << src.nr()
<<"\n\t src.nc(): " << src.nc()
);
if (dest.size() == src.size() && beta == 1)
{
// Call the dlib function in this case since it's faster than the one that
// comes with cuDNN (at least as of cuDNN v4).
add_scaled(dest, alpha, src);
return;
}
else if (src.num_samples()==dest.num_samples() && src.k()==1 && src.nr()==1 && src.nc()==1)
{
add_cv_to_all_columns(beta, dest, alpha, src);
return;
}
CHECK_CUDNN(cudnnAddTensor(context(),
&alpha,
descriptor(src),
src.device(),
&beta,
descriptor(dest),
dest.device()));
}
void assign_conv_bias_gradient (
tensor& grad,
const tensor& gradient_input
)
{
DLIB_CASSERT(
grad.num_samples() == 1 &&
grad.k() >= 1 &&
grad.nr() == 1 &&
grad.nc() == 1 &&
gradient_input.k() == grad.k() &&
gradient_input.size() > 0 &&
is_same_object(grad,gradient_input) == false
);
const float alpha = 1;
const float beta = 0;
CHECK_CUDNN(cudnnConvolutionBackwardBias(context(),
&alpha,
descriptor(gradient_input),
gradient_input.device(),
&beta,
descriptor(grad),
grad.device()));
}
// ------------------------------------------------------------------------------------
void batch_normalize_inference (
const double eps,
resizable_tensor& dest,
const tensor& src,
const tensor& gamma,
const tensor& beta,
const tensor& running_means,
const tensor& running_variances
)
{
DLIB_CASSERT(
gamma.num_samples() == 1 &&
gamma.nr() == src.nr() &&
gamma.nc() == src.nc() &&
gamma.k() == src.k() &&
have_same_dimensions(gamma, beta) &&
have_same_dimensions(gamma, running_means) &&
have_same_dimensions(gamma, running_variances) &&
eps > 0,
"\ngamma.num_samples(): " << gamma.num_samples() <<
"\ngamma.k(): " << gamma.k() <<
"\ngamma.nr(): " << gamma.nr() <<
"\ngamma.nc(): " << gamma.nc() <<
"\nbeta.num_samples(): " << beta.num_samples() <<
"\nbeta.k(): " << beta.k() <<
"\nbeta.nr(): " << beta.nr() <<
"\nbeta.nc(): " << beta.nc() <<
"\nrunning_means.num_samples(): " << running_means.num_samples() <<
"\nrunning_means.k(): " << running_means.k() <<
"\nrunning_means.nr(): " << running_means.nr() <<
"\nrunning_means.nc(): " << running_means.nc() <<
"\nrunning_variances.num_samples(): " << running_variances.num_samples() <<
"\nrunning_variances.k(): " << running_variances.k() <<
"\nrunning_variances.nr(): " << running_variances.nr() <<
"\nrunning_variances.nc(): " << running_variances.nc() <<
"\nsrc.k(): " << src.k() <<
"\nsrc.nr(): " << src.nr() <<
"\nsrc.nc(): " << src.nc() <<
"\neps: " << eps
);
const float in_scale = 1;
const float out_scale = 0;
dest.copy_size(src);
CHECK_CUDNN(cudnnBatchNormalizationForwardInference(
context(),
CUDNN_BATCHNORM_PER_ACTIVATION,
&in_scale,
&out_scale,
descriptor(src),
src.device(),
descriptor(dest),
dest.device(),
descriptor(gamma),
gamma.device(),
beta.device(),
running_means.device(),
running_variances.device(),
eps));
}
void batch_normalize (
const double eps,
resizable_tensor& dest,
resizable_tensor& means,
resizable_tensor& invstds,
const double averaging_factor,
resizable_tensor& running_means,
resizable_tensor& running_variances,
const tensor& src,
const tensor& gamma,
const tensor& beta
)
{
DLIB_CASSERT(0 <= averaging_factor && averaging_factor <= 1, "averaging_factor: " << averaging_factor);
DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_means,means));
DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_variances,invstds));
DLIB_CASSERT(
src.num_samples() > 1 &&
gamma.num_samples() == 1 &&
beta.num_samples() == 1 &&
gamma.nr() == beta.nr() && beta.nr() == src.nr() &&
gamma.nc() == beta.nc() && beta.nc() == src.nc() &&
gamma.k() == beta.k() && beta.k() == src.k() &&
eps > 0,
"\ngamma.num_samples(): " << gamma.num_samples() <<
"\ngamma.k(): " << gamma.k() <<
"\ngamma.nr(): " << gamma.nr() <<
"\ngamma.nc(): " << gamma.nc() <<
"\nbeta.num_samples(): " << beta.num_samples() <<
"\nbeta.k(): " << beta.k() <<
"\nbeta.nr(): " << beta.nr() <<
"\nbeta.nc(): " << beta.nc() <<
"\nsrc.k(): " << src.k() <<
"\nsrc.nr(): " << src.nr() <<
"\nsrc.nc(): " << src.nc() <<
"\neps: " << eps
);
const float in_scale = 1;
const float out_scale = 0;
dest.copy_size(src);
means.set_size(1, src.k(), src.nr(), src.nc());
invstds.copy_size(means);
running_means.copy_size(means);
running_variances.copy_size(means);
// cuDNN requires that running_means and running_variances be initialized to
// some valid float values even if the averaging factor would have ignored
// them.
if (averaging_factor == 1)
{
running_means = 0;
running_variances = 1;
}
CHECK_CUDNN(cudnnBatchNormalizationForwardTraining(
context(),
CUDNN_BATCHNORM_PER_ACTIVATION,
&in_scale,
&out_scale,
descriptor(src),
src.device(),
descriptor(dest),
dest.device(),
descriptor(gamma),
gamma.device(),
beta.device(),
averaging_factor,
running_means.device(),
running_variances.device(),
eps,
means.device(),
invstds.device()));
}
void batch_normalize_gradient(
const double eps,
const tensor& gradient_input,
const tensor& means,
const tensor& invstds,
const tensor& src,
const tensor& gamma,
tensor& src_grad,
tensor& gamma_grad,
tensor& beta_grad
)
{
const long num = src.k()*src.nr()*src.nc();
DLIB_CASSERT(src.num_samples() > 1);
DLIB_CASSERT(num == (long)means.size());
DLIB_CASSERT(num == (long)invstds.size());
DLIB_CASSERT(num == (long)gamma.size());
DLIB_CASSERT(num == (long)gamma_grad.size());
DLIB_CASSERT(num == (long)beta_grad.size());
DLIB_CASSERT(have_same_dimensions(gradient_input, src));
DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad));
DLIB_CASSERT(eps > 0);
const float in_scale = 1;
const float out_scale = 1;
const float in_scale_params = 1;
const float out_scale_params = 0;
CHECK_CUDNN(cudnnBatchNormalizationBackward(
context(),
CUDNN_BATCHNORM_PER_ACTIVATION,
&in_scale,
&out_scale,
&in_scale_params,
&out_scale_params,
descriptor(src),
src.device(),
descriptor(gradient_input),
gradient_input.device(),
descriptor(src_grad),
src_grad.device(),
descriptor(gamma),
gamma.device(),
gamma_grad.device(),
beta_grad.device(),
eps,
means.device(),
invstds.device()));
}
// ------------------------------------------------------------------------------------
void batch_normalize_conv_inference (
const double eps,
resizable_tensor& dest,
const tensor& src,
const tensor& gamma,
const tensor& beta,
const tensor& running_means,
const tensor& running_variances
)
{
DLIB_CASSERT(
gamma.num_samples() == 1 &&
gamma.nr() == 1 &&
gamma.nc() == 1 &&
gamma.k() == src.k() &&
have_same_dimensions(gamma, beta) &&
have_same_dimensions(gamma, running_means) &&
have_same_dimensions(gamma, running_variances) &&
eps > 0,
"\ngamma.num_samples(): " << gamma.num_samples() <<
"\ngamma.k(): " << gamma.k() <<
"\ngamma.nr(): " << gamma.nr() <<
"\ngamma.nc(): " << gamma.nc() <<
"\nbeta.num_samples(): " << beta.num_samples() <<
"\nbeta.k(): " << beta.k() <<
"\nbeta.nr(): " << beta.nr() <<
"\nbeta.nc(): " << beta.nc() <<
"\nrunning_means.num_samples(): " << running_means.num_samples() <<
"\nrunning_means.k(): " << running_means.k() <<
"\nrunning_means.nr(): " << running_means.nr() <<
"\nrunning_means.nc(): " << running_means.nc() <<
"\nrunning_variances.num_samples(): " << running_variances.num_samples() <<
"\nrunning_variances.k(): " << running_variances.k() <<
"\nrunning_variances.nr(): " << running_variances.nr() <<
"\nrunning_variances.nc(): " << running_variances.nc() <<
"\nsrc.k(): " << src.k() <<
"\nsrc.nr(): " << src.nr() <<
"\nsrc.nc(): " << src.nc() <<
"\neps: " << eps
);
const float in_scale = 1;
const float out_scale = 0;
dest.copy_size(src);
CHECK_CUDNN(cudnnBatchNormalizationForwardInference(
context(),
CUDNN_BATCHNORM_SPATIAL,
&in_scale,
&out_scale,
descriptor(src),
src.device(),
descriptor(dest),
dest.device(),
descriptor(gamma),
gamma.device(),
beta.device(),
running_means.device(),
running_variances.device(),
eps));
}
void batch_normalize_conv (
const double eps,
resizable_tensor& dest,
resizable_tensor& means,
resizable_tensor& invstds,
const double averaging_factor,
resizable_tensor& running_means,
resizable_tensor& running_variances,
const tensor& src,
const tensor& gamma,
const tensor& beta
)
{
DLIB_CASSERT(0 <= averaging_factor && averaging_factor <= 1, "averaging_factor: " << averaging_factor);
DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_means,means));
DLIB_CASSERT(averaging_factor==1 || have_same_dimensions(running_variances,invstds));
DLIB_CASSERT(
src.num_samples() > 1 &&
gamma.num_samples() == 1 &&
beta.num_samples() == 1 &&
gamma.nr() == 1 &&
beta.nr() == 1 &&
gamma.nc() == 1 &&
beta.nc() == 1 &&
gamma.k() == beta.k() && beta.k() == src.k() &&
eps > 0,
"\ngamma.num_samples(): " << gamma.num_samples() <<
"\ngamma.k(): " << gamma.k() <<
"\ngamma.nr(): " << gamma.nr() <<
"\ngamma.nc(): " << gamma.nc() <<
"\nbeta.num_samples(): " << beta.num_samples() <<
"\nbeta.k(): " << beta.k() <<
"\nbeta.nr(): " << beta.nr() <<
"\nbeta.nc(): " << beta.nc() <<
"\nsrc.k(): " << src.k() <<
"\nsrc.nr(): " << src.nr() <<
"\nsrc.nc(): " << src.nc() <<
"\neps: " << eps
);
const float in_scale = 1;
const float out_scale = 0;
dest.copy_size(src);
means.set_size(1, src.k());
invstds.copy_size(means);
running_means.copy_size(means);
running_variances.copy_size(means);
// cuDNN requires that running_means and running_variances be initialized to
// some valid float values even if the averaging factor would have ignored
// them.
if (averaging_factor == 1)
{
running_means = 0;
running_variances = 1;
}
CHECK_CUDNN(cudnnBatchNormalizationForwardTraining(
context(),
CUDNN_BATCHNORM_SPATIAL,
&in_scale,
&out_scale,
descriptor(src),
src.device(),
descriptor(dest),
dest.device(),
descriptor(gamma),
gamma.device(),
beta.device(),
averaging_factor,
running_means.device(),
running_variances.device(),
eps,
means.device(),
invstds.device()));
}
void batch_normalize_conv_gradient(
const double eps,
const tensor& gradient_input,
const tensor& means,
const tensor& invstds,
const tensor& src,
const tensor& gamma,
tensor& src_grad,
tensor& gamma_grad,
tensor& beta_grad
)
{
DLIB_CASSERT(src.k() == (long)means.size());
DLIB_CASSERT(src.k() == (long)invstds.size());
DLIB_CASSERT(src.k() == (long)gamma.size());
DLIB_CASSERT(src.k() == (long)gamma_grad.size());
DLIB_CASSERT(src.k() == (long)beta_grad.size());
DLIB_CASSERT(have_same_dimensions(gradient_input, src));
DLIB_CASSERT(have_same_dimensions(gradient_input, src_grad));
DLIB_CASSERT(eps > 0);
const float in_scale = 1;
const float out_scale = 1;
const float in_scale_params = 1;
const float out_scale_params = 0;
CHECK_CUDNN(cudnnBatchNormalizationBackward(
context(),
CUDNN_BATCHNORM_SPATIAL,
&in_scale,
&out_scale,
&in_scale_params,
&out_scale_params,
descriptor(src),
src.device(),
descriptor(gradient_input),
gradient_input.device(),
descriptor(src_grad),
src_grad.device(),
descriptor(gamma),
gamma.device(),
gamma_grad.device(),
beta_grad.device(),
eps,
means.device(),
invstds.device()));
}
// ------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------
tensor_conv::
tensor_conv(
) :
filter_handle(nullptr),
conv_handle(nullptr),
forward_algo(0),
backward_data_algo(0),
backward_filters_algo(0)
{
clear();
}
void tensor_conv::
clear (
)
{
if (filter_handle)
cudnnDestroyFilterDescriptor((cudnnFilterDescriptor_t)filter_handle);
if (conv_handle)
cudnnDestroyConvolutionDescriptor((cudnnConvolutionDescriptor_t)conv_handle);
filter_handle = nullptr;
conv_handle = nullptr;
out_num_samples = 0;
out_k = 0;
out_nr = 0;
out_nc = 0;
stride_y = 0;
stride_x = 0;
padding_y = 0;
padding_x = 0;
data_num_samples = 0;
data_k = 0;
data_nr = 0;
data_nc = 0;
filters_num_samples = 0;
filters_k = 0;
filters_nr = 0;
filters_nc = 0;
forward_algo = 0;
backward_data_algo = 0;
backward_filters_algo = 0;
forward_workspace_size_in_bytes = 0;
backward_data_workspace_size_in_bytes = 0;
backward_filters_workspace_size_in_bytes = 0;
forward_workspace.reset();
backward_data_workspace.reset();
backward_filters_workspace.reset();
}
// Given an array of cudnn algorithm performance results, like
// cudnnConvolutionFwdAlgoPerf_t, pick the best one to use.
template <typename T>
decltype(std::declval<T>().algo) pick_best_algorithm(const std::vector<T> &perf_results)
{
DLIB_CASSERT(!perf_results.empty());
CHECK_CUDNN(perf_results[0].status);
if (dnn_prefer_fastest_algorithms())
return perf_results[0].algo;
// Otherwise we find the algorithm that has a good status and uses the least amount
// of memory.
size_t best_memory = std::numeric_limits<size_t>::max();
decltype(std::declval<T>().algo) best_alg;
for (auto&& perf : perf_results)
{
if (perf.status == CUDNN_STATUS_SUCCESS && perf.memory < best_memory)
{
best_memory = perf.memory;
best_alg = perf.algo;
}
}
return best_alg;
}
void tensor_conv::
select_best_algorithms (
const tensor& data,
const tensor_descriptor& dest_desc
)
{
// Calling the cuDNN "find the best algorithm" functions are really slow. So we keep a
// cache that tells us what method was best for a particular configuration.
thread_local std::map<std::tuple<int,int,int,int,long,long>,
std::tuple<int,int,int>> config_to_algo_cache;
// If we have already found good algorithms for this setting then just pull them from
// the cache.
const auto cache_key = std::make_tuple(stride_y, stride_x, padding_y, padding_x, filters_nr, filters_nc);
const auto iter = config_to_algo_cache.find(cache_key);
if (iter != config_to_algo_cache.end())
{
std::tie(forward_algo, backward_data_algo, backward_filters_algo) = iter->second;
return;
}
// Pick which forward algorithm we will use and allocate the necessary
// workspace buffer.
cudnnConvolutionFwdAlgo_t forward_best_algo;
#if CUDNN_MAJOR >= 8
{
int num_possible_algorithms = 0;
CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithmMaxCount(context(), &num_possible_algorithms));
std::vector<cudnnConvolutionFwdAlgoPerf_t> perf_results(num_possible_algorithms);
int num_algorithms = 0;
CHECK_CUDNN(cudnnFindConvolutionForwardAlgorithm(
context(),
descriptor(data),
(const cudnnFilterDescriptor_t)filter_handle,
(const cudnnConvolutionDescriptor_t)conv_handle,
descriptor(dest_desc),
num_possible_algorithms,
&num_algorithms,
perf_results.data()));
perf_results.resize(num_algorithms);
forward_best_algo = pick_best_algorithm(perf_results);
}
#else
CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithm(
context(),
descriptor(data),
(const cudnnFilterDescriptor_t)filter_handle,
(const cudnnConvolutionDescriptor_t)conv_handle,
descriptor(dest_desc),
dnn_prefer_fastest_algorithms()?CUDNN_CONVOLUTION_FWD_PREFER_FASTEST:CUDNN_CONVOLUTION_FWD_NO_WORKSPACE,
std::numeric_limits<size_t>::max(),
&forward_best_algo));
#endif
forward_algo = forward_best_algo;
// Pick which backward data algorithm we will use and allocate the
// necessary workspace buffer.
cudnnConvolutionBwdDataAlgo_t backward_data_best_algo;
#if CUDNN_MAJOR >= 8
{
int num_possible_algorithms = 0;
CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(context(), &num_possible_algorithms));
std::vector<cudnnConvolutionBwdDataAlgoPerf_t> perf_results(num_possible_algorithms);
int num_algorithms = 0;
CHECK_CUDNN(cudnnFindConvolutionBackwardDataAlgorithm(
context(),
(const cudnnFilterDescriptor_t)filter_handle,
descriptor(dest_desc),
(const cudnnConvolutionDescriptor_t)conv_handle,
descriptor(data),
num_possible_algorithms,
&num_algorithms,
perf_results.data()));
perf_results.resize(num_algorithms);
backward_data_best_algo = pick_best_algorithm(perf_results);
}
#else
CHECK_CUDNN(cudnnGetConvolutionBackwardDataAlgorithm(
context(),
(const cudnnFilterDescriptor_t)filter_handle,
descriptor(dest_desc),
(const cudnnConvolutionDescriptor_t)conv_handle,
descriptor(data),
dnn_prefer_fastest_algorithms()?CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST:CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE,
std::numeric_limits<size_t>::max(),
&backward_data_best_algo));
#endif
backward_data_algo = backward_data_best_algo;
// Pick which backward filters algorithm we will use and allocate the
// necessary workspace buffer.
cudnnConvolutionBwdFilterAlgo_t backward_filters_best_algo;
#if CUDNN_MAJOR >= 8
{
int num_possible_algorithms = 0;
CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(context(), &num_possible_algorithms));
std::vector<cudnnConvolutionBwdFilterAlgoPerf_t> perf_results(num_possible_algorithms);
int num_algorithms = 0;
CHECK_CUDNN(cudnnFindConvolutionBackwardFilterAlgorithm(
context(),
descriptor(data),
descriptor(dest_desc),
(const cudnnConvolutionDescriptor_t)conv_handle,
(const cudnnFilterDescriptor_t)filter_handle,
num_possible_algorithms,
&num_algorithms,
perf_results.data()));
perf_results.resize(num_algorithms);
backward_filters_best_algo = pick_best_algorithm(perf_results);
}
#else
CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithm(
context(),
descriptor(data),
descriptor(dest_desc),
(const cudnnConvolutionDescriptor_t)conv_handle,
(const cudnnFilterDescriptor_t)filter_handle,
dnn_prefer_fastest_algorithms()?CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST:CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE,
std::numeric_limits<size_t>::max(),
&backward_filters_best_algo));
#endif
// cuDNN 5.1 has a bug that causes
// cudnnGetConvolutionBackwardFilterAlgorithm() to pick the winograd
// algorithm even for cases where cuDNN doesn't support it, leading to
// incorrect outputs. So here we check if we are in a case where winograd
// isn't supported and manually overrule
// cudnnGetConvolutionBackwardFilterAlgorithm() by picking a safe
// algorithm.
if (dnn_prefer_fastest_algorithms() &&
!(stride_x == 1 && stride_y == 1 && ((filters_nr==3&&filters_nc==3) || (filters_nr==5&&filters_nc==5)))
)
{
backward_filters_best_algo = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_0;
}
backward_filters_algo = backward_filters_best_algo;
// Save this algorithm selection in the cache
config_to_algo_cache[cache_key] = std::make_tuple(forward_algo, backward_data_algo, backward_filters_algo);
}
void tensor_conv::
setup(
const tensor& data,
const tensor& filters,
int stride_y_,
int stride_x_,
int padding_y_,
int padding_x_
)
{
DLIB_CASSERT(data.k() == filters.k());
// if the last call to setup gave the same exact settings then don't do
// anything.
if (data_num_samples == data.num_samples() &&
data_k == data.k() &&
data_nr == data.nr() &&
data_nc == data.nc() &&
stride_y_ == stride_y &&
stride_x_ == stride_x &&
padding_y_ == padding_y &&
padding_x_ == padding_x &&
filters_num_samples == filters.num_samples() &&
filters_k == filters.k() &&
filters_nr == filters.nr() &&
filters_nc == filters.nc()
)
{
return;
}
clear();
try
{
stride_y = stride_y_;
stride_x = stride_x_;
padding_y = padding_y_;
padding_x = padding_x_;
data_num_samples = data.num_samples();
data_k = data.k();
data_nr = data.nr();
data_nc = data.nc();
filters_num_samples = filters.num_samples();
filters_k = filters.k();
filters_nr = filters.nr();
filters_nc = filters.nc();
CHECK_CUDNN(cudnnCreateFilterDescriptor((cudnnFilterDescriptor_t*)&filter_handle));
CHECK_CUDNN(cudnnSetFilter4dDescriptor((cudnnFilterDescriptor_t)filter_handle,
CUDNN_DATA_FLOAT,
CUDNN_TENSOR_NCHW,
filters.num_samples(),
filters.k(),
filters.nr(),
filters.nc()));
CHECK_CUDNN(cudnnCreateConvolutionDescriptor((cudnnConvolutionDescriptor_t*)&conv_handle));
#if CUDNN_MAJOR >= 6
CHECK_CUDNN(cudnnSetConvolution2dDescriptor((cudnnConvolutionDescriptor_t)conv_handle,
padding_y, // vertical padding
padding_x, // horizontal padding
stride_y,
stride_x,
1, 1, // must be 1,1
CUDNN_CROSS_CORRELATION,
CUDNN_DATA_FLOAT)); // could also be CUDNN_CONVOLUTION
#else
CHECK_CUDNN(cudnnSetConvolution2dDescriptor((cudnnConvolutionDescriptor_t)conv_handle,
padding_y, // vertical padding
padding_x, // horizontal padding
stride_y,
stride_x,
1, 1, // must be 1,1
CUDNN_CROSS_CORRELATION)); // could also be CUDNN_CONVOLUTION
#endif
CHECK_CUDNN(cudnnGetConvolution2dForwardOutputDim(
(const cudnnConvolutionDescriptor_t)conv_handle,
descriptor(data),
(const cudnnFilterDescriptor_t)filter_handle,
&out_num_samples,
&out_k,
&out_nr,
&out_nc));
tensor_descriptor dest_desc;
dest_desc.set_size(out_num_samples,out_k,out_nr,out_nc);
select_best_algorithms(data, dest_desc);
CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(
context(),
descriptor(data),
(const cudnnFilterDescriptor_t)filter_handle,
(const cudnnConvolutionDescriptor_t)conv_handle,
descriptor(dest_desc),
(cudnnConvolutionFwdAlgo_t)forward_algo,
&forward_workspace_size_in_bytes));
CHECK_CUDNN(cudnnGetConvolutionBackwardDataWorkspaceSize(
context(),
(const cudnnFilterDescriptor_t)filter_handle,
descriptor(dest_desc),
(const cudnnConvolutionDescriptor_t)conv_handle,
descriptor(data),
(cudnnConvolutionBwdDataAlgo_t)backward_data_algo,
&backward_data_workspace_size_in_bytes));
CHECK_CUDNN(cudnnGetConvolutionBackwardFilterWorkspaceSize(
context(),
descriptor(data),
descriptor(dest_desc),
(const cudnnConvolutionDescriptor_t)conv_handle,
(const cudnnFilterDescriptor_t)filter_handle,
(cudnnConvolutionBwdFilterAlgo_t)backward_filters_algo,
&backward_filters_workspace_size_in_bytes));
}
catch(...)
{
clear();
throw;
}
}
tensor_conv::
~tensor_conv (
)
{
clear();
}
void tensor_conv::operator() (
const bool add_to_output,
resizable_tensor& output,
const tensor& data,
const tensor& filters
)
{
DLIB_CASSERT(stride_y > 0 && stride_x > 0, "You must call setup() before calling this function");
output.set_size(out_num_samples, out_k, out_nr, out_nc);
(*this)(add_to_output, static_cast<tensor&>(output), data, filters);
}
void tensor_conv::operator() (
const bool add_to_output,
tensor& output,
const tensor& data,
const tensor& filters
)
{
DLIB_CASSERT(is_same_object(output,data) == false);
DLIB_CASSERT(is_same_object(output,filters) == false);
DLIB_CASSERT(filters.k() == data.k());
DLIB_CASSERT(stride_y > 0 && stride_x > 0, "You must call setup() before calling this function");
DLIB_CASSERT(filters.nc() <= data.nc() + 2*padding_x,
"Filter windows must be small enough to fit into the padded image."
<< "\n\t filters.nc(): " << filters.nc()
<< "\n\t data.nc(): " << data.nc()
<< "\n\t padding_x: " << padding_x
);
DLIB_CASSERT(filters.nr() <= data.nr() + 2*padding_y,
"Filter windows must be small enough to fit into the padded image."
<< "\n\t filters.nr(): " << filters.nr()
<< "\n\t data.nr(): " << data.nr()
<< "\n\t padding_y: " << padding_y
);
DLIB_CASSERT(output.num_samples() == data.num_samples(),out_num_samples << " " << data.num_samples());
DLIB_CASSERT(output.k() == filters.num_samples());
DLIB_CASSERT(output.nr() == 1+(data.nr()+2*padding_y-filters.nr())/stride_y);
DLIB_CASSERT(output.nc() == 1+(data.nc()+2*padding_x-filters.nc())/stride_x);
const float alpha = 1;
const float beta = add_to_output ? 1 : 0;
// Since cudnnConvolutionForward() is an asynchronous call, we need to hold a
// reference to the workspace buffer so we can be sure it isn't reallocated
// while the function is still executing on the device. But each time we come
// here, we make sure to grab the latest workspace buffer so that, globally, we
// minimize the number of such buffers.
forward_workspace = device_global_buffer(forward_workspace_size_in_bytes);
CHECK_CUDNN(cudnnConvolutionForward(
context(),
&alpha,
descriptor(data),
data.device(),
(const cudnnFilterDescriptor_t)filter_handle,
filters.device(),
(const cudnnConvolutionDescriptor_t)conv_handle,
(cudnnConvolutionFwdAlgo_t)forward_algo,
forward_workspace,
forward_workspace_size_in_bytes,
&beta,
descriptor(output),
output.device()));
}
void tensor_conv::get_gradient_for_data (
const bool add_to_output,
const tensor& gradient_input,
const tensor& filters,
tensor& data_gradient
)
{
const float alpha = 1;
const float beta = add_to_output ? 1 : 0;
// Since cudnnConvolutionBackwardData() is an asynchronous call, we need to hold a
// reference to the workspace buffer so we can be sure it isn't reallocated
// while the function is still executing on the device. But each time we come
// here, we make sure to grab the latest workspace buffer so that, globally, we
// minimize the number of such buffers.
backward_data_workspace = device_global_buffer(backward_data_workspace_size_in_bytes);
CHECK_CUDNN(cudnnConvolutionBackwardData(context(),
&alpha,
(const cudnnFilterDescriptor_t)filter_handle,
filters.device(),
descriptor(gradient_input),
gradient_input.device(),
(const cudnnConvolutionDescriptor_t)conv_handle,
(cudnnConvolutionBwdDataAlgo_t)backward_data_algo,
backward_data_workspace,
backward_data_workspace_size_in_bytes,
&beta,
descriptor(data_gradient),
data_gradient.device()));
}
void tensor_conv::
get_gradient_for_filters (
const bool add_to_output,
const tensor& gradient_input,
const tensor& data,
tensor& filters_gradient
)
{
const float alpha = 1;
const float beta = add_to_output ? 1 : 0;
// Since cudnnConvolutionBackwardFilter() is an asynchronous call, we need to hold a
// reference to the workspace buffer so we can be sure it isn't reallocated
// while the function is still executing on the device. But each time we come
// here, we make sure to grab the latest workspace buffer so that, globally, we
// minimize the number of such buffers.
backward_filters_workspace = device_global_buffer(backward_filters_workspace_size_in_bytes);
CHECK_CUDNN(cudnnConvolutionBackwardFilter(context(),
&alpha,
descriptor(data),
data.device(),
descriptor(gradient_input),
gradient_input.device(),
(const cudnnConvolutionDescriptor_t)conv_handle,
(cudnnConvolutionBwdFilterAlgo_t)backward_filters_algo,
backward_filters_workspace,
backward_filters_workspace_size_in_bytes,
&beta,
(const cudnnFilterDescriptor_t)filter_handle,
filters_gradient.device()));
}
// ------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------
pooling::pooling (
) : handle(nullptr),window_height(0),window_width(0),stride_y(0),stride_x(0),padding_y(0), padding_x(0)
{
}
pooling::~pooling(
)
{
clear();
}
void pooling::
clear(
)
{
if (handle)
cudnnDestroyPoolingDescriptor((cudnnPoolingDescriptor_t)handle);
handle = nullptr;
window_height = 0;
window_width = 0;
stride_y = 0;
stride_x = 0;
padding_y = 0;
padding_x = 0;
}
void pooling::
setup_max_pooling(
int window_height_,
int window_width_,
int stride_y_,
int stride_x_,
int padding_y_,
int padding_x_
)
{
setup(window_height_, window_width_, stride_y_, stride_x_, padding_y_, padding_x_, CUDNN_POOLING_MAX);
do_max_pooling = true;
}
void pooling::
setup_avg_pooling(
int window_height_,
int window_width_,
int stride_y_,
int stride_x_,
int padding_y_,
int padding_x_
)
{
setup(window_height_, window_width_, stride_y_, stride_x_, padding_y_, padding_x_, CUDNN_POOLING_AVERAGE_COUNT_EXCLUDE_PADDING);
do_max_pooling = false;
}
void pooling::
setup(
int window_height_,
int window_width_,
int stride_y_,
int stride_x_,
int padding_y_,
int padding_x_,
int pooling_mode
)
{
DLIB_CASSERT (window_height_ > 0 && window_width_ > 0 &&
stride_y_ > 0 && stride_x_ > 0 ,
"window_height_: " << window_height_
<< "\t\n window_width_: " << window_width_
<< "\t\n stride_y_: " << stride_y_
<< "\t\n stride_x_: " << stride_x_ );
DLIB_CASSERT( 0 <= padding_y_ && padding_y_ < window_height_ &&
0 <= padding_x_ && padding_x_ < window_width_,
"window_height_: " << window_height_
<< "\t\n window_width_: " << window_width_
<< "\t\n padding_y_: " << padding_y_
<< "\t\n padding_x_: " << padding_x_ );
if (window_height == window_height_ &&
window_width == window_width_ &&
stride_y == stride_y_ &&
stride_x == stride_x_ &&
padding_y == padding_y_ &&
padding_x == padding_x_
)
{
return;
}
clear();
try
{
window_height = window_height_;
window_width = window_width_;
stride_x = stride_x_;
stride_y = stride_y_;
padding_y = padding_y_;
padding_x = padding_x_;
cudnnPoolingDescriptor_t poolingDesc;
CHECK_CUDNN(cudnnCreatePoolingDescriptor(&poolingDesc));
handle = poolingDesc;
CHECK_CUDNN(cudnnSetPooling2dDescriptor(poolingDesc,
(cudnnPoolingMode_t)pooling_mode,
CUDNN_PROPAGATE_NAN,
window_height,
window_width,
padding_y,
padding_x,
stride_y,
stride_x));
}
catch(...)
{
clear();
throw;
}
}
void pooling::
operator() (
resizable_tensor& dest,
const tensor& src
)
{
DLIB_CASSERT(window_width <= src.nc() + 2*padding_x,
"Pooling windows must be small enough to fit into the padded image."
<< "\n\t window_width: " << window_width
<< "\n\t src.nc(): " << src.nc()
<< "\n\t padding_x: " << padding_x
);
DLIB_CASSERT(window_height <= src.nr() + 2*padding_y,
"Pooling windows must be small enough to fit into the padded image."
<< "\n\t window_height: " << window_height
<< "\n\t src.nr(): " << src.nr()
<< "\n\t padding_y: " << padding_y
);
const float alpha = 1;
const float beta = 0;
int outN;
int outC;
int outH;
int outW;
CHECK_CUDNN(cudnnGetPooling2dForwardOutputDim((const cudnnPoolingDescriptor_t)handle,
descriptor(src),
&outN,
&outC,
&outH,
&outW));
dest.set_size(outN,outC,outH,outW);
DLIB_CASSERT(dest.num_samples() == src.num_samples());
DLIB_CASSERT(dest.k() == src.k());
DLIB_CASSERT(dest.nr() == 1 + (src.nr() + 2*padding_y - window_height)/stride_y,
"\n stride_y: " << stride_y <<
"\n padding_y: " << padding_y <<
"\n window_height: " << window_height <<
"\n src.nr(): " << src.nr() <<
"\n dest.nr(): " << dest.nr() <<
"\n src.nr()/stride_y: " << src.nr()/stride_y);
DLIB_CASSERT(dest.nc() == 1 + (src.nc() + 2*padding_x - window_width)/stride_x,
"\n stride_x: " << stride_x <<
"\n padding_x: " << padding_x <<
"\n window_width: " << window_width <<
"\n src.nc(): " << src.nc() <<
"\n dest.nc(): " << dest.nc() <<
"\n src.nc()/stride_x: " << src.nc()/stride_x);
CHECK_CUDNN(cudnnPoolingForward(context(),
(const cudnnPoolingDescriptor_t)handle,
&alpha,
descriptor(src),
src.device(),
&beta,
descriptor(dest),
dest.device()));
}
void pooling::get_gradient(
const tensor& gradient_input,
const tensor& dest,
const tensor& src,
tensor& grad
)
{
DLIB_CASSERT(have_same_dimensions(gradient_input,dest));
DLIB_CASSERT(have_same_dimensions(src,grad));
const float alpha = 1;
const float beta = 1;
CHECK_CUDNN(cudnnPoolingBackward(context(),
(const cudnnPoolingDescriptor_t)handle,
&alpha,
descriptor(dest),
dest.device(),
descriptor(gradient_input),
gradient_input.device(),
descriptor(src),
src.device(),
&beta,
descriptor(grad),
grad.device()));
}
// ------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------
void softmax (
tensor& dest,
const tensor& src
)
{
DLIB_CASSERT(have_same_dimensions(dest,src));
if (src.size() == 0)
return;
const float alpha = 1;
const float beta = 0;
CHECK_CUDNN(cudnnSoftmaxForward(context(),
CUDNN_SOFTMAX_ACCURATE,
CUDNN_SOFTMAX_MODE_CHANNEL,
&alpha,
descriptor(src),
src.device(),
&beta,
descriptor(dest),
dest.device()));
}
void softmax_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
)
{
DLIB_CASSERT(
have_same_dimensions(dest,gradient_input) == true &&
have_same_dimensions(dest,grad) == true );
if (dest.size() == 0)
return;
const float alpha = 1;
const float beta = is_same_object(grad,gradient_input) ? 0 : 1;
CHECK_CUDNN(cudnnSoftmaxBackward(context(),
CUDNN_SOFTMAX_ACCURATE,
CUDNN_SOFTMAX_MODE_CHANNEL,
&alpha,
descriptor(dest),
dest.device(),
descriptor(gradient_input),
gradient_input.device(),
&beta,
descriptor(grad),
grad.device()));
}
// ------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------
void softmax_all (
tensor& dest,
const tensor& src
)
{
DLIB_CASSERT(have_same_dimensions(dest,src));
if (src.size() == 0)
return;
const float alpha = 1;
const float beta = 0;
CHECK_CUDNN(cudnnSoftmaxForward(context(),
CUDNN_SOFTMAX_ACCURATE,
CUDNN_SOFTMAX_MODE_INSTANCE,
&alpha,
descriptor(src),
src.device(),
&beta,
descriptor(dest),
dest.device()));
}
void softmax_all_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
)
{
DLIB_CASSERT(
have_same_dimensions(dest,gradient_input) == true &&
have_same_dimensions(dest,grad) == true );
if (dest.size() == 0)
return;
const float alpha = 1;
const float beta = is_same_object(grad,gradient_input) ? 0 : 1;
CHECK_CUDNN(cudnnSoftmaxBackward(context(),
CUDNN_SOFTMAX_ACCURATE,
CUDNN_SOFTMAX_MODE_INSTANCE,
&alpha,
descriptor(dest),
dest.device(),
descriptor(gradient_input),
gradient_input.device(),
&beta,
descriptor(grad),
grad.device()));
}
// ------------------------------------------------------------------------------------
// ------------------------------------------------------------------------------------
void sigmoid (
tensor& dest,
const tensor& src
)
{
DLIB_CASSERT(have_same_dimensions(dest,src));
if (src.size() == 0)
return;
const float alpha = 1;
const float beta = 0;
CHECK_CUDNN(cudnnActivationForward(context(),
sigmoid_activation_descriptor(),
&alpha,
descriptor(src),
src.device(),
&beta,
descriptor(dest),
dest.device()));
}
void sigmoid_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
)
{
DLIB_CASSERT(
have_same_dimensions(dest,gradient_input) == true &&
have_same_dimensions(dest,grad) == true );
if (dest.size() == 0)
return;
const float alpha = 1;
const float beta = is_same_object(grad,gradient_input) ? 0 : 1;
CHECK_CUDNN(cudnnActivationBackward(context(),
sigmoid_activation_descriptor(),
&alpha,
descriptor(dest),
dest.device(),
descriptor(gradient_input),
gradient_input.device(),
descriptor(dest),
dest.device(),
&beta,
descriptor(grad),
grad.device()));
}
// ------------------------------------------------------------------------------------
void relu (
tensor& dest,
const tensor& src
)
{
DLIB_CASSERT(have_same_dimensions(dest,src));
if (src.size() == 0)
return;
const float alpha = 1;
const float beta = 0;
CHECK_CUDNN(cudnnActivationForward(context(),
relu_activation_descriptor(),
&alpha,
descriptor(src),
src.device(),
&beta,
descriptor(dest),
dest.device()));
}
void relu_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
)
{
DLIB_CASSERT(
have_same_dimensions(dest,gradient_input) == true &&
have_same_dimensions(dest,grad) == true );
if (dest.size() == 0)
return;
const float alpha = 1;
const float beta = is_same_object(grad,gradient_input) ? 0 : 1;
CHECK_CUDNN(cudnnActivationBackward(context(),
relu_activation_descriptor(),
&alpha,
descriptor(dest),
dest.device(),
descriptor(gradient_input),
gradient_input.device(),
descriptor(dest),
dest.device(),
&beta,
descriptor(grad),
grad.device()));
}
// ------------------------------------------------------------------------------------
void tanh (
tensor& dest,
const tensor& src
)
{
DLIB_CASSERT(have_same_dimensions(dest,src));
if (src.size() == 0)
return;
const float alpha = 1;
const float beta = 0;
CHECK_CUDNN(cudnnActivationForward(context(),
tanh_activation_descriptor(),
&alpha,
descriptor(src),
src.device(),
&beta,
descriptor(dest),
dest.device()));
}
void tanh_gradient (
tensor& grad,
const tensor& dest,
const tensor& gradient_input
)
{
DLIB_CASSERT(
have_same_dimensions(dest,gradient_input) == true &&
have_same_dimensions(dest,grad) == true);
if (dest.size() == 0)
return;
const float alpha = 1;
const float beta = is_same_object(grad,gradient_input) ? 0 : 1;
CHECK_CUDNN(cudnnActivationBackward(context(),
tanh_activation_descriptor(),
&alpha,
descriptor(dest),
dest.device(),
descriptor(gradient_input),
gradient_input.device(),
descriptor(dest),
dest.device(),
&beta,
descriptor(grad),
grad.device()));
}
// ------------------------------------------------------------------------------------
}
}
#endif // DLIB_USE_CUDA
#endif // DLIB_DNN_CuDNN_CPP_